| dmDSfit-class {DRIMSeq} | R Documentation |
dmDSfit extends the dmDSprecision class by adding the
full model Dirichlet-multinomial (DM) and beta-binomial (BB) likelihoods,
regression coefficients and feature proportion estimates. Result of calling
the dmFit function.
## S4 method for signature 'dmDSfit' design(object, type = "full_model") proportions(x, ...) ## S4 method for signature 'dmDSfit' proportions(x) ## S4 method for signature 'dmDSfit' coefficients(object, level = "gene")
type |
Character indicating which design matrix should be returned.
Possible values |
x, object |
dmDSprecision object. |
... |
Other parameters that can be defined by methods using this generic. |
level |
Character specifying which type of results to return. Possible
values |
design(object): Get a matrix with the full design.
proportions(x): Get a data frame with estimated feature ratios
for each sample.
coefficients(x): Get the DM or BB regression
coefficients.
design_fit_fullNumeric matrix of the design used to fit the full model.
fit_fullMatrixList containing estimated feature
ratios in each sample based on the full Dirichlet-multinomial (DM) model.
lik_fullNumeric vector of the per gene DM full model likelihoods.
coef_fullMatrixList with the regression
coefficients based on the DM model.
fit_full_bbMatrixList containing estimated
feature ratios in each sample based on the full beta-binomial (BB) model.
lik_full_bbNumeric vector of the per gene BB full model likelihoods.
coef_full_bbMatrixList with the regression
coefficients based on the BB model.
Malgorzata Nowicka
dmDSdata, dmDSprecision,
dmDStest
# --------------------------------------------------------------------------
# Create dmDSdata object
# --------------------------------------------------------------------------
## Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
library(PasillaTranscriptExpr)
data_dir <- system.file("extdata", package = "PasillaTranscriptExpr")
## Load metadata
pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),
header = TRUE, as.is = TRUE)
## Load counts
pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),
header = TRUE, as.is = TRUE)
## Create a pasilla_samples data frame
pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
group = pasilla_metadata$condition)
levels(pasilla_samples$group)
## Create a dmDSdata object
d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)
## Use a subset of genes, which is defined in the following file
gene_id_subset <- readLines(file.path(data_dir, "gene_id_subset.txt"))
d <- d[names(d) %in% gene_id_subset, ]
# --------------------------------------------------------------------------
# Differential transcript usage analysis - simple two group comparison
# --------------------------------------------------------------------------
## Filtering
## Check what is the minimal number of replicates per condition
table(samples(d)$group)
d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
min_gene_expr = 10, min_feature_expr = 10)
plotData(d)
## Create the design matrix
design_full <- model.matrix(~ group, data = samples(d))
## To make the analysis reproducible
set.seed(123)
## Calculate precision
d <- dmPrecision(d, design = design_full)
plotPrecision(d)
head(mean_expression(d))
common_precision(d)
head(genewise_precision(d))
## Fit full model proportions
d <- dmFit(d, design = design_full)
## Get fitted proportions
head(proportions(d))
## Get the DM regression coefficients (gene-level)
head(coefficients(d))
## Get the BB regression coefficients (feature-level)
head(coefficients(d), level = "feature")