tigre User Guide

Antti Honkela, Pei Gao,

Jonatan Ropponen, Miika-Petteri Matikainen,
Magnus Rattray, and Neil D. Lawrence

October 31, 2025

Abstract

The tigre package implements our methodology of Gaussian process differential equation
models for analysis of gene expression time series from single input motif networks. The
package can be used for inferring unobserved transcription factor (TF) protein concentrations
from expression measurements of known target genes, or for ranking candidate targets of a
TF.

Citing tigre

The tigre package is based on a body of methodological research. Citing tigre in publications
will usually involve citing one or more of the methodology papers [1, 2, 3] that the software
is based on as well as citing the software package itself [4].

Introductory example analysis - Drosophila devel-
opment

3.1

In this section we introduce the main functions of the puma package by repeating some of
the analysis from the PNAS paper [1]*.

Installing the tigre package

The recommended way to install tigre is to use the BiocManager: :install function. Installing
in this way should ensure that all appropriate dependencies are met.

> if (!requireNamespace("BiocManager", quietly=TRUE))
+ install.packages("BiocManager")

> BiocManager::install("tigre")

To load the package start R and run

> library(tigre)

INote that the results reported in the paper were run using an earlier version of this package for MATLAB,
so there can be minor differences.

http://bioconductor.org/packages/tigre
http://bioconductor.org/packages/tigre
http://bioconductor.org/packages/tigre
http://bioconductor.org/packages/tigre
http://bioconductor.org/packages/tigre
http://bioconductor.org/packages/tigre

tigre User Guide

3.2

3.3

Loading the data

To get started, you need some preprocessed time series expression data. If the data originates
from Affymetrix arrays, we highly recommend processing it with mmgmos from the puma
package. This processing extracts error bars on the expression measurements directly from
the array data to allow judging the reliability of individual measurements. This information
is directly utilised by all the models in this package.

To start from scratch on Affymetrix data, the .CEL files from ftp://ftp.fruitfly.org/pub/
embryo__tc_array_data/ may be processed using:

> # Names of CEL files

> expfiles <- c(paste("embryo_tc_4_", 1:12, ".CEL", sep=""),
+ paste("embryo_tc_6_", 1:12, ".CEL", sep=""),
+ paste("embryo_tc_8_", 1:12, ".CEL", sep=""))
> # Load the CEL files

> expdata <- ReadAffy(filenames=expfiles,

+ celfile.path="embryo_tc_array_data")
> # Setup experimental data (observation times)

> pData(expdata) <- data.frame("time.h" = rep(1:12, 3),

+ row.names=rownames (pData(expdata)))
> # Run mmgMOS processing (requires several minutes to complete)

> drosophila_mmgmos_exprs <- mmgmos (expdata)

> drosophila_mmgmos_fragment <- drosophila_mmgmos_exprs

This data needs to be further processed to make it suitable for our models. This can be done
using

> drosophila_gpsim_fragment <-
+ processData(drosophila_mmgmos_fragment,
+ experiments=rep(1:3, each=12))

Here the last argument specifies that we have three independent time series of measurements.

In order to save time with the demos, a part of the result of this is included in this package
and can be loaded using

> data(drosophila_gpsim_fragment)

Learning individual models

Let us now recreate some the models shown in the plots of the PNAS paper [1]:

FBgn names of target genes

targets <- c('FBgn0003486', 'FBgn0033188', 'FBgn0035257')

Load gene annotations

library(annotate)

aliasMapping <- getAnnMap("ALIAS2PROBE",
annotation(drosophila_gpsim_fragment))

Get the probe identifier for TF 'twi'

twi <- get('twi', env=aliasMapping)

Load alternative gene annotations

fbgnMapping <- getAnnMap("FLYBASE2PROBE",

V V.V V + V V V V V

ftp://ftp.fruitfly.org/pub/embryo_tc_array_data/
ftp://ftp.fruitfly.org/pub/embryo_tc_array_data/

tigre User Guide

vV V. + + VvV V + + + + V V V V V +

annotation(drosophila_gpsim_fragment))
Get the probe identifiers for target genes
targetProbes <- mget(targets, env=fbgnMapping)
st_models <- list()
Learn single-target models for each gene individually
for (i in seq(along=targetProbes)) {
st_models[[i]] <- GPLearn(drosophila_gpsim_fragment,
TF=twi, targets=targetProbes[i],
quiet=TRUE)
}
Learn a joint model for all targets
mt_model <- GPLearn(drosophila_gpsim_fragment, TF=twi,
targets=targetProbes,
quiet=TRUE)
Display the joint model parameters
show(mt_model)

Gaussian process driving input single input motif model:

