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1 Introduction

This document is associated with the Bioconductor package HD2013SGl, which contains the
data and the R code for the statistical analysis presented in the paper

Mapping genetic interactions in human cancer cells with RNAi and multiparametric
phenotyping

Christina Laufer, Bernd Fischer, Maximilian Billmann, Wolfgang Huber, and Michael
Boutros

Nature Methods (2013) 10(5):427-31

doi: 10.1038/nmeth.2436.

In Section 2, the access to the data is described. Section 3 shows the figures from the
original publication and links each figure to one of the subsequent sections, which describe
the statistical analyses in the order in which they were executed. The R code within each
section can be executed independently of the other sections. Intermediate results from each
section are available in the form of R data objects.

To install the HD20135GlI, please start a current version of R and type

> if (!requireNamespace("BiocManager", quietly=TRUE))
+ install.packages("BiocManager")
> BiocManager::install("HD2013SGI")

2 Data access

The interaction matrix can be loaded by

> library("HD2013SGI")
> data("Interactions", package="HD2013SGI")

The element Interactions$piscore of this data object is a 6-dimensional array of 7-scores,
Interactions$padj is a 5-dimensional array of BH-adjusted p-values, and Interactions$Anno
contains annotation for target genes, query genes, and phenotypes. You can type

> ? Interactions
to see the documentation of this data object. Similarly, you can use the ? operator to obtain
help on any of the below data objects; The following datasets are available:

= Interactions The genetic interaction data (m-scores, p-values, and annotation). This
is the main data source of this package.
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featuresPerWell The screen data in screen order.

datamatrixfull The phenotype data of all pairwise genetic perturbation experiments
before quality control and feature selection.

QueryAnnotation Annotation of all the query genes in the screen.
TargetAnnotation Annotation of all target genes in the screen.
stabilitySelection Results from the feature selection step.

datamatrix The phenotype data of all pairwise genetic perturbation experiments after
quality control and feature selection.

mainEffects Estimated main effects (single knock down effect).

nrOfinteractionsPerTarget Number of interactions per target gene.

They are intermediate results of the analysis steps described in the following, precomputed
and loadable for convenience.

3 Figures from the paper

In this section all figures from the original publication are shown. In the next sections the R
code for the analysis is documented. A link to the respective section in which the figure is
generated is given for each figure.

Figure 1cd

Figure 2a

R code for this figure is documented in Sec- R code for this figure is documented in Sec-
tion 7.2. tion 6.3.
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R code for this figure is documented in Section R code for this figure is documented in Section
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R code for this figure is documented in Section R code for this figure is documented in Section

9.

densities
S 4 ® siRNA against different genes
B siRNA against same gene
r
@
2
2 <o |
g o
[}
0
9
Q
° 1 — T ¥ ;
-1.0 -0.5 0.0 05 1.0

Correlation between siRNA designs



Mapping genetic interactions in human cancer cells, Laufer, Fischer et al., 2013

Figure S3

R code for this figure is documented in Section 6.5.
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Figure S5 Figure S6

R code for this figure is documented in Section R code for this figure is documented in Section
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4 Image segmentation and feature extraction

4.1  Preliminaries
Load the Bioconductor package HD20135Gl.

> library("HD2013SGI")
> dir.create(file.path("result","Figures"), recursive=TRUE, showWarnings=FALSE)

We adapted image segmentation and feature extraction methods from previous work[1, 2, 3],
using the Bioconductor package EBImage[4]. The data set comprised 5.6 terabytes. Here,
exemplarily we show the image segmentation and feature extraction on a clipped imaged of
size 340 pixels x 490 pixels.

4.2 Image segmentation

Images were obtained from the InCell Analyzer 2000 as 12-bit TIFF images of size 2,048
pixels x 2,048 pixels at three colors. Techically the images were stored as 16bit-images, but
their dynamic range only extended to 12bit (0, ...,4095). The package contains a clipped
image of size 340 pixels x 490 pixels. The three channels were saved in separate TIFF files,
and we load them into the workspace as follows.

fnchl = system.file(file.path("images", "image-DAPI.tif"), package="HD2013SGI")
fnch2 = system.file(file.path("images", "image-FITC.tif"), package="HD2013SGI")
fnch3 = system.file(file.path("images", "image-Cy3.tif"), package="HD2013SGI")
Imgl = readImage(fnchl)
Img2 = readImage(fnch2)
Img3 = readImage(fnch3)

V V. .V V VvV V
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The images Imgl, Img2 and Img3 are represented as arrays of floating point numbers. Their
dynamic range depends in each case on the staining reagent, the power of the light source and
the excitation time. For display purposes, the following commands obtain linearly transformed
versions of the images; note however that the subsequent analysis will be performed on the
original images.

> ImgDAPI = normalize(Imgl, inputRange=c(0.002, 0.03))
> ImgFITC = normalize(Img2, inputRange=c(0.004, 0.04))
> ImgCy3 = normalize(Img3, inputRange=c(0.002, 0.03))

> display(combine(ImgDAPI, ImgFITC, ImgCy3))

The function will open the images in a browser, and you can navigate through the
three channels with the arrows on the top of the page.

ImgDAPI ImgFITC ImgCy3

We can combine the three channels to a single false color image using red for Actin, yellow
for a-Tubulin, and blue for the DAPI staining.

> ImgColor = rgbImage(ImgCy3,ImgFITC, ImgDAPI)

> display(ImgColor)

ImgFITC

In a first processing step we smoothed the images by linear filtering with a Gaussian kernel
with a small bandwidth of 1 pixel, respectively 3 pixels.

Filterl = makeBrush(size=51,shape = "gaussian",sigma=1)/12.91571
Filter3 = makeBrush(size=51,shape = "gaussian",6sigma=3)/12.91571
Imglsmooth = filter2(Imgl, filter=Filterl)
Img2smooth = filter2(Img2, filter=Filter3)

VvV V V V
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> Img3smooth = filter2(Img3, filter=Filter3)

The smoothed images can be displayed as above after normalization. The difference to the
original images is almost not visible, but it helped to smoothen the segmentation boundaries
that were generated by the next steps.

\

smoothDAPI = normalize(Imglsmoothx12.91571, inputRange=c(0.002, 0.03))
smoothFITC = normalize(Img2smoothx12.91571, inputRange=c(0.004, 0.04))
smoothCy3 = normalize(Img3smoothx12.91571, inputRange=c(0.002, 0.03))

\%

Vv

\

display(combine(smoothDAPI, smoothFITC, smoothCy3))

smoothDAPI smoothFITC smoothCy3

Nuclei were segmented by adaptive thresholding with a window size of 10 pixels (correspond-
ing to 7.4 pm). See the next row of images for the outcomes of each of the following
steps.

> nucleusThresh = thresh(Imglsmooth, w = 10, h = 10, offset = 0.0001)

A morphological operation (opening) removes tiny segments and smoothens their shapes.

> nucleusOpening = opening(nucleusThresh, kern=makeBrush(3, shape="disc"))

An integer value is assigned to individually label the segmented regions.

> nucleusSeed = bwlabel(nucleusOpening)

The resulting segmentation (nucleusSeed), shown below, nicely separates the different nuclei
from each other, but unfortunately in some cases shows holes and does not cover all of the
area with nuclear staining in the image. Therefore, we generated a second segmentation, to
be used as a mask, that covered the whole nuclear stained region, but which was in many
places connected across neighbouring nuclei. To do so, we started with a less stringent
adaptive thresholding and applied to it another morphological operation, which fills holes
that are surrounded by foreground pixels.

> nucleusFill = fillHull(thresh(Imglsmooth, w = 20, h = 20, offset = 0.00005))

To improve on what we had in (nucleusSeed), we propagated the segmented objects until
the mask defined nucleusFill was filled. Boundaries between nuclei, in those places where
the mask was connected, were found by Voronoi tessellation on a metric space that depends
on the gradient field of smoothDAPI using the algorithm by Jones et al. [5].
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> nucleusRegions = propagate(Imglsmooth, nucleusSeed, mask=nucleusFill)

We can now display the five above images from the nucleus segmentation.

> display(combine(nucleusThresh,
nucleusOpening,
colorLabels(nucleusSeed),
nucleusFill,
colorLabels(nucleusRegions)))

+ + + +

nucleusOpening nucleusSeed nucleusFill

nucleusRegions

To segment the cell bodies, we applied adaptive thresholding followed by morphological
opening on the actin channel Img3smooth, similar to what we did for the nuclei on the DAPI
channel (Imglsmooth).

> cytoplasmThresh = thresh(Img3smooth, w = 20, h = 20, offset = 0.000001)
> cytoplasmOpening = opening(cytoplasmThresh, kern=makeBrush(3, shape="disc"))

Because the cell bodies often covered large sections of whole image, adaptive thresholding
did not always detect all cellular areas, and we employed a second segmentation by a global,
large threshold.

> globalThreshold = 0.0003
> cytoplasmOpening? = opening(Img3smooth > globalThreshold)

To define the mask of image area covered by cell bodies, we combined the two cytoplasmic
masks and the nuclear mask by taking their union.

