| performDifferentialExpression {cTRAP} | R Documentation |
Perform differential gene expression based on ENCODE data
performDifferentialExpression(counts)
counts |
Data frame: gene expression |
Data frame with differential gene expression results between knockdown and control
data("ENCODEsamples")
## Download ENCODE metadata for a specific cell line and gene
# cellLine <- "HepG2"
# gene <- "EIF4G1"
# ENCODEmetadata <- downloadENCODEknockdownMetadata(cellLine, gene)
## Download samples based on filtered ENCODE metadata
# ENCODEsamples <- downloadENCODEsamples(ENCODEmetadata)
counts <- prepareENCODEgeneExpression(ENCODEsamples)
# Remove low coverage (at least 10 counts shared across two samples)
minReads <- 10
minSamples <- 2
filter <- rowSums(counts[ , -c(1, 2)] >= minReads) >= minSamples
counts <- counts[filter, ]
## Convert ENSEMBL identifier to gene symbol
# library(biomaRt)
# mart <- useDataset("hsapiens_gene_ensembl", useMart("ensembl"))
# genes <- sapply(strsplit(counts$gene_id, "\\."), `[`, 1)
# geneConversion <- getBM(filters="ensembl_gene_id", values=genes, mart=mart,
# attributes=c("ensembl_gene_id", "hgnc_symbol"))
# counts$gene_id <- geneConversion$hgnc_symbol[
# match(genes, geneConversion$ensembl_gene_id)]
## Perform differential gene expression analysis
# diffExpr <- performDifferentialExpression(counts)