| plotOptimalHeatMaps {ChIPanalyser} | R Documentation |
plotOptimalHeatMaps will plot heat maps of optimal
Parameters and highlight the optimal combination of
ScalingFactorPWM and boundMolecules
plotOptimalHeatMaps(optimalParam, parameter = "all", Contour = TRUE)
optimalParam |
|
parameter |
|
Contour |
|
Once the optimal set of Parameters ( ScalingFactorPWM
and boundMolecules ), it is possible to plot the results
in the form of a heat map. There are four possible heat maps:
a "correlation" heat map that will only show the correlation between a
predicted Profile and true ChIP-seq profiles for each combination of
Parameters ; "MSE" will show a similar heat map only with the
Mean Squared Error associated to each predicted profile,
true profile and parameter combination; "theta" is a in house metric
describing the best fit between high correlation and low MSE
(see thetaThreshold); finally "all" will plot all of the above.
Returns a heat map of optimal combinations of ScalingFactorPWM
and boundMolecules. The x axis represents the different
value assigned to lambda ( ScalingFactorPWM )
and the y axis represents the different values to boundMolecules
( boundMolecules ). The hilighted box describes the
optimal combination of parameters to either maximise "correlation"
and "theta" or to minimise "MSE".
Patrick C. N. Martin <pm16057@essex.ac.uk>
Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-wide binding profiles. Nucleic Acids Res., 43, 84–94.
#Data extraction
data(ChIPanalyserData)
# path to Position Frequency Matrix
PFM <- file.path(system.file("extdata",package="ChIPanalyser"),"BCDSlx.pfm")
#As an example of genome, this example will run on the Drosophila genome
if(!require("BSgenome.Dmelanogaster.UCSC.dm3", character.only = TRUE)){
source("https://bioconductor.org/biocLite.R")
biocLite("BSgenome.Dmelanogaster.UCSC.dm3")
}
library(BSgenome.Dmelanogaster.UCSC.dm3)
DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm3)
#Building data objects
GPP <- genomicProfileParameters(PFM=PFM,BPFrequency=DNASequenceSet)
OPP <- occupancyProfileParameters()
#Computing Optimal set of Parameters
optimalParam <- computeOptimal(DNASequenceSet = DNASequenceSet,
genomicProfileParameters = GPP,
LocusProfile = eveLocusChip,
setSequence = eveLocus,
DNAAccessibility = Access,
occupancyProfileParameters = OPP,
parameter = "all")
plotOptimalHeatMaps(optimalParam, parameter="all")