> cytoplasmCombined = cytoplasmOpening
> cytoplasmCombined[cytoplasmOpening2 > cytoplasmCombined] =
+ cytoplasmOpening2[cytoplasmOpening2 > cytoplasmCombined]

10
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> cytoplasmCombined[nucleusFill > cytoplasmCombined] =
+ nucleusFill[nucleusFill > cytoplasmCombined]

To define the cellular bodies, the nucleus segmentation was extended by a Voronoi tessellation-
based propagation algorithm[5].

> cytoplasmRegions = propagate(Img3smooth, nucleusRegions, lambda=1.0e-4, mask=cytoplasmCombined)

The three image masks for the segmentation of the cytoplam are displayed below.

> display(combine(cytoplasmThresh,
cytoplasmOpening,
cytoplasmOpening2,
cytoplasmCombined,
colorLabels(cytoplasmRegions)))

+ + + +

cytoplasmOpen cytoplasmOpen cytoplasmCom
ing ing2 bined

cytoplasmRe
gions

As an alternative representation, below we display the nucleus segmentation and cell body
segmentation on top of the original images.

Imgoutl
Imgout2
Imgout3

paintObjects(nucleusRegions, ImgDAPI, col='#ffOOff"')
paintObjects(nucleusRegions, ImgColor, col='#ffOOff"')
paintObjects(cytoplasmRegions,
paintObjects(nucleusRegions,
toRGB(ImgDAPI),
col="#ffooffr'),
col="#ff0000")
paintObjects(cytoplasmRegions,
paintObjects(nucleusRegions,

Imgout4

+ V + + 4+ + V V Vv

11
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+
+
+
>
+
+

4.3

toRGB(ImgCy3),
col="#ffOOff"),
col="#ff0000")
Imgout5 = paintObjects(cytoplasmRegions,
paintObjects(nucleusRegions,ImgColor, col='#ffoOff'),
col="#ff0000")

nucleusRegions nucleusRegions cytoplasmRe cytoplasmRe
DAPI Actin/ gions gions
/DAPI DAPI Actin

cytoplasmRe
gions
Actin/

/DAPI

Feature extraction

Features for intensity, shape and texture were extracted for each cell from the DAPI channel
using the nucleus segmentation (nucleusRegions) and from the actin and tubulin channels
using the cell body segmentation (cytoplasmRegions).

> F1 = computeFeatures(nucleusRegions, Imgl, xname="nuc", refnames="nuc")
> F2 = computeFeatures(cytoplasmRegions,Img2, xname="cell", refnames="tub")
> F3 = computeFeatures(cytoplasmRegions,Img3, xname="cell", refnames="act")

Additional features were extracted from the joint distribution of the DAPI and the tubulin
signals using the cell body mask.

> F4 = computeFeatures(cytoplasmRegions, (Imgl - mean(Imgl)) = (Img2 - mean(Img2)),
+ xname="cell", refnames="nuctub")

12
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The below figure shows three phenotypic features for the cells segmented in the example
image.
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Features were summarized per experiment by the arithmetic mean over all cells, which in the
figure above is indicated by the black vertical lines. The number of segmented nuclei was
used as a proxy for cell count.

> F = cbind(F1, F2, F3, F4)
> Fwell = c(count=nrow(F), apply(F, 2, mean))

The equivalent of Fwell, computed for all images in the screen, together with associated

metadata, is available as R-object featuresPerWell from the package and can be loaded by
; see the next section.

Convert data from plate order to multi-dimensional
SGl-arrary

5.1

Preliminaries
Load the package HD20135Gl.

> library("HD2013SGI")

Load screening data in workspace.

> data("featuresPeriell", package="HD2013SGI")

After image segmentation and feature extraction, a feature vector is available for each image
field. The feature data are represented as a 2 dimensional table with extension 231840 image
fields x 353 phenotypic features. There are 168 plates in the screen. On those plates, NROW
rows and NCOL columns were used, and NFIELD fields were imaged per well:

13
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5.2

5.3

> NROW = 15
> NCOL = 23
> NFIELD = 4

In this section, these data are rearranged into a 6-dimensional array with one dimension each
for target designs, features, and replicatess.

An output directory is created where the data array will be placed in.

> dir.create(file.path("result", "data"), recursive=TRUE, showWarnings=FALSE)

Parse plate barcodes to annotate the plates

Plate barcodes and plate numbers are extracted from the screen annotation. The plate
annotation is summarized in a data frame.

> plates = featuresPeriWell$Anno[seq(1, nrow(featuresPerWell$Anno), by=NFIELD+NCOL*NROW),"plate"]
> PlateAnnotation = HD2013SGI:::parsePlateBarcodes(plates)
> head(PlateAnnotation)

plate targetDesign queryGroup queryGene queryDesign replicate

1 001CIQO1IRI 1 sample 01 1 1
2 002CIQO1IIRI 1 sample 01 2 1
3 003CIIQO1IRI 2 sample 01 1 1
4 004CIIQO1IIRI 2 sample 01 2 1
5 005CIQ02IRI 1 sample 02 1 1
6 006CIQO2IIRI 1 sample 02 2 1

The names of all query genes, siRNA designs, and replicates are extracted for all sample
experiments.

S = which(PlateAnnotation$queryGroup=="sample")
tdnames = unique(PlateAnnotation$targetDesign[S])
gnames = unique(PlateAnnotation$queryGene[S])
gdnames = unique(PlateAnnotation$queryDesign[S])
repnames = unique(PlateAnnotation$replicate[S])

vV V. V VvV V

Reorder data

In this step, we create the array D and fill it with the data. The target genes are spread over
the three dimensions field, col and row. The mean of the measurements in the 4 fields per
well is taken.

> D = array(0, dim=c(field=NFIELD, col=NCOL, row=NROW,

+ features=dim(featuresPerWell$data)([2],

+ targetDesign=length(tdnames),

+ query=length(qnames),

+ queryDesign=length(qdnames),

+ replicate=length(repnames)))

> dimnames (D) = list(field=seq_len(NFIELD),

+ col=seq_len(NCOL), row=LETTERS[seq_len(NROW)+1],
+ features=dimnames (featuresPerWells$data)[[2]],

14
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+ targetDesign=tdnames,

T queryGene=gnames,

+ queryDesign=qdnames,

+ replicate=repnames)

> for (td in tdnames) {

+ for (q in gnames) {

+ for (qd in gdnames) {

+ for (r in repnames) {

+ plate = PlateAnnotationg$plate[

+ which((PlateAnnotation$targetDesign == td) &
+ (PlateAnnotation$queryGene =q ) &
+ (PlateAnnotation$queryDesign == qd) &
+ (PlateAnnotation$replicate =r)) ]
+ I = which(featuresPeriell$Anno$plate == plate)

+ D[,,,,td,q,qd, r] = as.vector(featuresPerWell$datalI,])

+ }

+ }

+ }

+ }

> D[is.na(D)] = 0
b= ([1,,,,,,,]1 +D[2,,,,,,,] +DI[3,,,,,,,] +D[4,,,,,,,]1)/4
> # faster than D = apply(D,2:8,mean,na.rm=TRUE)

> dim(D)
col row features targetDesign query queryDesign
23 15 353 2 20 2
replicate
2

The dimensions are reordered, and row and column dimensions are merged into a single
dimension for target genes. The data is saved to disk.

> D = aperm(D,c(1,2,4,5,6,3,7))

> dn = dimnames (D)

> dim(D) = c(prod(dim(D)[1:2]),dim(D)[3:7])

> dimnames(D) = c(list(targetGene =

+ sprintf("%s%d", rep(LETTERS[seq_len(NROW)+1], each=NCOL),
+ rep(seq_len(NCOL), times=NROW))),

+ dn[3:7])
> datamatrixfull = list(D = D)
> save(datamatrixfull, file=file.path("result","data","datamatrixfull.rda"))

The raw data are now represented in the 6-dimensional array D with dimensions

345 target genes
2 siRNA target designs
20 query genes

2 siRNA query designs
353 phenotypic features
2 biological replicates

X X X X X

A precomputed version of the datamatrix is available from the package and can be loaded
by data(datamatrix, package="HD2013SGI").

15
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Processing of the main data set

6.2

Preliminaries
Load the Bioconductor-package HD20135GI.

> library("HD2013SGI")

Load data and screen annotation in workspace.

> data("datamatrixfull", package="HD2013SGI")

> D = datamatrixfull$D

> data("TargetAnnotation", package="HD2013SGI")
> data("QueryAnnotation", package="HD20135GI")

Output directories are created where the data, figures and tables will be placed in.

> dir.create(file.path("result", "data"), recursive=TRUE, showWarnings=FALSE)
> dir.create(file.path("result","Figures"), recursive=TRUE, showWarnings=FALSE)
> dir.create(file.path("result","Tables"), recursive=TRUE, showWarnings=FALSE)

Get indices for different sets of experiments (samples, controls, ...).

