| randomForest {MetNet} | R Documentation |
randomForest infers an adjacency matrix using
random forest using the rfPermute function from the
rfPermute package. randomForest extracts the p-values
by the function rp.importance and writes the presence/absence based
on the significance value (α ≤q 0.05) of this
connection to a matrix. The adjacency matrix is returned.
randomForest(x, parallel=FALSE, randomForest_adjust="none", ...)
x |
matrix, where columns are the samples and the rows are features (metabolites), cell entries are intensity values |
parallel |
logical, should computation be parallelized? If
|
randomForest_adjust |
character, correction method for p-values from
|
... |
parameters passed to |
For use of the parameters used in the rfPermute function,
refer to ?rfPermute::rfPermute.default.
matrix, matrix with edges inferred from random forest algorithm
rfPermute and rp.importance
Thomas Naake, thomasnaake@googlemail.com
data("x_test", package="MetNet")
x <- x_test[, 3:dim(x_test)[2]]
x <- as.matrix(x)
## Not run: randomForest(x)