Number of time points:
Driving TF: 143396_at
Target genes (3):
148227_at
152715_at
147995 _at
Basal transcription rate:
Gene 1: 40.6296427389947
Gene 2: 0.00777689685567812
Gene 3: 1.12067900718906e-06
Kernel:
Multiple output block kernel:
Block 1
Normalised version of the kernel.
RBF inverse width: 0.7719322 (length scale 1.138179)
RBF variance: 1.754204
Block 2
Normalised version of the kernel
DISIM decay: 0.07292779
DISIM inverse width: 0.7719322 (length scale 1.138179)
DISIM Variance: 1
SIM decay: 2584.308
SIM Variance: 0.00112408
RBF Variance: 1.754204
Block 3
Normalised version of the kernel
DISIM decay: 0.07292779
DISIM inverse width: 0.7719322 (length scale 1.138179)
DISIM Variance: 1
SIM decay: 0.4982639
SIM Variance: 0.03224426
RBF Variance: 1.754204
Block 4

tigre User Guide

3.4

3.5

Normalised version of the kernel
DISIM decay: 0.07292779
DISIM inverse width: 0.7719322 (length scale 1.138179)
DISIM Variance: 1
SIM decay: 0.0001855218
SIM Variance: 0.003264679
RBF Variance: 1.754204
Log-likelihood: -31.83826

> # Learn a model without TF mRNA and TF protein translation
> nt_model <- GPLearn(drosophila_gpsim_fragment,
+ targets=c(twi, targetProbes[1:2]), quiet=TRUE)

Visualising the models

The models can be plotted using commands like

GPPlot(st_models[[1]], nameMapping=getAnnMap("FLYBASE",
annotation(drosophila_gpsim_fragment)))
GPPlot(mt_model, nameMapping=getAnnMap("FLYBASE",
annotation(drosophila_gpsim_fragment)))
GPPlot(nt_model, nameMapping=getAnnMap("FLYBASE",
annotation(drosophila_gpsim_fragment)))

+ V. + V + V

Ranking the targets

Bulk ranking of candidate targets can be accomplished using

> ## Rank the targets, filtering weakly expressed genes with average
> ## expression z-score below 1.8

> scores <- GPRankTargets(drosophila_gpsim_fragment, TF=twi,

+ testTargets=targetProbes,

+ options=list(quiet=TRUE),

+ filterLimit=1.8)

> ## Sort the returned list according to log-likelihood

> scores <- sort(scores, decreasing=TRUE)

> write.scores(scores)

"log-likelihood" "null_log-likelihood"
"147995_at" 6.75480435409254 -487.893231050121
"152715_at" -1.51413529480632 -539.73619673943
"148227_at" -1.60924560519598 -73.4806804255218

To save space, GPRankTargets does not return the models by default. If those are needed
later e.g. for plotting, they can be recreated using the inferred parameters saved together
with the ranking using

> topmodel <- generateModels(drosophila_gpsim_fragment,
+ scores[1])
> show(topmodel)

[[111]

tigre User Guide

twi (143396_at) mRNA (input) twi (143396_at) mRNA (input) twi (143396_at) mRNA (input)

S
)
™ ™ .
o~ ~ 0 .
-
— —
o <) — g .
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Time Time Time

Inferred TF Protein Concentratio Inferred TF Protein ConcentratioInferred TF Protein Concentratio

- g - E

g - S s]

e - . -

g g 1 g

o T T T T T T o T T T T T T o T T T T T T

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Time Time Time
spo (148227_at) mMRNA spo (148227_at) mRNA spo (148227_at) mMRNA

<
o

01 2 3
0123 4
15

0.0

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

Time Time Time

Figure 1: Single target models for the gene FBgn0003486. The models for each repeated time series are
shown in different columns.

Gaussian process driving input single input motif model:
Number of time points:
Driving TF: 143396_at
Target genes (1):
147995_at
Basal transcription rate:
Gene 1: 0.00014225304681563
Kernel:
Multiple output block kernel:
Block 1
Normalised version of the kernel.
RBF inverse width: 0.761269 (length scale 1.146122)
RBF variance: 1.803157
Block 2
Normalised version of the kernel
DISIM decay: 0.02034749
DISIM inverse width: 0.761269 (length scale 1.146122)
DISIM Variance: 1

tigre User Guide

3.6

Inferred TF Protein Concentration twi (143396_at) mRNA (input)

01234
L1011
01 2 3
L 11
o=
o

Time Time

01 2 3
-

Time Time

Figure 2: Multiple-target model for all the example genes. The call creates independent figures for each
repeated time series.

