| ReadInput {FlowSOM} | R Documentation |
Take some input and return FlowSOM object containing a matrix with the preprocessed data (compensated, transformed, scaled)
ReadInput(input, pattern = ".fcs", compensate = FALSE, spillover = NULL, transform = FALSE, toTransform = NULL, transformFunction = flowCore::logicleTransform(), scale = FALSE, scaled.center = TRUE, scaled.scale = TRUE, silent = FALSE)
input |
a flowFrame, a flowSet or an array of paths to files or directories |
pattern |
if input is an array of file- or directorynames, select only files containing pattern |
compensate |
logical, does the data need to be compensated |
spillover |
spillover matrix to compensate with
If |
transform |
logical, does the data need to be transformed |
toTransform |
column names or indices that need to be transformed.
If |
transformFunction |
Defaults to logicleTransform() |
scale |
logical, does the data needs to be rescaled |
scaled.center |
see |
scaled.scale |
see |
silent |
if |
FlowSOM object containing the data, which can be used as input for the BuildSOM function
# Read from file
fileName <- system.file("extdata","lymphocytes.fcs",package="FlowSOM")
flowSOM.res <- ReadInput(fileName, compensate=TRUE,transform=TRUE,
scale=TRUE)
# Or read from flowFrame object
ff <- flowCore::read.FCS(fileName)
ff <- flowCore::compensate(ff,ff@description$SPILL)
ff <- flowCore::transform(ff,
flowCore::transformList(colnames(ff@description$SPILL),
flowCore::logicleTransform()))
flowSOM.res <- ReadInput(ff,scale=TRUE)
# Build the self-organizing map and the minimal spanning tree
flowSOM.res <- BuildSOM(flowSOM.res,colsToUse=c(9,12,14:18))
flowSOM.res <- BuildMST(flowSOM.res)
# Apply metaclustering
metacl <- MetaClustering(flowSOM.res$map$codes,
"metaClustering_consensus",max=10)
# Get metaclustering per cell
flowSOM.clustering <- metacl[flowSOM.res$map$mapping[,1]]