> IndexSAMPLE = which(TargetAnnotation$group == "sample")
> IndexCTRL = which(TargetAnnotationg$group == "SingleKDctrl")
> IndexNEG = which(TargetAnnotation$group == "negctrl")

> IndexSAMPLENEG = c(IndexSAMPLE, IndexNEG)

Set the color value for controls.

> colCTRL = rep("gray", nrow(TargetAnnotation))
> colCTRL[TargetAnnotation$group == "SingleKDctrl"] = "royalblue"
> colCTRL[TargetAnnotation$group == "negctrl"] = "red"

Transform features and screen normalization

Previous genetic interaction screens that were based on a quantitative cell viability phenotype
were analysed using a multiplicative interaction model [6, 7, 8, 9, 10]. For model fitting, it
is then convenient to transform the data to a logarithmic scale. Motivated by [11, 12], we
adapted this approach to all features considered here. Since some features had a non-positive
range of values, instead of the logarithm we applied a generalized logarithm transform [13]

f(z;¢) = log (W) . 1)

This family of functions has one parameter c¢. For ¢ = 0, the function is equivalent to
an ordinary logarithm transformation. For ¢ > 0, the function is smooth for all values of
x (including 0 and negative values), avoiding the singularity of the ordinary logarithm at
x = 0, but still approximately equivalent to the ordinary logarithm for = > ¢ as shown in the
following plot.

16
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For each feature, we chose ¢ to be the 3%-quantile of the feature's empirical distribution.

> for (i in seq_len(dim(D)[5])) {

+ m = quantile(D[,,,,1i,],probs=0.03,na.rm=TRUE)
+ D[,,,,1,] =glog(D[,,,,1,1,m)

+ }

After transformation, to take account of the plate and batch effects and differences in ef-
ficiency of the siRNA transfection, an additive normalization is performed per plate. The
plate median is set to be equal for all siRNA designs and replicates for each query gene and
phenotypic feature. This compensates for global differences between replicates and siRNA
designs.

> M = apply(D,c(2:6),median,na. rm=TRUE)
> M2 = apply(M, c(2,4), mean)

> M2 = rep(M2, times=8)

> dim(M2) = dim(M)[c(2,4,1,3,5)]

> M2 = aperm(M2,c(3,1,4,2,5))

>M=M- M2

> M = rep(M[], each=dim(D)[1])

> dim(M) = dim(D)

>D=D-M

After transformation, to take account of the fact that the data range of the different features
was different, data were centered and scaled separately for each feature. Center and scale
were computed as the median and median absolute deviation, respectively.

> for (i in seq_len(dim(D)[5])) {

+ 0»of,,,,1,] = (D[,,,,1,] - median(D[,,,,1,],na.rm=TRUE)) /
+ mad(D[,,,,1,],na.rm=TRUE)

+ }

In the following, we will refer to the array of transformed, centered and scaled values as
Dijkimr with the indices 4, j, k, [, m,r counting over the 6 dimensions of the data cube with
extensions
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6.3

345 target genes (1)
X 2 siRNA target design (j)
X 20 query genes (k)
X 2 siRNA query designs (1)
x 353  phenotypic features (m)
X 2 biological replicates (r)

Quality control of features

To control for the quality of each feature, its reproducibility over replicate measurements was
assessed. For each feature f, we computed the two vectors v} and vfc,

v?-:D.,A,fl fori=1,2. A

Here, the notation — indicates averaging over an index, and the notation - indicates extraction
of the whole subspace spanned by this index. Here, we used only the 323 sample genes, since
the set of target genes contained a number of negative and positive controls. Thus, v/ is

a vector with 323 x 20 = 6460 elements. We then computed the correlation coefficient p
between v} and v7.

C = rep(NA_real_,dim(D)[5])
02 = (pf,1,,1,,] +D[,2,,1,,] +D[,1,,2,,] +D[,2,,2,,1) / 4
for (i in seq_len(dim(D)[5])) {
C[i] = cor(as.vector(D2[IndexSAMPLE,,i,1]),as.vector(D2[IndexSAMPLE, ,i,2]))

+ + VvV VvV V

We plot the correlation coefficients for all 353 features.

> plot(sort(C, decreasing=TRUE), pch=20, xlab="features", ylab="correlation", ylim=c(0,1),

+ cex.lab=1.75, cex.axis=1.5)
> abline(h=0.6)
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As an example, the scatter plot of eccentricity measurements is plotted for two replicates.

> 1 = "cell.Bact.m.eccentricity"
> plot(as.vector(D2[IndexSAMPLE, ,i,1]),
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6.4

+ as.vector(D2[IndexSAMPLE, ,1,2]),

+ pch=20, cex.lab=1.75, cex.axis=1.5,

+ xlab="eccentricity replicate 1",

+ ylab="eccentricity replicate 2")

> cc = cor(as.vector(D2[IndexSAMPLE,,i,1]),

+ as.vector(D2[IndexSAMPLE, ,1,2]))

> text(x=2, y=-4, sprintf("cor = %0.2f",cc), cex=1.75)
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eccentricity replicate 1
We selected features with a correlation of at least 0.6 for subsequent analysis. 227 out of
353 features passed quality control.

> I = which(C >= 0.6)
>D = D[/;;/I//dr0p=FALSE]
> dim(D)

[1] 345 2 20 2227 2

The dimension of the data cube after quality control of the phenotypic features is

345 target genes
2 siRNA target designs
20 query genes

2 siRNA query designs
227 phenotypic features
2 biological replicates

X X X X X

Quality control of siRNA designs

To detect cases where the siRNA reagents for our target genes had off-target effects, we
compared the phenotypic profiles of the two siRNA designs for each target gene. To this end,
we computed the vectors

wl=Dy. - 3]
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using only those features that passed the quality filter described in Section 6.3. We then
computed the correlation ;; between w;, and w7;. The congruence score

pi=1p'i_ 4
is the mean over the correlation coefficients of each feature.

>p1=¢({,,,1,,1] +D{(,,,1,,2] +DI[,,,2,,1] + DI[,,,2,,2]1)/4
> Cdesignl = rep(NA_real_,dim(D)[1])

> for (k in seq_len(dim(D)[5])) {

+ for (i in seq_len(dim(D)[1])) {

+ Cdesignl[i] = cor(as.vector(D1[1i,1,,k]),as.vector(D1[1i,2,,k]))
+ }

+ if (k==1) {

+ Cdesignlall = Cdesignl

+ } else {

+ Cdesignlall = Cdesignlall + Cdesignl

+ }

B
> Cdesignlall = Cdesignlall / dim(D)[5]

The congruence scores for all target genes are plotted in decreasing order.

> plot(sort(Cdesignlall[IndexSAMPLE], decreasing=TRUE),
+ pch=20, cex.lab=1.75, cex.axis=1.5, ylim=c(0,1),
+ xlab="target genes",ylab="correlation")

> abline(h=0.7)
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CHAF1A is an example gene with a low congruence score. Exemplarily a barchart for the cell
eccentricity for the double knock-downs of both siRNA designs of CHAF1A together with
siRNA design 1 of DPF2 is plotted.

> f = "cell.Bact.m.eccentricity"

> D1 = D[ TargetAnnotation$Symbol == "CHAF1A",,QueryAnnotation$Symbol == "DPF2",1,f,]
> bp = barplot(apply(D1,1,mean),ylab="Cell eccentricity",

+ names.arg=c("CHAF1A #1\nDPF2 #1","CHAF1A #2\nDPF2 #1"), las=2)
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6.5

> points(bp,D1[,1])
> points(bp,D1[,2])
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Target gene i was selected for subsequent analysis if p; > 0.7. The number of target genes
passing quality control was 282 out of 323. Additionally, 7 negative control target siRNAs
were selected.

> 7T IndexSAMPLE[Cdesignlall[IndexSAMPLE] >= 0.7]
> T c(I, IndexNEG)

>D=0D[I,,,,,,drop=FALSE]

>

>

TargetAnnotation = TargetAnnotation[I, ]
dim(D)

[1] 289 2 20 2227 2

The dimension of the data cube D after quality control of the siRNA designs is

289 target genes
2 siRNA target designs
20 query genes

2 siRNA query designs
227 phenotypic features
2 biological replicates

X X X X X

Selection of non-redundant features

The 227 features are highly redundant. We selected a set of non-redundant features. To
do so, in the following the phenotypic profiles are summarized over all siRNA designs, and
control measurements are excluded.

> D1
> D1

(D[Illllll]+D[Illlzll]+D[1211111]+D[I2II211]) /4
D1[TargetAnnotation$group == "sample",,,]

3000 perturbations are randomly selected to speed up the selection process.
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dim(D1) = c(prod(dim(D1)[1:2]),dim(D1)[3:4])
D1 = aperm(D1,c(1,3,2))
set.seed(5830458)
Sample = sample(seq_len(dim(D1)[1]), 3000)
subSampleForStabilitySelection = list(D = D1[Sample,,],
Sample = Sample,
phenotype = dimnames(D)[[5]])

+ + V V V V V

Next, the feature selection was performed. The feature number of cells was manually pres-
elected because of its biological interest. All other features were selected automatically in a
sequential way. In each step, all remaining candidate features were evaluated separately. Let
F(i) be the features that were selected after step 4. In step i, for all candidate features f a
linear regression was fit on the previously selected features.

