| wmwTest {BioQC} | R Documentation |
We have implemented a highly efficient Wilcoxon-Mann-Whitney rank sum
test for high-throughput expression profiling data. For datasets with
more than 100 features (genes), the function can be more than 1,000
times faster than its R implementations (wilcox.test in
stats, or rankSumTestWithCorrelation in limma).
wmwTest(x, indexList, col = "GeneSymbol", valType = c("p.greater", "p.less",
"p.two.sided", "U", "abs.log10p.greater", "log10p.less",
"abs.log10p.two.sided", "Q"), simplify = TRUE)
## S4 method for signature 'matrix,IndexList'
wmwTest(x, indexList, valType, simplify = TRUE)
## S4 method for signature 'numeric,IndexList'
wmwTest(x, indexList, valType, simplify = TRUE)
## S4 method for signature 'matrix,GmtList'
wmwTest(x, indexList, valType, simplify = TRUE)
## S4 method for signature 'eSet,GmtList'
wmwTest(x, indexList, col = "GeneSymbol",
valType = c("p.greater", "p.less", "p.two.sided", "U", "abs.log10p.greater",
"log10p.less", "abs.log10p.two.sided", "Q"), simplify = TRUE)
## S4 method for signature 'eSet,numeric'
wmwTest(x, indexList, col = "GeneSymbol",
valType = c("p.greater", "p.less", "p.two.sided", "U", "abs.log10p.greater",
"log10p.less", "abs.log10p.two.sided", "Q"), simplify = TRUE)
## S4 method for signature 'eSet,logical'
wmwTest(x, indexList, col = "GeneSymbol",
valType = c("p.greater", "p.less", "p.two.sided", "U", "abs.log10p.greater",
"log10p.less", "abs.log10p.two.sided", "Q"), simplify = TRUE)
## S4 method for signature 'eSet,list'
wmwTest(x, indexList, col = "GeneSymbol",
valType = c("p.greater", "p.less", "p.two.sided", "U", "abs.log10p.greater",
"log10p.less", "abs.log10p.two.sided", "Q"), simplify = TRUE)
## S4 method for signature 'ANY,numeric'
wmwTest(x, indexList, valType, simplify = TRUE)
## S4 method for signature 'ANY,logical'
wmwTest(x, indexList, valType, simplify = TRUE)
## S4 method for signature 'ANY,list'
wmwTest(x, indexList, valType, simplify = TRUE)
## S4 method for signature 'matrix,SignedIndexList'
wmwTest(x, indexList, valType,
simplify = TRUE)
## S4 method for signature 'numeric,SignedIndexList'
wmwTest(x, indexList, valType,
simplify = TRUE)
## S4 method for signature 'eSet,SignedIndexList'
wmwTest(x, indexList, valType,
simplify = TRUE)
x |
A numeric matrix. All other data types (e.g. numeric vectors
or |
indexList |
A list of integer indices (starting from 1) indicating
signature genes. Can be of length zero. Other data types (e.g. a list
of numeric or logical vectors, or a numeric or logical vector) are
coerced into such a list. See |
col |
a string sometimes used with a |
valType |
The value type to be returned, allowed values
include |
simplify |
Logical. If not, the returning value is in matrix
format; if set to |
The basic application of the function is to test the enrichment of gene sets in expression profiling data or differentially expressed data (the matrix with feature/gene in rows and samples in columns).
A special case is when x is an eSet object
(e.g. ExpressionSet), and indexList is a list returned
from readGmt function. In this case, the only requirement is
that one column named GeneSymbol in the featureData
contain gene symbols used in the GMT file. See the example below.
Besides the conventional value types such as ‘p.greater’,
‘p.less’, ‘p.two.sided’ , and ‘U’ (the U-statistic),
wmwTest (from version 0.99-1) provides further value types:
abs.log10p.greater and log10p.less perform log10
transformation on respective p-values and give the
transformed value a proper sign (positive for greater than, and
negative for less than); abs.log10p.two.sided transforms
two-sided p-values to non-negative values; and Q score
reports absolute log10-transformation of p-value of the
two-side variant, and gives a proper sign to it, depending on whether it is
rather greater than (positive) or less than (negative).
