| DiffusionMap class {destiny} | R Documentation |
The provided data can be a double matrix of expression data or a data.frame with all non-integer (double) columns being treated as expression data features (and the others ignored), an ExpressionSet, or a SingleCellExperiment.
DiffusionMap(data = stopifnot_distmatrix(distance), sigma = "local",
k = find_dm_k(dataset_n_observations(data, distance) - 1L),
n_eigs = min(20L, dataset_n_observations(data, distance) - 2L),
density_norm = TRUE, ..., distance = c("euclidean", "cosine", "rankcor"),
n_local = seq(to = min(k, 7L), length.out = min(k, 3L)), rotate = FALSE,
censor_val = NULL, censor_range = NULL, missing_range = NULL,
vars = NULL, verbose = !is.null(censor_range), suppress_dpt = FALSE)
data |
Expression data to be analyzed and covariates. Provide |
sigma |
Diffusion scale parameter of the Gaussian kernel. One of |
k |
Number of nearest neighbors to consider (default: a guess betweeen 100 and n - 1. See |
n_eigs |
Number of eigenvectors/values to return (default: 20) |
density_norm |
logical. If TRUE, use density normalisation |
... |
Unused. All parameters to the right of the |
distance |
Distance measurement method applied to |
n_local |
If |
rotate |
logical. If TRUE, rotate the eigenvalues to get a slimmer diffusion map |
censor_val |
Value regarded as uncertain. Either a single value or one for every dimension (Optional, default: censor_val) |
censor_range |
Uncertainity range for censoring (Optional, default: none). A length-2-vector of certainty range start and end. TODO: also allow 2\times G matrix |
missing_range |
Whole data range for missing value model. Has to be specified if NAs are in the data |
vars |
Variables (columns) of the data to use. Specifying NULL will select all columns (default: All floating point value columns) |
verbose |
Show a progressbar and other progress information (default: do it if censoring is enabled) |
suppress_dpt |
Specify TRUE to skip calculation of necessary (but spacious) information for |
A DiffusionMap object:
eigenvaluesEigenvalues ranking the eigenvectors
eigenvectorsEigenvectors mapping the datapoints to n_eigs dimensions
sigmasSigmas object with either information about the find_sigmas heuristic run or just local or optimal_sigma.
data_envEnvironment referencing the data used to create the diffusion map
eigenvec0First (constant) eigenvector not included as diffusion component.
transitionsTransition probabilities. Can be NULL
dDensity vector of transition probability matrix
d_normDensity vector of normalized transition probability matrix
kThe k parameter for kNN
n_localThe n_localth nearest neighbor(s) is/are used to determine local kernel density
density_normWas density normalization used?
rotateWere the eigenvectors rotated?
distanceDistance measurement method used
censor_valCensoring value
censor_rangeCensoring range
missing_rangeWhole data range for missing value model
varsVars parameter used to extract the part of the data used for diffusion map creation
DiffusionMap-methods to get and set the slots. find_sigmas to pre-calculate a fitting global sigma parameter
data(guo) DiffusionMap(guo) DiffusionMap(guo, 13, censor_val = 15, censor_range = c(15, 40), verbose = TRUE) covars <- data.frame(covar1 = letters[1:100]) dists <- dist(matrix(rnorm(100*10), 100)) DiffusionMap(covars, distance = dists)