D._._j.~D _. _pi-1. 5]
Let 7.. ;. be the residuals of this fit, i.e., the component of D._._ ;. that is orthogonal to
the linear subspace spanned by D._._ p;_1).. The residuals are a composition of random

noise and biological information that is non-redundant to the previously selected features. To
estimate if there still exists unexplained biological signal, the Pearson correlation coefficient p¢
of the residual vectors 7.. r1 and 7.. s o between the two biological replicates was computed.
It can be considered a proxy for the signal-to-noise ratio of these residuals. The feature with
the largest correlation coefficient p was selected.

> stabilitySelection = HD2013SGIselectByStability(subSampleForStabilitySelection,
T preselect = c("count"),
+ Rdim = 25, verbose = TRUE)

The step-wise approach was stopped when the number of positive correlation coefficients was
smaller than or equal to the number of negative correlation coefficients,

D (©pr) <Y (©(=py)) 6
s

f

where © (z) is the Heaviside function. This criterion is motivated by the observation that for
random data, half of the correlation coefficients is expected to be positive and the other half
is expected to be negative.

> Sel = (stabilitySelection$ratioPositive >= 0.5)
> sum(Sel)

[1]1 9
Thus, a set of 9 features was considered to contain non-redundant information. The barplot

below shows the correlation coefficients of the residual features, which was considered the
proxy for information content.

> barplot(stabilitySelection$correlation,

+ names.arg=HD2013SGI: : : humanReadableNames[stabilitySelection$selected],
+ col=ifelse(Sel, col[2], col[1]),
+ ylim=c(0,1), las=2, ylab="information gain")
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Now we plot the fraction of positive correlation coefficients, which served as a stop criterion.

> barplot(stabilitySelection$ratioPositive-0.5,

+ names.arg=HD2013SGI: : : humanReadableNames[stabilitySelection$selected],
+ offset=0.5,col=ifelse(Sel, col[2], col[1]),ylim=c(0,1),
+ las=2,ylab="fraction positive correlated")
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The criteria for feature selection are saved and the features are selected.

> save(stabilitySelection, file=file.path("result", "data",
+ "stabilitySelection.rda"))
>D =D[,,,,stabilitySelection$selected[Sel],,drop=FALSE]

> dimnames(D)[[1]] = TargetAnnotation$Symbol
> dimnames (D) [[3]] = QueryAnnotation$Symbol
> dim(D)

[1] 289 2 20 2 9 2

After selecting 9 non-redundant features, the dimension of the data cube is
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6.6

6.7

289 target genes
X 2 siRNA target designs
X 20 query genes
X 2 siRNA query designs
X 9 phenotypic features
X 2 biological replicates

The datamatrix is now completely pre-processed and can be saved.

> datamatrix = list(D=D, Anno = list(target = TargetAnnotation,
+ query = QueryAnnotation,

+ phenotype=dimnames (D) [[5]]))

> save(datamatrix, file=file.path("result",6"data", "datamatrix.rda"))

Pairwise interaction scores

Pairwise interaction scores (7-scores) were estimated using a robust linear fit. The query main
effects are lifted such that they equal to the mean of the single knock down measurements
of the query genes (target siRNA is a scrambled sequence serving as negative control).

> D = datamatrix$D

> pimatrix = datamatrix

> pimatrix$D[] = NA_real_

> mainEffects = list(target = D/[,,1,,,1,

+ query = D[1,,,,,1,

+ overall =D[1,,1,,,],

+ Anno = datamatrix$Anno)

> for (i in seq_len(dim(D)[2])) {

+ for (j in seq_len(dim(D)[4])) {

+ for (k in seq_len(dim(D)[5])) {

+ for (1 in seq_len(dim(D)[6])) {

+ MP = HD2013SGImaineffects(D[,1,,7,k,1],

+ TargetNeg=which(TargetAnnotation$group == "negctrl"))
+ pimatrix$D[,1i,,j,k, 1] = MP$pi

+ mainEffects$target([,1i,j,k,l] = MP$targetMainEffect
+ mainEffects$queryli,,j,k, 1] = MP$queryMainEffect
+ mainEffects$overall[i, j,k, 1] = MP$neg

i }

+ }

+

+}

>

save(mainEffects, file=file.path("result","data", "mainEffects.rda"))

Statistical testing of interaction terms

For statistical testing, the interaction terms that differed by > 4 times the median standard
deviation of the interaction scores were flagged as outliers. Afterwards the interaction terms
were tested for significance by a moderated t-test implemented in the R package /imma.

> D = pimatrix$D
> PADJ = D[pimatrix$Anno$target$group == "sample",,,,,1]
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> s = rep(NA_real_, dim(D)[5])
> for (i in seq_len(dim(D)[5])) {
+ Data=D[,,,,i,]

+ Data = Data[pimatrix$Anno$target$group == "sample",,,,]

+ d = dim(Data)

+ dim(Data) = c(prod(d[1:4]),prod(d[5]))

+ Data[abs(Data[,1]-Data[,2]) > 4*mad(Data[,1]-Data[,2],center=0.0),]=NA_real_
+

+ s[i] = median(apply(Data,1,sd), na.rm=TRUE)

+ padj = rep(NA_real_, nrow(Data))

+ K = which(apply(!is.na(Data),1,all))

+ fit = eBayes(lmFit(Data[K,]))

+ padj[K] = p.adjust(fit$p.value, method="BH")

+ PADJ[,,,,1] = padj

+ cat(sprintf("i=%2d",1),

+ "'nr int (1%) =", sum(padj <= 0.01, na.rm=TRUE)/nrow(Data),
+ "'nr int (3%) = ", sum(padj <= 0.03, na.rm=TRUE)/nrow(Data), "\n")
+ }

i= 1 nr int (1%) = 0.0006205674 nr int (3%) = 0.006826241

i= 2 nr int (1%) = 0.02353723 nr int (3%) = 0.07539894

i= 3 nr int (1%) = 0.05110816 nr int (3%) = 0.1007535

i= 4 nr int (1%) = 0.01835106 nr int (3%) = 0.05053191

i= 5 nr int (1%) = 0.009973404 nr int (3%) = 0.03922872

i= 6 nr int (1%) = 0.0322695 nr int (3%) = 0.07632979

i= 7 nr int (1%) = 0.008865248 nr int (3%) = 0.02451241

i= 8 nr int (1%) = 0.002969858 nr int (3%) = 0.01387411

i= 9 nr int (1%) = 0.003147163 nr int (3%) = 0.03843085

m-scores for each siRNA pair were summarized over both replicates. Furthermore, interaction
scores were divided by their median deviation over all siRNA pairs, to scale them to comparable
dynamic range.

> PI = pimatrix$D

> PI = PI[pimatrix$Anno$target$group == "sample",,,,,]

> Interactions = list(newpiscore = PI,

+ scale = s,

+ padj = PADJ,

+ Anno = pimatrix$Anno)

> Interactions$Anno$target = Interactions$Anno$target|[

+ pimatrix$Annog$target$group == "sample", ]

> save(Interactions, file=file.path("result", "data", "Interactions.rda"))

Example phenotypes and interactions

Preliminaries

> library("HD2013SGI")
> data("Interactions", package="HD2013SGI")
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7.2

7.3

> data("mainEffects", package="HD2013SGI")
> dir.create(file.path("result","Figures"),
+ recursive=TRUE, showWarnings=FALSE)

Examples of single knock down phenotypes

Main effects were first summarized over all four siRNA design pairs and divided by the median
deviation to compute a z-score. Bars in the following barplots show the mean of main effects
calculated over the two replicates of the screen. Circle symbols represent individual replicate
measurements. Main effects for five different phenotypes are plotted for the two genes SETD8
and TCF20

> features = c("count", "nuc.0.s.area","nuc.0.m.eccentricity",

"cell.Bact.m.eccentricity","cell.act.m.majoraxis")
> ylim = ¢c(-2.947124, 7.329518)

\'

HD2013SGI: : :plotExampleSingleGeneEffects(gene="SETD8", features,mainEffects,ylim)

> HD2013SGI: : :plotExampleSingleGeneEffects(gene="TCF20", features,mainEffects,ylim)
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Example of genetic interactions
Barcharts for example interactions are plotted.

> HD2013SGI:::plotExampleInteractions(feature="cell.act.m.majoraxis",
et target="PHF16", query="SETD8",
+ Interactions, mainEffects)

> HD2013SGI:::plotExampleInteractions(feature="nuc.0.m.eccentricity",
+ target="SIN3A", query="RUVBL1",
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7.4

+ Interactions, mainEffects)
target=PHF16 target=SIN3A
query=SETD8o query=RUVBL1
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Overlap of interactions

To show the overlap of interactions called in different phenotypes, interactions with an ad-
justed p-value of < 0.01 were considered.

