| compGoM {CountClust} | R Documentation |
This function takes the FitGoM/maptpx fitted model
and computes log likelihood, BIC and null model loglikelihood
for the fitted GoM models.
compGoM(data, model)
data |
matrix on which GoM model is fitted (samples along rows, genes along columns) |
model |
|
compGoM_models a vector list that returns the BIC and loglikelihood
values for each of the fitted models in model.
read.data <- function() {
x <- tempfile()
download.file(paste0("https://cdn.rawgit.com/kkdey/",
"singleCellRNASeqMouseDeng2014",
"/master/data/Deng2014MouseEsc.rda"),
destfile = x, quiet = TRUE)
z <- get(load((x)))
return(z)
}
Deng2014MouseESC <-read.data()
# Extract observed counts
deng.counts <- Biobase::exprs(Deng2014MouseESC)
# Import GoM fitting results
data("MouseDeng2014.FitGoM")
names(MouseDeng2014.FitGoM)
compGoM(data = t(deng.counts),
model = MouseDeng2014.FitGoM)
compGoM(data = t(deng.counts),
model = MouseDeng2014.FitGoM$clust_3)