A numeric matrix or vector containing the statistic.
x = matrix,indexList = IndexList: x is a matrix and indexList is a IndexList
x = numeric,indexList = IndexList: x is a numeric and indexList is a IndexList
x = matrix,indexList = GmtList: x is a matrix and indexList is a GmtList
x = eSet,indexList = GmtList: x is a eSet and indexList is a GmtList
x = eSet,indexList = numeric: x is a eSet and indexList is a numeric
x = eSet,indexList = logical: x is a eSet and indexList is a logical
x = eSet,indexList = list: x is a eSet and indexList is a list
x = ANY,indexList = numeric: x is ANY and indexList is a numeric
x = ANY,indexList = logical: x is ANY and indexList is a logical
x = ANY,indexList = list: x is ANY and indexList is a list
x = matrix,indexList = SignedIndexList: x is a matrix and indexList is a
SignedIndexList
x = numeric,indexList = SignedIndexList: x is a numeric and indexList is a
SignedIndexList
x = eSet,indexList = SignedIndexList: x is a eSet and indexList is a
SignedIndexList
The function has been optimized for expression profiling data. It
avoids repetitive ranking of data as done by native R implementations
and uses efficient C code to increase the performance and control
memory use. Simulation studies using expression profiles of 22000
genes in 2000 samples and 200 gene sets suggested that the C
implementation can be >1000 times faster than the R
implementation. And it is possible to further accelerate by
parallel calling the function with mclapply in the multicore package.
Jitao David Zhang <jitao_david.zhang@roche.com>
Barry, W.T., Nobel, A.B., and Wright, F.A. (2008). A statistical framework for testing functional categories in microarray data. _Annals of Applied Statistics_ 2, 286-315.
Wu, D, and Smyth, GK (2012). Camera: a competitive gene set test accounting for inter-gene correlation. _Nucleic Acids Research_ 40(17):e133
Zar, JH (1999). _Biostatistical Analysis 4th Edition_. Prentice-Hall International, Upper Saddle River, New Jersey.
codewilcox.test in the stats package, and rankSumTestWithCorrelation in
the limma package.
#'@examples
## R-native data structures
set.seed(1887)
rd <- rnorm(1000)
rl <- sample(c(TRUE, FALSE), 1000, replace=TRUE)
wmwTest(rd, rl, valType="p.two.sided")
wmwTest(rd, which(rl), valType="p.two.sided")
rd1 <- rd + ifelse(rl, 0.5, 0)
wmwTest(rd1, rl, valType="p.greater")
wmwTest(rd1, rl, valType="U")
rd2 <- rd - ifelse(rl, 0.2, 0)
wmwTest(rd2, rl, valType="p.greater")
wmwTest(rd2, rl, valType="p.two.sided")
wmwTest(rd2, rl, valType="p.less")
## matrix forms rmat <- matrix(c(rd, rd1, rd2), ncol=3, byrow=FALSE) wmwTest(rmat, rl, valType="p.two.sided") wmwTest(rmat, rl, valType="p.greater")
wmwTest(rmat, which(rl), valType="p.two.sided") wmwTest(rmat, which(rl), valType="p.greater")
## other valTypes wmwTest(rmat, which(rl), valType="U") wmwTest(rmat, which(rl), valType="abs.log10p.greater") wmwTest(rmat, which(rl), valType="log10p.less") wmwTest(rmat, which(rl), valType="abs.log10p.two.sided") wmwTest(rmat, which(rl), valType="Q")
## using ExpressionSet data(sample.ExpressionSet) testSet <- sample.ExpressionSet fData(testSet)$GeneSymbol <- paste("GENE_",1:nrow(testSet), sep="") mySig1 <- sample(c(TRUE, FALSE), nrow(testSet), prob=c(0.25, 0.75), replace=TRUE) wmwTest(testSet, which(mySig1), valType="p.greater")
## using integer exprs(testSet)[,1L] <- exprs(testSet)[,1L] + ifelse(mySig1, 50, 0) wmwTest(testSet, which(mySig1), valType="p.greater")
## using lists mySig2 <- sample(c(TRUE, FALSE), nrow(testSet), prob=c(0.6, 0.4), replace=TRUE) wmwTest(testSet, list(first=mySig1, second=mySig2)) ## using GMT file gmt_file <- system.file("extdata/exp.tissuemark.affy.roche.symbols.gmt", package="BioQC") gmt_list <- readGmt(gmt_file)
gss <- sample(unlist(sapply(gmt_list, function(x) x$genes)), 1000) eset<-new("ExpressionSet", exprs=matrix(rnorm(10000), nrow=1000L), phenoData=new("AnnotatedDataFrame", data.frame(Sample=LETTERS[1:10])), featureData=new("AnnotatedDataFrame",data.frame(GeneSymbol=gss))) esetWmwRes <- wmwTest(eset ,gmt_list, valType="p.greater") summary(esetWmwRes)