Package 'aracne.networks'

November 20, 2025

140Velliber 20, 2023
Type Package
Title ARACNe-inferred gene networks from TCGA tumor datasets
Version 1.37.0
Author Federico M. Giorgi
Maintainer Federico M. Giorgi < federico.giorgi@gmail.com>, Mariano Alvarez < reef103@gmail.com>
Description This package contains ARACNe-inferred networks from TCGA tumor datasets. It also contains a function to export them into plain-text format.
License file LICENSE
LazyData TRUE
biocViews ExperimentData, Genome, Homo_sapiens_Data, CancerData
NeedsCompilation no
Depends R (>= 3.3), viper
git_url https://git.bioconductor.org/packages/aracne.networks
git_branch devel
git_last_commit a3120ba
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2025-11-20
Contents
aracne.networks-package regulonblca regulonbrca reguloncesc reguloncoad regulonesca regulongbm
regulongom

regulonhnsc .		 							 								 		7
regulonkirc .		 							 								 		8
regulonkirp .		 							 								 		9
																			9
regulonlihc .		 							 								 	 . 1	0
_																		. 1	
regulonlusc .																			
regulonnet																			
regulonov																			
regulonpaad.																			3
regulonpcpg.																			
regulonprad .																			
																		. 1	
regulonsarc .																			
•																		. 1	
•																		. 1	
																		. 1	
regulonthym.																			
regulonucec .																			9
write.regulon																			
Index																		2	2

aracne.networks-package

ARACNe-inferred gene networks from TCGA tumor datasets

Description

This package contains ARACNe-inferred networks from TCGA tumor datasets and functions to import new ones and export them into text form.

Details

Package: aracne.networks

Type: Package License: LGPL-3 LazyLoad: yes

Author(s)

Federico M. Giorgi

Maintainer: Federico M. Giorgi <federico.giorgi@gmail.com>

regulonblca 3

References

Giorgi,F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics 2016 Alvarez, M.J. et al. (2016) Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nature Genetics 2016

Examples

```
### Create a random regulon with two hubs
# The first hub will have 100 targets
# The second hub will have 67 targets
regulon<-list()
regulon[["hub1"]]<-list(</pre>
    tfmode=setNames(runif(100,-1,1),paste0("target",sample(1:1000,100))),
    likelihood=runif(100,0,1)
)
regulon[["hub2"]]<-list(</pre>
    tfmode=setNames(runif(67,-1,1),paste0("target",sample(1:1000,67))),
    likelihood=runif(67,0,1)
class(regulon)<-"regulon"</pre>
write.regulon(regulon, file="network.txt")
### Print a the Prostate Adenocarcinoma (prad) network to standard output
# The gene ids are in Entrez format
data(regulonprad)
write.regulon(regulonblca, file="", n=10)
```

regulonblca

Human Bladder Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Bladder Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

```
data(regulonblca)
```

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

4 regulonbrca

References

Giorgi,F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulonblca)
write.regulon(regulonblca, n=10)
```

regulonbrca

Human Breast Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Breast Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

```
data(regulonbrca)
```

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi,F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

```
data(regulonbrca)
write.regulon(regulonbrca, n=10)
```

reguloncesc 5

reguloncesc	Human Cervical Squamous Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Cervical Squamous Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

```
data(reguloncesc)
```

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(reguloncesc)
write.regulon(reguloncesc, n=10)
```

reguloncoad

Human Colon Adenocarcinoma context-specific ARACNe interactome

Description

The interactome is a human Colon Adenocarcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

```
data(reguloncoad)
```

6 regulonesca

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(reguloncoad)
write.regulon(reguloncoad, n=10)
```

regulonesca

Human Esophageal Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Esophageal Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

```
data(regulonesca)
```

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

```
data(regulonesca)
write.regulon(regulonesca, n=10)
```

regulongbm 7

regulongbm Hum	nan Glioblastoma context-specific ARACNe interactome

Description

The interactome is a human Glioblastoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulongbm)

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulongbm)
write.regulon(regulongbm, n=10)
```

regulonhnsc	Human	Head	and	Neck	Squamous	Carcinoma	context-specific
	ARACNe				1		T S

