| rfCMA {CMA} | R Documentation |
Random Forests were proposed by Breiman (2001)
and are implemented in the package randomForest.
In this package, they can as well be used to rank variables
according to their importance, s. GeneSelection.
For S4 method information, see rfCMA-methods
rfCMA(X, y, f, learnind, varimp = TRUE, seed = 111, models=FALSE,type=1,scale=FALSE,importance=TRUE, ...)
X |
Gene expression data. Can be one of the following:
|
y |
Class labels. Can be one of the following:
WARNING: The class labels will be re-coded to
range from |
f |
A two-sided formula, if |
learnind |
An index vector specifying the observations that
belong to the learning set. May be |
varimp |
Should additional information for variable selection be provided ? Defaults to |
seed |
Fix Random number generator seed to |
models |
a logical value indicating whether the model object shall be returned |
type |
Parameter passed to function |
scale |
Parameter passed to function |
importance |
Parameter passed to function |
... |
Further arguments to be passed to |
If varimp, then an object of class clvarseloutput is returned,
otherwise an object of class cloutput
Martin Slawski ms@cs.uni-sb.de
Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de
Breiman, L. (2001)
Random Forest.
Machine Learning, 45:5-32.
compBoostCMA, dldaCMA, ElasticNetCMA,
fdaCMA, flexdaCMA, gbmCMA,
knnCMA, ldaCMA, LassoCMA,
nnetCMA, pknnCMA, plrCMA,
pls_ldaCMA, pls_lrCMA, pls_rfCMA,
pnnCMA, qdaCMA,
scdaCMA, shrinkldaCMA, svmCMA
### load Khan data data(khan) ### extract class labels khanY <- khan[,1] ### extract gene expression khanX <- as.matrix(khan[,-1]) ### select learningset set.seed(111) learnind <- sample(length(khanY), size=floor(2/3*length(khanY))) ### run random Forest #rfresult <- rfCMA(X=khanX, y=khanY, learnind=learnind, varimp = FALSE) ### show results #show(rfresult) #ftable(rfresult) #plot(rfresult)