| dmSQTLtest-class {DRIMSeq} | R Documentation |
dmSQTLtest extends the dmSQTLfit class by adding the
null model Dirichlet-multinomial likelihoods and the gene-level results of
testing for differential transcript/exon usage QTLs. Result of
dmTest.
## S4 method for signature 'dmSQTLtest' results(x)
x |
dmSQTLtest object. |
... |
Other parameters that can be defined by methods using this generic. |
results(x): Get a data frame with gene-level results.
lik_nullList of numeric vectors with the per gene-snp DM null model likelihoods.
results_geneData frame with the gene-level results including:
gene_id - gene IDs, block_id - block IDs, snp_id - SNP
IDs, lr - likelihood ratio statistics based on the DM model,
df - degrees of freedom, pvalue - p-values estimated based on
permutations and adj_pvalue - Benjamini & Hochberg adjusted
p-values.
Malgorzata Nowicka
dmSQTLdata,
dmSQTLprecision, dmSQTLfit
# --------------------------------------------------------------------------
# Create dmSQTLdata object
# --------------------------------------------------------------------------
# Use subsets of data defined in the GeuvadisTranscriptExpr package
library(GeuvadisTranscriptExpr)
geuv_counts <- GeuvadisTranscriptExpr::counts
geuv_genotypes <- GeuvadisTranscriptExpr::genotypes
geuv_gene_ranges <- GeuvadisTranscriptExpr::gene_ranges
geuv_snp_ranges <- GeuvadisTranscriptExpr::snp_ranges
colnames(geuv_counts)[c(1,2)] <- c("feature_id", "gene_id")
colnames(geuv_genotypes)[4] <- "snp_id"
geuv_samples <- data.frame(sample_id = colnames(geuv_counts)[-c(1,2)])
d <- dmSQTLdata(counts = geuv_counts, gene_ranges = geuv_gene_ranges,
genotypes = geuv_genotypes, snp_ranges = geuv_snp_ranges,
samples = geuv_samples, window = 5e3)
# --------------------------------------------------------------------------
# sQTL analysis - simple group comparison
# --------------------------------------------------------------------------
## Filtering
d <- dmFilter(d, min_samps_gene_expr = 70, min_samps_feature_expr = 5,
minor_allele_freq = 5, min_gene_expr = 10, min_feature_expr = 10)
plotData(d)
## To make the analysis reproducible
set.seed(123)
## Calculate precision
d <- dmPrecision(d)
plotPrecision(d)
## Fit full model proportions
d <- dmFit(d)
## Fit null model proportions, perform the LR test to detect tuQTLs
## and use the permutation approach to adjust the p-values
d <- dmTest(d)
## Plot the gene-level p-values
plotPValues(d)
## Get the gene-level results
head(results(d))