| get.npci.distance.matrix {fCI} | R Documentation |
generate the divergence estimation based of fold change cutoff values
get.npci.distance.matrix(npci.data, null.data.start, diff.data.start, choice = 2, rank.index.to.be.removed, expr.by.fold, ctr.indexes, trt.indexes, use.intersect = FALSE, symmetric.fold = TRUE, fold.cutoff.list)
npci.data |
|
null.data.start |
|
diff.data.start |
|
choice |
|
rank.index.to.be.removed |
|
expr.by.fold |
|
ctr.indexes |
|
trt.indexes |
|
use.intersect |
|
symmetric.fold |
|
fold.cutoff.list |
TBD
divergence |
A matrix of computed divergences |
TBD
Shaojun Tang
http://software.steenlab.org/fCI/
TBD
data.file=data.frame(matrix(sample(3:100, 100*4, replace=TRUE), 100,4))
wt.index=c(1,2)
df.index=c(1,3)
npci=new("NPCI")
npci@wt.index=wt.index
npci@df.index=df.index
npci@sample.data.normalized=data.file
npci=initialize(npci)
npci=normalization(npci)
npci=populate(npci)
null.data.start=npci@null.data.start
diff.data.start=npci@diff.data.start
choice=2
rank.index.to.be.removed=npci@rank.index.to.be.removed
expr.by.fold=npci@expr.by.fold
ctr.indexes=npci@wt.index
trt.indexes=npci@df.index
use.intersect=FALSE
symmetric.fold=TRUE
fold.cutoff.list=npci@fold.cutoff.list
get.npci.distance.matrix(npci.data, null.data.start, diff.data.start,
choice = 2, rank.index.to.be.removed, expr.by.fold, ctr.indexes, trt.indexes,
use.intersect, symmetric.fold, fold.cutoff.list)