| computeChipProfile {ChIPanalyser} | R Documentation |
computeChipProfile compute ChIP-seq like profile from occupancy data.
Occupancy data is computed using computeOccupancy.
computeChipProfile(setSequence, occupancy, occupancyProfileParameters = NULL,
norm = TRUE, method = c("moving_kernel","truncated_kernel","exact"),
peakSignificantThreshold= NULL,cores=1, verbose = TRUE)
setSequence |
|
occupancy |
|
occupancyProfileParameters |
|
norm |
|
method |
|
peakSignificantThreshold |
|
cores |
|
verbose |
|
computeChipProfile converts Transcription Factor occuapncy to a profile
resembling the one of a ChIP-seq profile. A certain set of Parameters are
required in order to build ChIP profiles.
These Parameters are defined and storedin a
occupancyProfileParameters object. These parameters are:
chipMean, chipSd, chipSmooth,
stepSize,backgroundSignal,
maxSignal and removeBackground.
All these Parameters have default values already stored.
However, for an optimal fit, it is advised to derive these values
from actual ChIP-seq data.
For more information on these parameters,
see occupancyProfileParameters.
This functions also requires a set of sequencesin form of a
GRanges. The sequence set are the loci of interest
on which the ChIP-seq profile will be computed.
Returns a list containing all ChIP-seq like profile for every combination of
ScalingFactorPWM and boundMolecules.
The correlation and Mean Squared Error between the prdicted ChIP profile
and actual ChIP-seq profile for the same loci
will vary depending on the value given for ScalingFactorPWM
Patrick C.N. Martin <pm16057@essex.ac.uk>
Zabet NR, Adryan B (2015) Estimating binding properties of transcription factors from genome-wide binding profiles. Nucleic Acids Res., 43, 84–94.
#Extracting Data
data(ChIPanalyserData)
# path to Position Frequency Matrix
PFM <- file.path(system.file("extdata",package="ChIPanalyser"),"BCDSlx.pfm")
#As an example of genome, this example will run on the Drosophila genome
if(!require("BSgenome.Dmelanogaster.UCSC.dm3", character.only = TRUE)){
source("https://bioconductor.org/biocLite.R")
biocLite("BSgenome.Dmelanogaster.UCSC.dm3")
}
library(BSgenome.Dmelanogaster.UCSC.dm3)
DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm3)
# Building genomicProfileParameters object
GPP <- genomicProfileParameters(PFM=PFM, BPFrequency=DNASequenceSet)
OPP <- occupancyProfileParameters()
# Computing Genome Wide
GenomeWide <- computeGenomeWidePWMScore(DNASequenceSet = DNASequenceSet,
genomicProfileParameters = GPP)
#Compute PWM Scores
PWMScores <- computePWMScore(DNASequenceSet = DNASequenceSet,
genomicProfileParameters = GenomeWide,
setSequence = eveLocus, DNAAccessibility = Access)
#Compute Occupnacy
Occupancy <- computeOccupancy(AllSitesPWMScore = PWMScores,
occupancyProfileParameters = OPP)
#Compute ChIP profiles
chipProfile <- computeChipProfile(setSequence = eveLocus,
occupancy = Occupancy, occupancyProfileParameters = OPP)
chipProfile