| modelGradient {tigre} | R Documentation |
modeGradient gives the gradient of the objective function for a
model. By default the objective function (modelObjective) is
a negative log likelihood (modelLogLikelihood).
modelObjective(params, model, ...) modelLogLikelihood(model) modelGradient(params, model, ...)
params |
parameter vector to evaluate at. |
model |
model structure. |
... |
optional additional arguments. |
g |
the gradient of the error function to be minimised. |
v |
the objective function value (lower is better). |
ll |
the log-likelihood value. |
# Load a mmgmos preprocessed fragment of the Drosophila developmental
# time series
data(drosophila_gpsim_fragment)
# The probe identifier for TF 'twi'
twi <- "143396_at"
# The probe identifier for the target gene
targetProbe <- "152715_at"
# Create the model but do not optimise
model <- GPLearn(drosophila_gpsim_fragment,
TF=twi, targets=targetProbe,
useGpdisim=TRUE, quiet=TRUE,
dontOptimise=TRUE)
params <- modelExtractParam(model, only.values=FALSE)
ll <- modelLogLikelihood(model)
paramValues <- modelExtractParam(model, only.values=TRUE)
modelGradient(paramValues, model)