> features = c("nuc.0.s.area","nuc.0.m.majoraxis",

+ "cell.Bact.m.eccentricity","cell.act.m.majoraxis")

> SIG = Interactions$padj[,,,,features] <= 0.01

> SIG[is.na(SIG)] = FALSE

The 5-dimensional array SIG of Boolean values indicating the significant interactions was
reshaped to a 2-dimensional table with one column for each feature.

> dim(SIG) = c(prod(dim(SIG)[1:4]), dim(SIG)[5])
> row.names(SIG) = sprintf("A%d", seq_len(nrow(SIG)))
> colnames(SIG) = HD2013SGI: ::humanReadableNames[features]

A contingency table was computed considering all gene pairs that interacted in at leat one
phenotype

> I = which(apply(SIG, 1, any))
> Overlap = table(as.data.frame(SIG[I,]))
> QOverlap

, ,» Actin eccentricity = FALSE, Cell major axis = FALSE

Nuclear major axis
Nuclear area FALSE TRUE
FALSE 0 65
TRUE 32 82

, » Actin eccentricity = TRUE, Cell major axis = FALSE
Nuclear major axis

Nuclear area FALSE TRUE
FALSE 155 6
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TRUE 1 5
, » Actin eccentricity = FALSE, Cell major axis = TRUE

Nuclear major axis
Nuclear area FALSE TRUE
FALSE 412 9
TRUE 7 20

, ,» Actin eccentricity = TRUE, Cell major axis = TRUE

Nuclear major axis
Nuclear area FALSE TRUE
FALSE 69 4
TRUE 1 9

> save(Overlap, file=file.path("result","Figures","Overlap.rda"))

A Venn diagram was generated with a webtool (http://bioinfogp.cnb.csic.es/tools/venny/index.html).
Lists of identifiers of the significant genes were written to be used with the webtool.

L = apply(SIG, 2, function(x) names(which(x)))
for (i in seq_along(L)) {
writeLines(L[[1]],
file.path("result", "Figures", sprintf("interactionlist%d.txt",1)))

+ + + V Vv

In paper, a Venn diagram is shown. An alternative plot where the region areas are proportional
to the numbers, is a mosaic plot as shown here.
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Correlation of interaction profiles for different siRNA
designs of the same gene

8.1

8.2

Preliminaries

library("HD2013SGI")

data("Interactions", package="HD2013SGI")
data("mainEffects", package="HD2013SGI")
dir.create(file.path("result","Figures"), recursive=TRUE)
dir.create(file.path("result","data"), recursive=TRUE)

vV V. V VvV Vv

Correlation of interaction profiles for different siRNA designs
of the same gene

m-scores were summarized over two replicates. Pearson correlation coefficients were computed
for interaction profiles for each pair of siRNA and saved in the matric C.

PI = Interactions$piscore
for (k in seq_len(dim(PI)[5])) {
pPIf,,,,k, 1 = PI[,,,,k,] / Interactions$scale[k]
}
pr = (pI1f,,,,,11+PI1[,,,,,21) / 2
PI[is.na(Interactions$padj)] = NA_real_
PI2 = PI
dim(PI2) = c(prod(dim(PI)[1:2]),prod(dim(PI)[3:5]))
C = cor(t(PI2),use="pairwise.complete")

vV V.V V V + + V V

Correlation coefficients for siRNA pairs, where both siRNA targeted the same gene, were
extracted.

IDX = matrix(NA_integer_, nr=dim(Interactions$piscore)[1],nc=2)
IDX[,1] = seq_len(dim(Interactions$piscore)([1])

IDX[,2] = IDX[,1] + dim(Interactions$piscore)[1]

cc = C[IDX]

VvV V V V

Next, we counted the number of significant interactions per target gene to select genes that
showed a strong interaction profile.

PI3 = PI

dim(PI3) = c(dim(PI)[1],dim(PI)[2],prod(dim(PI)[3:5]))

PI3[abs(PI3) < 5] = NA_real_

S = sign(PI3)

nrOfInteractionsPerTarget = apply('!is.na(S[,1,] == S[,2,1),1,sum,na.rm=TRUE)

vV V. V VvV V

We plot the density of correlation coefficients of interaction profiles between siRNAs against
different genes and between siRNAs targeting the same gene.

> differentGenes = upper.tri(C)
> differentGenes[IDX] = FALSE
> differentGenes[IDX[,2:1]] = FALSE
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> sel = which(nrOfInteractionsPerTarget >= 5)

> multidensity(list(againstDifferentGenes = C[differentGenes],
+ againstSameGene = cc[sel]),

+ legend = list(

+ x = "topleft",

+ legend = c("siRNA against different genes",

+ "siRNA against same gene"),

+ fill = brewer.pal(9,"Setl")[1:2],bty="n"),

+ xlim=c(-1,1),xlab="Correlation between siRNA designs", lwd=3)
> rug(cc[sel])
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Save the number of interactions per target gene.

> save(nrOfInteractionsPerTarget,
+ file=file.path("result","data","nrOfInteractionsPerTarget.rda"))

Heatmaps of interaction profiles

9.2

Preliminaries

> library("HD2013SGI")

data("Interactions", package="HD2013SGI")
data("mainEffects", package="HD2013SGI")
data("nrOfInteractionsPerTarget", package="HD2013SGI")
dir.create(file.path("result","Figures"), recursive=TRUE)

Heatmap of all siRNA profiles

m-scores were normalized per feature by dividing with the median deviation between two
replicates. For each siRNA-pair they were summarized over two replicates.
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PI = Interactions$piscore
for (k in seq_len(dim(PI)[5])) {
pPI[,,,,k,] = PI[,,,,k,] / Interactions$scale[k]
}
PI = (PI[,,,,,1]+PI[,,,,,2]) / 2

vV + + VvV V

The 5-dimensional array PI was reshaped to a 3-dimensional array by flattening the dimensions
of target genes and siRNA designs as well as query genes and their respective siRNA designs.

> dim(PI) = c(prod(dim(PI)[1:2]),prod(dim(PI)[3:4]),dim(PI)[5])
> dimnames(PI) = list(
+ sprintf("%s_%d", rep(Interactions$Anno$target$Symbol, times=2),
rep(seq_len(dim(Interactions$piscore)([2]),
each=dim(Interactions$piscore)[1])),
sprintf("%s_%d", rep(Interactions$Anno$query$Symbol, times=2),
rep(seq_len(dim(Interactions$piscore)[4]),
each=dim(Interactions$piscore)[3])),
rep(dimnames(Interactions$piscore)[[5]]))

+ + + + + o+

After this step, the dimension of the array PI was 564 target siRNA x 40 query siRNA
x 11 phenotypic features. The color scale for interaction scores was limited to the range

[—6,...,6]. Interaction scores between -2 and 2 are colored black.
> cuts = c(-Inf,
+ seq(-6, -2, length.out=(length(HD2013SGI:::colBY)-3)/2),
+ 0,
+ seq( 2, 6, length.out=(length(HD2013SGI:::colBY)-3)/2),
+ +Inf)
A heatmap of m-scores for all siRNA pairs is plotted.
I = HD2013SGIorderDim(PI, 1)$order
J = HD2013SGIorderDim(PI,2)$order
K = HD2013SGIorderDim(PI,3)$order

HD2013SGIHeatmapHuman (x=PI[I,J,K], cuts=cuts,col=HD2013SGI:: :colBY,
colnames=TRUE, mcol=10, cexcol=0.5, mrow=0)

+ VvV V VvV V
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9.3

Heatmap of best correlating siRNA profiles

m-scores were normalized per feature by dividing by the median deviation between two repli-
cates. For each gene pair m-scores were summarized over the two replicates and the 2 x 2
siRNA designs.

> PI = Interactions$piscore
for (k in seq_len(dim(PI)[5])) {
pPIf,,,,k,]1 = PI[,,,,k,] / Interactions$scalelk]

PI
PI

(Px{,,,,,11+PI[,,,,,21) / 2
(p1f,1,,1,] + PI[,2,,1,] + PI[,1,,2,] + PI[,2,,2,])/4

>
+
+ }
>
>

Target genes with a minimum of 5 m-scores with |m;;| > 5 were selected.

> sel = which(nrOfInteractionsPerTarget >= 5)
> PI = PI[sel,,]

Pearson correlation coefficients were computed comparing interaction profiles between all
gene pairs.