SIM decay: 0.02019984

SIM Variance: 0.002774332

RBF Variance: 1.803157
Log-likelihood: 6.754804

Ranking using known targets with multiple-target models

Ranking using known targets with multiple-target models can be accomplished simply by
adding the knownTargets argument

> ## Rank the targets, filtering weakly expressed genes with average
> ## expression z-score below 1.8

> scores <- GPRankTargets(drosophila_gpsim_fragment, TF=twi,

+ knownTargets=targetProbes[1],

+ testTargets=targetProbes[2:3],

+ options=list(quiet=TRUE),

+ filterLimit=1.8)

> ## Sort the returned list according to log-likelihood

tigre User Guide

Inferred TF Protein Concentration twi (143396_at) mMRNA
- T
™ (-]
o - « 17
- — - 6
o - o
T T T T T T T T T
2 4 6 8 10 12 2 4 6 8 10 12
Time Time
Spo (148227_at) mMRNA Drat (152715_at) mRNA
T
® °
N - >
-
o

Figure 3: Multiple-target model without TF protein translation for selected example genes without. The
call creates independent figures for each repeated time series.

> scores <- sort(scores, decreasing=TRUE)
> write.scores(scores)

"log-likelihood" "null_log-likelihood"
"152715_at" -28.1319196770648 -539.73619673943
"147995_at" -240.395472709229 -487.893231050121

3.7 Running ranking in a batch environment

GPRankTargets can be easily run in a batch environment using the argument scoreSaveFile.
This indicates a file to which scores are saved after processing each gene. Thus one could,
for example, split the data to, say, 3 separate blocks according to the reminder after division
by 3 and run each of these independently. The first for loop could then be run in parallel
(e.g. as separate jobs on a cluster), as each step is independent of the others. After these
have all completed, the latter loop could be used to gather the results.

> for (i in seq(1, 3)) {
+ targetIndices <- seq(1i,

tigre User Guide

+ length(featureNames(drosophila_gpsim_fragment)), by=3)
+ outfile <- paste('ranking_results_', i, '.Rdata',6 sep='")
+ scores <- GPrankTargets(preprocData, TF=twi,

+ testTargets=targetIndices,

+ scoreSaveFile=outfile)

B

> for (1 in seq(1, 3)) {

+ outfile <- paste('ranking_results_', i, '.Rdata', sep='")
+ load(outfile)

+ if (i==1)

+ scores <- scorelList

+ else

+ scores <- c(scores, scorelList)

+}

> show(scores)

4 Experimental feature: Using non-Affymetrix data

Using non-Affymetrix data, or data without associated uncertainty information for the ex-
pression data in general, requires more because of two reasons

= noise variances need to be estimated together with other model parameters; and
= weakly expressed genes cannot be easily filtered a priori.

The first of these is automatically taken care of by all the above functions, but the latter
requires some extra steps after fitting the models.

In order to get started, you need to create an ExpressionTimeSeries object of your data set.
This can be accomplished with the function

> procData <- processRawData(data, times=c(...),

h experiments=c(...))

Filtering of weakly expressed genes requires more care and visualising the fitted models is
highly recommended to avoid mistakes.

Based on initial experiments, it seems possible to perform the filtering based on the statistic
loglikelihoods(scores) - baseloglikelihoods (scores), but selection of suitable threshold
is highly dataset specific.

5 Exporting results to an SQLite database

The results of the analysis can be stored to an SQLite database. The database can then
be browsed and queried using the tigreBrowser result browser. The data is inserted to the
database by using export.scores function.

An example of the usage of export.scores is given below

> export.scores(scores, datasetName='Drosophila',
+ experimentSet="'GPSIM/GPDISIM',
+ database='database.sqlite',

https://github.com/PROBIC/tigreBrowser

tigre User Guide

+ preprocData=drosophila_gpsim_fragment,
models=models,
+ aliasTypes=c('SYMBOL', 'GENENAME', 'FLYBASE', 'ENTREZID'))
In this example, scores is the return value of , 'Drosophila’ is the name of

a dataset in database and 'GPSIM/GPDISIM’ is the name of an experiment set in database.
In general, results with the same dataset name are considered to be part of same dataset.
That is, if no results with a given dataset are already in the database, a new dataset entry is
created. On the other hand, if the database already contains results with the same dataset
name, new results will be added to the old dataset.

Also, results from different experiments can be combined into a set of experiments by giving
them the same experiment set name. This is useful as a result browser may display results
depending on the experiment set.

database.sqlite is the filename of a database file. The file will be created if it does not
exist already.

The function will create model figures and add them to the database if preprocessed data is
given. In this example, models are given to the function as a parameter. This is not necessary,
however, as the function can create models if preprocessed data is supplied. Nevertheless,
the function will finish faster if it does not have to (re-)create models.