Description

The interactome is a human Head and Neck Squamous Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

```
data(regulonhnsc)
```

8 regulonkirc

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulonhnsc)
write.regulon(regulonhnsc,n=10)
```

regulonkirc

Human Kidney Renal Clear Cell Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Kidney Renal Clear Cell Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

```
data(regulonkirc)
```

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

```
data(regulonkirc)
write.regulon(regulonkirc,n=10)
```

regulonkirp 9

ARACNe inter-
AR

Description

The interactome is a human Kidney Papillary Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

```
data(regulonkirp)
```

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulonkirp)
write.regulon(regulonkirp,n=10)
```

regulonlaml	Human Acute Myeloid Leukemia context-specific ARACNe interac-
	tome

Description

The interactome is a human Acute Myeloid Leukemia context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

10 regulonlihc

Usage

```
data(regulonlaml)
```

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulonlaml)
write.regulon(regulonlaml, n=10)
```

regulonlihc

Human Liver Hepatocellular Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Liver Hepatocellular Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

```
data(regulonlihc)
```

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi,F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

```
data(regulonlihc)
write.regulon(regulonlihc,n=10)
```

regulonluad 11

regulonluad	Human Lung Adenocarcinoma context-specific ARACNe interactome

Description

The interactome is a human Lung Adenocarcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonluad)

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulonluad)
write.regulon(regulonluad, n=10)
```

regulonlusc	Human Lung Squamous Carcinoma context-specific ARACNe interac-
	tome

Description

The interactome is a human Lung Squamous Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

```
data(regulonlusc)
```

12 regulonnet

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi,F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulonlusc)
write.regulon(regulonlusc, n=10)
```

regulonnet

Human Neuroendocrine tumor context-specific ARACNe interactome

Description

The interactome is a human Neuroendocrine tumor context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

```
data(regulonnet)
```

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

```
data(regulonnet)
write.regulon(regulonnet, n=10)
```

regulonov 13

regulonov

Human Ovarian Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Ovarian Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonov)

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulonov)
write.regulon(regulonov, n=10)

regulonpaad

Human Pancreas Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Pancreas Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonpaad)

14 regulonpcpg

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulonpaad)
write.regulon(regulonpaad, n=10)
```

regulonpcpg

Human Pheochromocytoma and Paraganglioma context-specific ARACNe interactome

Description

The interactome is a human Pheochromocytoma and Paraganglioma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

```
data(regulonpcpg)
```

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi,F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

```
data(regulonpcpg)
write.regulon(regulonpcpg,n=10)
```

regulonprad 15

regulonprad

Human Prostate Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Prostate Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonprad)

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

data(regulonprad)
write.regulon(regulonprad, n=10)

regulonread

Human Rectal Adenocarcinoma context-specific ARACNe interactome

Description

The interactome is a human Rectal Adenocarcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonread)

16 regulonsarc

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulonread)
write.regulon(regulonread, n=10)
```

regulonsarc

Human Sarcoma context-specific ARACNe interactome

Description

The interactome is a human Sarcoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

```
data(regulonsarc)
```

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

```
data(regulonsarc)
write.regulon(regulonsarc,n=10)
```

regulonstad 17

regulonstad	Human Stomach Adenocarcinoma context-specific ARACNe interactome

Description

The interactome is a human Stomach Adenocarcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

```
data(regulonstad)
```

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulonstad)
write.regulon(regulonstad,n=10)
```

regulontgct

Human Testicular Cancer context-specific ARACNe interactome

Description

The interactome is a human Testicular Cancer context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

```
data(regulontgct)
```

18 regulonthca

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulontgct)
write.regulon(regulontgct,n=10)
```

regulonthca

Human Thyroid Carcinoma context-specific ARACNe interactome

Description

The interactome is a human Thyroid Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

```
data(regulonthca)
```

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi, F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

```
data(regulonthca)
write.regulon(regulonthca, n=10)
```

regulonthym 19

regulonthym	Human Thymoma context-specific ARACNe interactome

Description

The interactome is a human Thymoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

Usage

data(regulonthym)

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi,F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulonthym)
write.regulon(regulonthym,n=10)
```

regulonucec	Human Utherine Corpus Endometroid Carcinoma context-specific
J	ARACNe interactome