> hcAll = HD2013SGIorderDim(PI, 1)

> dim(PI) = c(dim(PI)[1],prod(dim(PI)[2:3]))

> dimnames(PI)[[1]] = Interactions$Anno$target$Symbol[sel]
> (2 = cor(t(PI),use="pairwise.complete")

The heatmap of correlation coefficients is plotted.
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dd = as.dendrogram(hcAll)

heatmap.2(C2, col=colorRampPalette(brewer.pal(9,"RdBu")) (255),
breaks=seq(-1,1, length.out=256),
trace="none", Rowv=dd, Colv=dd)

+ + Vv V
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10  Simulation of small cell number data

10.1 Preliminaries

library("HD2013SGI")
dir.create(file.path("result","Figures"), recursive=TRUE, showWarnings=FALSE)
data("featuresPerWell", package="HD2013SGI")

data("TargetAnnotation", package="HD20135GI")

data("QueryAnnotation", package="HD2013SGI")

data("datamatrix", package="HD2013SGI")

V V. V V VvV V

10.2 Convert data from plate order to SGl-array

The simulation of a genetic interaction experiment with smaller cell numbers followed the
scripts in Sections 5 and 6.

First, the plate barcodes were parsed.

> plates = featuresPerWell$Anno[seq(1,nrow(featuresPerWell$Anno),
+ by=NFIELD*NCOL*NROW), "plate"]
> PlateAnnotation = HD2013SGI: ::parsePlateBarcodes(plates)
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The names of all query genes were extracted.

S = which(PlateAnnotation$queryGroup=="sample")
tdnames = unique(PlateAnnotation$targetDesign[S])
gnames = unique(PlateAnnotation$queryGene[S])
gdnames = unique(PlateAnnotation$queryDesign[S])
repnames = unique(PlateAnnotation$replicate[S])

vV V. V VvV V

The data were converted from the screen plate layout to a multi-dimensional array.

> D = array(0.0, dim=c(field=NFIELD,col=NCOL, row=NROW,

+ features=dim(featuresPerWell$data)[2],

+ targetDesign=length(tdnames),

+ query=length(gnames), queryDesign=1length(qdnames),

+ replicate=length(repnames)))

> dimnames (D) = list(field=seq_len(NFIELD),

+ col=seq_len(NCOL), row=LETTERS[seq_len(NROW)+1],

+ features=dimnames (featuresPerWell$data)[[2]],

+ targetDesign=tdnames,

+ queryGene=qnames, queryDesign=qdnames, replicate=repnames)
> z=0

> for (td in tdnames) {

+ for (q in gnames) {

+ for (qd in qgdnames) {

+ for (r in repnames) {

+ plate = PlateAnnotation$plate[

+ which((PlateAnnotation$targetDesign == td) &

+ (PlateAnnotation$queryGene == q) &

+ (PlateAnnotation$queryDesign == qd) &

+ (PlateAnnotationg$replicate == r) ) |

+ z=z+1

+ I = which(featuresPerlell$Anno$plate == plate)

+ D[,,,,td,q,qd, r] = as.vector(featuresPeriell$datalI,])

+ }

+ }

+ }

+ }
> D[is.na(D)] = 0.0

The data were summarized by their mean value
1. considering only one imaging field per well,
2. considering two imaging fields per well, and
3. considering all four imaging fields per well.

Dsubl = D[1,,,,,,,]

Dsub2 = (D[1,,,,,,,] +DI[2,,,,,,,1)/2

b=¢(l1,,,,,,,] +D[2,,,,,,,]1 +DI[3,,,,,,,] +D[4,,,,,,,1)/4
D = aperm(D,c(1,2,4,5,6,3,7))

dn = dimnames (D)

vV V. V VvV V
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10.3

V V.V V V V V + 4+ 4+ V V

dim(D) = c(prod(dim(D)[1:2]),dim(D)[3:7])
dimnames (D) = c(list(targetGene =
sprintf("%s%d", rep(LETTERS[seq_len(NROW)+1],each=NCOL),
rep(seq_len(NCOL), times=NROW)) ),
an[3:7])
Dsubl = aperm(Dsubl,c(1,2,4,5,6,3,7))
dim(Dsubl) = c(prod(dim(Dsubl)[1:2]),dim(Dsubl)[3:7])
dimnames (Dsubl) = dimnames (D)
Dsub2 = aperm(Dsub2,c(1,2,4,5,6,3,7))
dim(Dsub2) = c(prod(dim(Dsub2)[1:2]),dim(Dsub2)[3:7])
dimnames (Dsub2) = dimnames (D)
datamatrixfullsub = list(Dsubl = Dsubl, Dsub2 = Dsub2, Dsub4 = D)

Get indices for different sets of experiments (samples, controls, ...).

>

>

>

>

IndexSAMPLE = which(TargetAnnotation$group == "sample")
IndexCTRL = which(TargetAnnotation$group == "SingleKDctrl")
IndexNEG = which(TargetAnnotation$group == "negctrl")

IndexSAMPLENEG = c(IndexSAMPLE, IndexNEG)

Set the color value for controls.

>

>

>

colCTRL = rep("gray", nrow(TargetAnnotation))
colCTRL[TargetAnnotation$group == "SingleKDctrl"] = "royalblue"
colCTRL[TargetAnnotation$group == "negctrl"] = "red"

Transform features and screen normalization

A function for a generalized log transformation.

>
+
+

logtrafo <- function(x,c) {
log2( (x+sqrt(x~2+c*~2))/2)
}

Transform all features with a generalized log transformation. A 3 percent quantile was used
as an additive constant in the glog transformation. The same constant was used for the

>
=+
+
+
+
+

-transformation of all three data sets.

for (i in seq_len(dim(D)[5])) {
m = quantile(D[,,,,1i,],probs=0.03,na.rm=TRUE)
bf,,,,i,] = logtrafo(D[,,,,1,1,m)
Dsublf,,,,i,] = logtrafo(Dsublf,,,,1i,],m)
Dsub2(,,,,1,] = logtrafo(Dsub2[,,,,1,],m)

}

Normalize median per plate and feature to compensate for global differences between repli-
cates and siRNA designs.

>
I
s
45

normalize <- function(D) {
M = apply(D,c(2:6),median, na. rm=TRUE)
M2 apply (M, c(2,4), mean)
M2 = rep(M2, times=8)
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10.4

+ dim(M2) = dim(M)[c(2,4,1,3,5)]
+ M2 = aperm(M2,c(3,1,4,2,5))

+ M=M- M

+ M= rep(M[], each=dim(D)[1])

+ dim(M) = dim(D)

+ D=D-M

+ D

+ }

> D <- normalize(D)
> Dsubl <- normalize(Dsubl)
> Dsub2 <- normalize(Dsub2)

Subtract median and divide by median deviation per feature.

> for (i in 1:dim(D)[5]) {

+ o»0f,,,,1,] = (D[,,,,1,] - median(D[,,,,1i,],na.rm=TRUE)) /

+ mad(D[,,,,1,],na.rm=TRUE)

+ }

> for (i in 1:dim(Dsubl)[5]) {

+ Dsublf,,,,i,] = (Dsubl(,,,,i,] - median(Dsubl[,,,,i,],na.rm=TRUE)) /
e mad(Dsublf,,,,1i,],na.rm=TRUE)

+}

> for (i in 1:dim(Dsub2)[5]) {

+ Dsub2(,,,,i,] = (Dsub2[,,,,1i,] - median(Dsub2[,,,,i,],na.rm=TRUE)) /
+ mad(Dsub2(,,,,1,],na.rm=TRUE)

+ }

Quality control of features

The dimension of the data cube before quality control is: 345 x 2 x 20 x 2 x 353 x 2 (targets
x siRNA designs x queries x designs x features x replicates). Take the mean over all four
siRNA design pairs and compute for each feature the Pearson correlation between first and
second replicate.

C = rep(NA_real_,dim(D)[5])
o2 = (p(,1,,1,,] + D[,2,,1,,] + D[,1,,2,,] + D[,2,,2,,]) / 4
D2subl = (Dsubif,1,,1,,] + Dsublf,2,,1,,] + Dsubl[,1,,2,,] + Dsublf[,2,,2,,]) / 4
D2sub2 (Dsub2[,1,,1,,] + Dsub2[,2,,1,,] + Dsub2[,1,,2,,] + Dsub2[,2,,2,,]1) / 4
for (i in 1:dim(D)[5]) {

C[i] = cor(as.vector(D2[IndexSAMPLE,, i,1]),as.vector(D2[IndexSAMPLE,,1i,2]))

+ + VvV VvV V V V

}

Select all features with a correlation of at least 0.6. The number of features passing quality
control is 227 out of 353. The same features as in the main analysis were selected in all three
simulated cases

I = which(C >= 0.6)
bD=0>[,,,,I,, drop=FALSE]

Dsubl = Dsublf,,,,I,,drop=FALSE]
Dsub2 = Dsub2{,,,,I,,drop=FALSE]
dim(D)

vV V. V VvV V
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10.5

10.6

targetDesign query queryDesign features replicate
345 2 20 2 227 2

The dimension of the data cube is now: 345 x 2 x 20 x 2 x 227 x 2 (targets x siRNA designs
x queries x designs x features x replicates).

Quality control of siRNA designs

For each target siRNA the phenotypic profiles were summarized over two query siRNA and
two replicates.