In addition to log likelihoods and z-scores, this function will also export different gene names
and aliases to the database. By default, the function will read GENENAME, SYMBOL and
ENTREZID datas from relevant annotations and insert those into the database. The function
takes also aliasTypes argument which is used to define which annotation information is
inserted. In the example above, FLYBASE gene numbers are also added to the genes in the
database. The insertion of alias annotations and z-scores requires that the preprocessed data
is supplied.

6 Session Info

> sessionInfo()

R Under development (unstable) (2025-10-20 r88955)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.23-bioc/R/lib/1ibRblas. so
LAPACK: /usr/1ib/x86_64-1linux-gnu/lapack/liblapack.s0.3.12.0 LAPACK version 3.12.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York

tigre User Guide

tzcode source: system (glibc)

attached base packages:
[1] stats4 stats graphics grDevices utils
[6] datasets methods base

other attached packages:
[1] drosgenomel.db_3.13.0 org.Dm.eg.db_3.22.0

[3] annotate_1.89.0 XML_3.99-0.19

[5] AnnotationDbi 1.73.0 IRanges_2.45.0

[7] S4Vectors_0.49.0 tigre_1.65.0

[9] Biobase 2.71.0 BiocGenerics_0.57.0

[11] generics_0.1.4

loaded via a namespace (and not attached):

[1] bit 4.6.0 BiocStyle_2.39.0
[3] compiler_4.6.0 BiocManager_1.30.26
[5] crayon_1.5.3 gtools_3.9.5
[7] blob_1.2.4 bitops_1.0-9
[9] Biostrings_2.79.1 Seqinfo_1.1.0
[11] png_0.1-8 yaml_2.3.10
[13] fastmap_1.2.0 R6_2.6.1
[15] XVector_0.51.0 knitr_1.50
[17] DBI_1.2.3 rlang_1.1.6
[19] KEGGREST_1.51.0 cachem_1.1.0
[21] xfun_0.54 caTools_1.18.3
[23] bit64_4.6.0-1 RSQLite_2.4.3
[25] memoise_2.0.1 cli_3.6.5
[27] digest _0.6.37 xtable_1.8-4
[29] vctrs_0.6.5 KernSmooth_2.23-26
[31] evaluate_1.0.5 rmarkdown_2.30
[33] httr_1.4.7 pkgconfig 2.0.3
[35] tools_4.6.0 htmltools_0.5.8.1

[37] gplots_3.2.0

References

[1] Antti Honkela, Charles Girardot, E. Hilary Gustafson, Ya-Hsin Liu, Eileen E M Furlong,
Neil D Lawrence, and Magnus Rattray. Model-based method for transcription factor
target identification with limited data. Proc Natl Acad Sci U S A, 107(17):7793-7798,
Apr 2010. URL: http://dx.doi.org/10.1073/pnas.0914285107,
doi:10.1073/pnas.0914285107

[2] Pei Gao, Antti Honkela, Magnus Rattray, and Neil D Lawrence. Gaussian process
modelling of latent chemical species: applications to inferring transcription factor
activities. Bioinformatics, 24(16):i70-i75, Aug 2008. URL:
http://dx.doi.org/10.1093/bioinformatics/btn278,
doi:10.1093/bioinformatics/btn278

10

http://dx.doi.org/10.1073/pnas.0914285107
http://dx.doi.org/10.1073/pnas.0914285107
http://dx.doi.org/10.1093/bioinformatics/btn278
http://dx.doi.org/10.1093/bioinformatics/btn278

tigre User Guide

(3]

(4]

Neil D. Lawrence, Guido Sanguinetti, and Magnus Rattray. Modelling transcriptional
regulation using Gaussian processes. In B. Schélkopf, J. C. Platt, and T. Hofmann,

editors, Advances in Neural Information Processing Systems, volume 19, pages 785-792.

MIT Press, Cambridge, MA, 2007.

Antti Honkela, Pei Gao, Jonatan Ropponen, Magnus Rattray, and Neil D Lawrence.
tigre: Transcription factor inference through gaussian process reconstruction of
expression for bioconductor. Bioinformatics, 27(7):1026-1027, Apr 2011. URL:
http://dx.doi.org/10.1093/bioinformatics/btr057,
d0i:10.1093/bioinformatics/btro57.

11

http://dx.doi.org/10.1093/bioinformatics/btr057
http://dx.doi.org/10.1093/bioinformatics/btr057

	1 Abstract
	2 Citing tigre
	3 Introductory example analysis - Drosophila development
	3.1 Installing the tigre package
	3.2 Loading the data
	3.3 Learning individual models
	3.4 Visualising the models
	3.5 Ranking the targets
	3.6 Ranking using known targets with multiple-target models
	3.7 Running ranking in a batch environment

	4 Experimental feature: Using non-Affymetrix data
	5 Exporting results to an SQLite database
	6 Session Info

