| randomForestInterface {ClassifyR} | R Documentation |
A random forest classifier builds multiple decision trees and uses the predictions of the trees to determine a single prediction for each test sample.
## S4 method for signature 'matrix' randomForestInterface(measurements, classes, test, ...) ## S4 method for signature 'DataFrame' randomForestInterface(measurements, classes, test, ..., verbose = 3) ## S4 method for signature 'MultiAssayExperiment' randomForestInterface(measurements, targets = names(measurements), test, ...)
measurements |
Either a |
classes |
Either a vector of class labels of class |
test |
An object of the same class as |
targets |
If |
... |
Variables not used by the |
verbose |
Default: 3. A number between 0 and 3 for the amount of progress messages to give. This function only prints progress messages if the value is 3. |
If measurements is an object of class MultiAssayExperiment, the factor of sample
classes must be stored in the DataFrame accessible by the colData function with
column name "class".
An object of type randomForest. The predictions of the test set samples are stored in
the list element named "predicted" of the "test" element.
Dario Strbenac
if(require(randomForest))
{
# Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)
c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
classes <- factor(rep(c("Poor", "Good"), each = 25))
colnames(genesMatrix) <- paste("Sample", 1:ncol(genesMatrix))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))
selected <- rownames(genesMatrix)[91:100]
trainingSamples <- c(1:20, 26:45)
testingSamples <- c(21:25, 46:50)
classified <- randomForestInterface(genesMatrix[, trainingSamples],
classes[trainingSamples],
genesMatrix[, testingSamples], ntree = 10)
classified[["test"]][["predicted"]]
}