> D1 = (D[1111111] +D[llll//2] +D[1112111] + D[IIIZIIZJ)/4

For each target gene the Pearson correlation coefficient was computed for phenotypic pro-
files between the two siRNA designs separately for each feature. The mean of correlation
coefficients over all features is reported for each target gene.

> Cdesignl = rep(NA_real_,dim(D)[1])

> for (k in 1:dim(D)[5]) {

+ for (i in 1:dim(D)[1]) {

+ Cdesignl[i] = cor(as.vector(D1[i,1,,k]),as.vector(D1[1,2,,k]))
+ 1

+ if (( k==1) {

+ Cdesignlall = Cdesignl

+ } else {

+ Cdesignlall = Cdesignlall + Cdesignl

+ 1

+ }

> (Cdesignlall = Cdesignlall / dim(D)[5]

All gene with a correlation of the phenotypic profiles of at least 0.7 are selected for further
analysis. The number of target genes passing quality control is 282 out of 323. Additionally,
7 negative control target siRNAs are selected. The same target genes as in the main analysis
are selected for all three simulated cases.

I
I

> IndexSAMPLE[Cdesignlall[IndexSAMPLE] >= 0.7]
> c(I, IndexNEG)

>D=0D[I,,,,,,drop=FALSE]

> Dsubl = Dsubl[I,,,,,,drop=FALSE]

>

>

Dsub2 = Dsub2([I,,,,,,drop=FALSE]
TargetAnnotation = TargetAnnotation[I, ]

The dimension of the data cube is now: 289 x 2 x 20 x 2 x 227 x 2 (targets x siRNA designs
x queries x designs x features x replicates).

Selection of non-redundant features

> data(stabilitySelection, package="HD2013SGI")
> Sel = stabilitySelection$ratioPositive >= 0.5
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10.7

A set of 11 features was considered to contain non-redundant information. The criteria for
feature selection are saved and the features are selected. The same features as in the main
analysis were selected for all three simulated datasets.

>D =D[,,,,stabilitySelection$selected[Sel],,drop=FALSE]
dimnames(D)[[1]] TargetAnnotation$Symbol

dimnames (D) [[3]] QueryAnnotation$Symbol

Dsubl = Dsublf,,,,stabilitySelection$selected[Sel],,drop=FALSE]
Dsub2 = Dsub2[,,,,stabilitySelection$selected[Sel],,drop=FALSE]
dimnames(Dsubl) = dimnames (D)

dimnames(Dsub2) = dimnames (D)

V V. V V VvV V

After selecting 11 features, the dimension of the data cube is now: 289 x 2 x 20 x 2 x 11 x
2 (targets x siRNA designs x queries x designs x features x replicates).

Pairwise interaction scores

Pairwise interaction scores (m-scores) are estimated using a robust linear fit. The query main
effects are lifted such that they equal to the mean of the single knock down measurements
of the query genes (target siRNA is a scrambled sequence serving as negative control).

> getInteractions <- function(D) {

+ pimatrix = datamatrix

+ pimatrix$D[] = NA_real_

+ mainEffects = list(target =D[,,1,,,],

+ query = D[1,,,,,1,

+ overall = D[1,,1,,,],

+ Anno = datamatrix$Anno)

+

+ for (i in 1:2) {

+ for (j in 1:2) {

+ for (k in 1:dim(D)[5]) {

+ for (1 in 1:2) {

+ MP = HD2013SGImaineffects(D[,i,,j,k, 1],

+ TargetNeg=which(TargetAnnotation$group == "negctrl"))
+ pimatrix$D[,1i,,j,k, 1] = MP$pi

+ mainEffects$target(,1i,j,k, 1] = MP$targetMainEffect
+ mainEffects$query[i,,j,k, 1] = MP$queryMainEffect
+ mainEffects$overall[i,j,k, 1] = MP$neg

+ }

+ }

i }

+ }

+ D = pimatrix$D

+ PADJ = D[pimatrix$Anno$target$group == "sample",,,,,1]

+ s = rep(NA_real_, dim(D)[5])

+ for (i in 1:dim(D)[5]) {

+ Data = D[,,,,1,]

+ Data = Data[pimatrix$Anno$target$group == "sample",,,,]
+ d = dim(Data)

+ dim(Data) = c(prod(d[1:4]),prod(d[5]))

+ Data[abs(Data[,1]-Datal,2]) >
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4xmad(Data[,1]-Data[,2],center=0.0),] = NA_real_

s[i] median(apply(Data,1,sd), na.rm=TRUE)

padj = rep(NA_real_, nrow(Data))

K = which(apply(!is.na(Data),1,all))

fit = eBayes(lmFit(Data[K,]))

padj[K] = p.adjust(fit$p.value, method="BH")

PADJ[,,,,1] = padj

cat("i=",1," nr int (1%) = ",sum(padj <= 0.01,na.rm=TRUE)/nrow(Data),
"“'nr int (3%) = ",sum(padj <= 0.03,na.rm=TRUE)/nrow(Data),"\n")

}
PI = pimatrix$D
PI = PI[pimatrix$Anno$target$group == "sample",,,,,]
Interactions = list(piscore = PI,
scale = s,
padj = PADJ,
Anno = pimatrix$Anno)
Interactions$Anno$target = Interactions$Anno$target|[
pimatrix$Anno$target$group == "sample",]
Interactions
}
InteractionsSub4 = getInteractions(D)
i= 1 nr int (1%) = 0.0006205674 nr int (3%) = 0.006826241
i= 2 nr int (1%) = 0.02353723 nr int (3%) = 0.07539894
i= 3 nr int (1%) = 0.05110816 nr int (3%) = 0.1007535
i= 4 nr int (1%) = 0.06117021 nr int (3%) = 0.1077128
i= 5 nr int (1%) = 0.009973404 nr int (3%) = 0.03922872
i= 6 nr int (1%) = 0.008865248 nr int (3%) = 0.02451241
i= 7 nr int (1%) = 0.05110816 nr int (3%) = 0.1058067
i= 8 nr int (1%) = 0.00695922 nr int (3%) = 0.02234043
i= 9 nr int (1%) = 0.005673759 nr int (3%) = 0.01710993
i= 10 nr int (1%) = 0.01108156 nr int (3%) = 0.0454344
i= 11 nr int (1%) = 0.003147163 nr int (3%) = 0.03843085

> InteractionsSubl = getInteractions(Dsubl)

i= 1 nr int (1%) = 0 nr int (3%) = 0.0005319149

i= 2 nr int (1%) = 0.008510638 nr int (3%) = 0.02832447
i= 3 nr int (1%) = 0.01023936 nr int (3%) = 0.02593085

i= 4 nr int (1%) = 0.008998227 nr int (3%) = 0.0206117

i= 5 nr int (1%) = 0.0006205674 nr int (3%) = 0.004166667
i= 6 nr int (1%) = 0.0006648936 nr int (3%) = 0.003679078
i= 7 nr int (1%) = 0.009219858 nr int (3%) = 0.0266844

i= 8 nr int (1%) = 0 nr int (3%) = 0.000177305

i= 9 nr int (1%) = 0 nr int (3%) = 0.0002216312

i= 10 nr int (1%) = O nr int (3%) = 0

i= 11 nr int (1%) = 0.007047872 nr int (3%) = 0.025

> InteractionsSub2 = getInteractions(Dsub2)

0.0009308511 nr int

( 0.004964539
0.01830674 nr int (3%

0.05771277

i= 1 nr int (1%)

3%)
i= 2 nr int (1%) ) =
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i= 3 nr int (1%) = 0.06387411 nr int (3%) = 0.09968972

i= 4 nr int (1%) = 0.02814716 nr int (3%) = 0.06023936

i= 5 nr int (1%) = 0.00483156 nr int (3%) = 0.02132092

i= 6 nr int (1%) = 0.00625 nr int (3%) = 0.01586879

i= 7 nr int (1%) = 0.05820035 nr int (3%) = 0.09933511

i= 8 nr int (1%) = 0.008244681 nr int (3%) = 0.02109929
i= 9 nr int (1%) = 0.02039007 nr int (3%) = 0.03085106

i= 10 nr int (1%) = 0 nr int (3%) = 0.009042553

i= 11 nr int (1%) = 0.005984043 nr int (3%) = 0.0366578

The number of significantly interacting siRNA pairs is plotted.

> fieldl = sum(InteractionsSubl$padj <= 0.01,na.rm=TRUE)
> field2 = sum(InteractionsSub2$padj <= 0.01,na.rm=TRUE)
> field4 = sum(InteractionsSub4$padj <= 0.01,na.rm=TRUE)

> plot(c(fieldl, field2,field4), type="b", pch=19,
+ ylab="number of interactions",xlab="",

+ xlim=c(0.5,3.5),ylim=c(0.0, field4),

+ main="",6 xaxt="n", cex.lab=1.75,cex.axis=1.5)
> axis(side=1,at=1:3, labels=c("","",""))

> axis(side=1,at=1:3, labels=c("1775\ncells", "3550\ncells","7100\ncells"),
+ line=1.5, lwd=0, cex.axis=1.5)

3000 5000
1

number ot Interactions

0 1000

T T I
1775 3550 7100
cells cells cells

Distribution of positive and negative interactions

11.1

Preliminaries

library("HD2013SGI")

data("Interactions", package="HD2013SGI")
data("mainEffects", package="HD2013SGI")
data("nrOfInteractionsPerTarget", package="HD2013SGI")

VvV V V V
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11.2

> dir.create(file.path("result","Figures"), showWarnings=FALSE, recursive=TRUE)

Distribution of interactions

The mean of the interaction scores was taken over the two replicates.