Description

The interactome is a human Utherine Corpus Endometroid Carcinoma context-specific regulatory network reverse engineered by the ARACNE-AP algorithm. The interactome is contained in a list object of S3 class 'regulon' where each element represent a transcriptional regulator (transcription factor) and contains two vectors: (1) a named numeric vector indicating the mode of regulation (MoR) for each target gene, whose ID is indicated by the names attribute of the vector. (2) a numeric vector indicating the confidence score for the TF-target interaction.

```
data(regulonucec)
```

20 write.regulon

Value

Object of class regulon (regulon-class) containing network data generated by ARACNe-AP.

References

Giorgi,F.M. et al. (2016) ARACNe-AP: Gene Network Reverse Engineering through Adaptive Partitioning inference of Mutual Information. Bioinformatics doi: 10.1093/bioinformatics/btw216.

Examples

```
data(regulonucec)
write.regulon(regulonucec, n=10)
```

write.regulon

Print a regulon object into a text file

Description

This function will print the network into an output stream. Four columns will be printed: the Regulator id, the Target id, the Mode of Action (MoA, based on Spearman correlation that indicates the sign of the connection and ranges between -1 and +1), the Likelihood (essentially an edge weight that indicates how strong the mutual information for an edge is when compared to the maximum observed MI in the network, it ranges between 0 and 1).

Usage

```
write.regulon(
    regulon,
    file="",
    sep="\t",
    header=TRUE,
    n=Inf,
    regulator=NULL
)
```

Arguments

regulon An object of class regulon

file File name where the network will be printed sep String, a separator for the fields (default = "\t")

header Logical. If a header should be printed. Default is TRUE n Numeric. How many interactions to print. Default is Inf

regulator String. A particular regulator. Default is NULL

write.regulon 21

Value

Text output containing the network in tabular format.

```
### Create a random regulon with two hubs
# The first hub will have 100 targets
# The second hub will have 67 targets
regulon<-list()
regulon[["hub1"]]<-list(</pre>
    tfmode=setNames(runif(100,-1,1),paste0("target",sample(1:1000,100))),
    likelihood=runif(100,0,1)
)
regulon[["hub2"]]<-list(</pre>
    tfmode=setNames(runif(67,-1,1),paste0("target",sample(1:1000,67))),
    likelihood=runif(67,0,1)
class(regulon)<-"regulon"</pre>
write.regulon(regulon,file="network.txt")
### Print a the Prostate Adenocarcinoma (prad) network to standard output
# The gene ids are in Entrez format
data(regulonprad)
write.regulon(regulonprad,file="",n=10)
```

Index

* datasets regulonblca, 3 regulonbrca, 4 reguloncesc, 5 reguloncoad, 5 regulonesca, 6	regulonkirp, 9 regulonlaml, 9 regulonlihc, 10 regulonluad, 11 regulonlusc, 11 regulonnet, 12
regulongbm, 7	regulonov, 13
regulonhnsc,7	regulonpaad, 13
regulonkirc, 8	regulonpcpg, 14
regulonkirp,9	regulonprad, 15
regulonlaml, 9	regulonread, 15
regulonlihc, 10	regulonsarc, 16
regulonluad, 11	regulonstad, 17
regulonlusc, 11	regulontgct, 17
regulonnet, 12	regulonthca, 18
regulonov, 13	regulonthym, 19
regulonpaad, 13	regulonucec, 19
regulonpcpg, 14	
regulonprad, 15	write.regulon, 20
regulonread, 15	
regulonsarc, 16	
regulonstad, 17	
regulontgct, 17	
regulonthca, 18	
regulonthym, 19	
regulonucec, 19	
aracne.networks	
(aracne.networks-package), 2	
aracne.networks-package,2	
regulon-class, 3-20	
regulonblca, 3	
regulonbrca,4	
reguloncesc, 5	
reguloncoad, 5	
regulonesca, 6	
regulongbm, 7	
regulonhnsc,7	
regulonkirc,8	