| Gene Relevance {destiny} | R Documentation |
The relevance map is cached insided of the DiffusionMap.
gene_relevance(coords, exprs, ..., k = 20L, dims = 1:2, distance = NULL, verbose = FALSE) ## S4 method for signature 'DiffusionMap,missing' gene_relevance(coords, exprs, ..., k = 20L, dims = 1:2, distance = NULL, verbose = FALSE) ## S4 method for signature 'matrix,matrix' gene_relevance(coords, exprs, ..., k = 20L, dims = 1:2, distance = NULL, verbose = FALSE)
coords |
A |
exprs |
An cells \times genes |
... |
If no |
k |
Number of nearest neighbors to use |
dims |
Index into columns of |
distance |
Distance measure to use for the nearest neighbor search. |
verbose |
If TRUE, log additional info to the console |
A GeneRelevance object:
coordsA cells \times dims matrix of coordinates (e.g. diffusion components), reduced to the dimensions passed as dims
exprsA cells \times genes matrix of expressions
partialsArray of partial derivatives wrt to considered dimensions in reduced space (genes \times cells \times dimensions)
partials_normMatrix with norm of aforementioned derivatives. (n\_genes \times cells)
nn_indexMatrix of k nearest neighbor indices. (cells \times k)
dimsColumn index for plotted dimensions. Can character, numeric or logical
distanceDistance measure used in the nearest neighbor search. See find_knn
Gene Relevance methods, Gene Relevance plotting: plot_gradient_map/plot_gene_relevance
data(guo_norm) dm <- DiffusionMap(guo_norm) gr <- gene_relevance(dm) m <- t(Biobase::exprs(guo_norm)) gr_pca <- gene_relevance(prcomp(m)$x, m) # now plot them!