> PI
> PI

Interactions$piscore
(P1(,,,,,11+PI[,,,,,21) / 2

The number of positive and negative interactions for each phenotypic feature was counted.
Only significant interactions (FDR <= 0.01) were considered.

> npos = rep(NA_integer_, dim(PI)[5])

> nneg = rep(NA_integer_, dim(PI)[5])

> for (i in seq_len(dim(PI)[5])) {

+ I = which(Interactions$padj[,,,,1i] <= 0.01)

+ pi= (PI[,,,,i])[I]

+ npos[i] = sum(pi >= 0)
+ nneg[i] = sum(pi < 0)
+ }

npos (nneg) contains the number of positive (negative) genetic interactions per phenotypic
feature. The features were sorted by the total number (positive and negative) interactions
starting with the largest number.

\"

I = order(-(npos+nneg))
npos = npos[I]
nneg = nneg[I]

\'

\

A barchart was plotted showing the number of positive and negative interactions.

> barplot(rbind(npos,nneg), beside=TRUE,

+ col=HD2013SGI: ::Colors[c(3,1)],

+ xlab="phenotypic features",ylab="number of interactions")

> legend("topright", legend=c("pos. interactions", "neg. interactions"),
+ fill=HD2013SGI:::Colors[c(3,1)])
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Scatter plots between phenotypes

12.1

12.2

Preliminaries

> library("HD2013SGI")
> data("datamatrix", package="HD2013SGI")
> dir.create(file.path("result","Figures"),showWarnings=FALSE, recursive=TRUE)

Scatter plots of selected features

The 6-dimensional array of log-transformed features is reshaped in a 2-dimensional matrix
with columns for each selected feature.

> D datamatrix$D
> D = aperm(D, c(1,2,3,4,6,5))
> dim(D) = c(prod(dim(D)[1:5]),dim(D)[6])

Scatter plots of the selected features are plotted using 1000 randomly selected double knock-
down experiments.

> set.seed(712608)
> S = sample(dim(D)[1],1000)

> heatpairs(D[S,], cor.cex = 1.8,pch=20,main="")
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13  Screen plots

13.1 Preliminaries

> library("HD2013SGI")

> data("Interactions", package="HD2013SGI")

> dir.create(file.path("result","Figures"),

+ recursive=TRUE, showWarnings=FALSE)

13.2 Screen plots

The m-scores for the feature cell.act.m.majoraxis were mapped back to the screen plate
layout.

> F = "cell.act.m.majoraxis"

> EmptyPlate = rep(NA_real_, 24x16)

> names (EmptyPlate) = sprintf("%s%d", rep(LETTERS[1:16],each=24),
+ rep(1:24,times=16))

> z = list()

> for (Rep in seq_len(dim(Interactions$piscore)([6])) {

+ for (Q in seq_len(dim(Interactions$piscore)([3])) {

+ for (QD in seq_len(dim(Interactions$piscore)[4])) {

+ for (TD in seq_len(dim(Interactions$piscore)[2])) {
+ Plate = EmptyPlate

+ Plate[Interactions$Anno$target$Well] =

+ Interactions$piscore[,TD,Q,QD,F,Rep]
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z[[sprintf("Q%d_td%d_qd%sd_r%d",Q,TD,QD,Rep)]] = Plate
}
}
}
}

+ + + + +

Screen plots of two plates are plotted.

> plotScreen(z[1:2], ncol=2L, na.fill="gray90",
+ main="pi-score (cell.act.m.majoraxis)",
+ zrange=c(-3,3),do.names=FALSE)

pi—-score (cell.act.m.majoraxis)

P25

2
15
1 —
0.5 N
0 =
-05 WN

14  Main result table

14.1 Preliminaries

> library("HD2013SGI")

> data("Interactions", package="HD2013SGI")

> dir.create(file.path("result","Tables"),

+ recursive=TRUE, showWarnings=FALSE)

14.2 Main table of interaction scores

The mean of the interaction scores is taken over the two replicates.

> PI = Interactions$piscore

> PI = (PI[,,,,,1] + PI[,,,,,2])/2
> PADJ = Interactions$padj

> PI[is.na(PADJ)] = NA

The 5-dimensional arrays of w-scores and adjusted p-values are reshaped to a 2-dimensional
matrix with one column per phenotypic feature.

> dim(PI) = c(prod(dim(PI)[1:4]),dim(PI)[5])
> dim(PADJ) = c(prod(dim(PADJ)[1:4]),dim(PADJ)[5])

The two matrices are merged in a way such that 7-scores and adjusted p-values are interlaced
and the two columns per features are next to each other.

>V
>V

cbind(PI, PADJ)
V[, rep(seq_len(dim(PI)[2]),each=2)+rep(c(0,dim(PI)[2]), times=dim(PI)[2])]
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> colnames(V) = sprintf("%s.%s",rep(c("pi-score","padj"),times=dim(PI)[2]),
+ rep(HD2013SGI: : : humanReadableNames[ Interactions$Anno$phenotype ],
+ each=2))

Annotation of the target and query gene names and the index of siRNA design are added to
the table. The table is written to a text file.

> target = rep(Interactions$Annog$target$Symbol,

+ times=prod(dim(Interactions$piscore)(c(2,3,4)]))
> targetDesign = rep(rep(c("#1","#2"),

+ times=prod(dim(Interactions$piscore)[c(3,4)])),
+ each=dim(Interactions$piscore)[1])

> query = rep(rep(Interactions$Anno$query$Symbol,

+ times=dim(Interactions$piscore)[4]),

+ each=prod(dim(Interactions$piscore)[c(1,2)]))

> queryDesign = rep(c("#1","#2"),

+ each=prod(dim(Interactions$piscore)[c(1,2,3)]))
> df = data.frame(targetGene=target, targetDesign = targetDesign,

+ queryGene=query, queryDesign=queryDesign,

+ V)

> write.table(df, file=file.path("result",6 "Tables","interactions.txt"),sep="\t",
+ row.names=FALSE, quote=FALSE)

15 Session info

Here is the output of on the system on which this document was compiled:
> tolatex(sessionInfo())
= R version 4.5.1 Patched (2025-08-23 r88802), x86_64-pc-1linux-gnu

= Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8
LC_IDENTIFICATION=C

=  Time zone: America/New_York

= TZcode source: system (glibc)

= Running under: Ubuntu 24.04.3 LTS

= Matrix products: default

= BLAS: /home/biocbuild/bbs-3.22-bioc/R/1lib/1ibRblas.so

= LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.s0.3.12.0

= Base packages: base, datasets, grDevices, graphics, grid, methods, stats, stats4, utils

= Other packages: AnnotationDbi 1.72.0, Biobase 2.70.0, BiocGenerics 0.56.0,
EBImage 4.52.0, HD2013SGI 1.50.0, IRanges 2.44.0, LSD 4.1-0,
RColorBrewer 1.1-3, S4Vectors 0.48.0, XML 3.99-0.19, annotate 1.88.0,
geneplotter 1.88.0, generics 0.1.4, gplots 3.2.0, lattice 0.22-7, limma 3.66.0,
splots 1.76.0, vcd 1.4-13
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Loaded via a namespace (and not attached): BiocManager 1.30.26,

BiocStyle 2.38.0, Biostrings 2.78.0, DBI 1.2.3, KEGGREST 1.50.0,

KernSmooth 2.23-26, MASS 7.3-65, R6 2.6.1, RCurl 1.98-1.17, RSQLite 2.4.3,
Seqinfo 1.0.0, XVector 0.50.0, abind 1.4-8, bit 4.6.0, bit64 4.6.0-1, bitops 1.0-9,
blob 1.2.4, caTools 1.18.3, cachem 1.1.0, cli 3.6.5, colorspace 2.1-2, compiler 4.5.1,
crayon 1.5.3, digest 0.6.37, evaluate 1.0.5, fastmap 1.2.0, fftwtools 0.9-11,

gtools 3.9.5, htmltools 0.5.8.1, htmlwidgets 1.6.4, httr 1.4.7, jpeg 0.1-11, knitr 1.50,
Imtest 0.9-40, locfit 1.5-9.12, memoise 2.0.1, png 0.1-8, rlang 1.1.6,

rmarkdown 2.30, statmod 1.5.1, tiff 0.1-12, tools 4.5.1, vctrs 0.6.5, xfun 0.54,
xtable 1.8-4, yaml 2.3.10, zoo 1.8-14
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