| plotOptimalHeatMaps {ChIPanalyser} | R Documentation |
plotOptimalHeatMaps will plot heat maps of optimal
Parameters and highlight the optimal combination of
ScalingFactorPWM and boundMolecules
plotOptimalHeatMaps(optimalParam,contour=TRUE,col=NULL,main=NULL,layout=TRUE)
optimalParam |
|
contour |
|
col |
|
main |
|
layout |
|
Once the optimal set of Parameters ( ScalingFactorPWM
and boundMolecules ), it is possible to plot the results
in the form of a heat map. Each heat map will be plotted in a seperate page if
layout = TRUE, If layout= FALSE, it is up to the user to define how they wish
to layout there heat maps.
Returns a heat map of optimal combinations of ScalingFactorPWM
and boundMolecules. The x axis represents the different
value assigned to lambda ( ScalingFactorPWM )
and the y axis represents the different values to boundMolecules
( boundMolecules ).
Patrick C. N. Martin <pm16057@essex.ac.uk>
Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-wide binding profiles. Nucleic Acids Res., 43, 84–94.
#Data extraction
data(ChIPanalyserData)
# path to Position Frequency Matrix
PFM <- file.path(system.file("extdata",package="ChIPanalyser"),"BCDSlx.pfm")
#As an example of genome, this example will run on the Drosophila genome
if(!require("BSgenome.Dmelanogaster.UCSC.dm3", character.only = TRUE)){
if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")
BiocManager::install("BSgenome.Dmelanogaster.UCSC.dm3")
}
library(BSgenome.Dmelanogaster.UCSC.dm3)
DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm3)
#Building data objects
GPP <- genomicProfileParameters(PFM=PFM,BPFrequency=DNASequenceSet)
OPP <- occupancyProfileParameters()
#Computing Optimal set of Parameters
optimalParam <- computeOptimal(DNASequenceSet = DNASequenceSet,
genomicProfileParameters = GPP,
LocusProfile = eveLocusChip,
setSequence = eveLocus,
DNAAccessibility = Access,
occupancyProfileParameters = OPP,
optimalMethod = "all")
plotOptimalHeatMaps(optimalParam)