The SVA package for removing batch
effects and other unwanted variation
in high-throughput experiments

Jeffrey Leek' *, W. Evan Johnson®, Andrew Jaffe',
Hilary Parker', John Storey’

! Johns Hopkins Bloomberg School of Public Health
2Boston University

3Princeton University

*email: jleek@jhsph.edu

Modified: October 24, 2011 Compiled: October 31, 2025

Contents
1 Overview 2
2 Settingupthedata. 3
3 Setting up the data from an ExpressionSet. 4
4 Applying the sva function to estimate batch and other

artifacts 5

5 Adjusting for surrogate variables using the f.pvalue
function 5

6 Adjusting for surrogate variables using the limma
package 6

7 Applying the ComBat function to adjust for known batches
7

The SVA package for removing batch effects and other unwanted variation in high-
throughput experiments

8 ComBat-Seq for batch adjustment on RNA-Seq count
data. 9

9 Removing known batch effects with a linear model. . 10
10 Surrogate variables versus direct adjustment 11

11 Variance filtering to speed computations when the
number of features is large (m > 100,000). 11

12 Applying the fsva function to remove batch effects

forprediction. 12
13 svaforsequencing(svaseq) 13
14 Supervisedsva.......................... 14
15 Whattocite. 15

1 Overview

The sva package contains functions for removing batch effects and other un-
wanted variation in high-throughput experiments. Specifically, the sva pack-

age contains functions for identifying and building surrogate variables for high-
dimensional data sets. Surrogate variables are covariates constructed directly
from high-dimensional data (like gene expression /RNA sequencing/methylation /brain
imaging data) that can be used in subsequent analyses to adjust for unknown,
unmodeled, or latent sources of noise.

The sva package can be used to remove artifacts in two ways: (1) identifying
and estimating surrogate variables for unknown sources of variation in high-
throughput experiments and (2) directly removing known batch effects using

ComBat [1].
Leek et. al (2010) define batch effects as follows:

Batch effects are sub-groups of measurements that have qualita-
tively different behaviour across conditions and are unrelated to the
biological or scientific variables in a study. For example, batch ef-
fects may occur if a subset of experiments was run on Monday and

The SVA package for removing batch effects and other unwanted variation in high-
throughput experiments

another set on Tuesday, if two technicians were responsible for dif-
ferent subsets of the experiments, or if two different lots of reagents,
chips or instruments were used.

The sva package includes the popular ComBat [1] function for directly modeling
batch effects when they are known. There are also potentially a large number
of environmental and biological variables that are unmeasured and may have
a large impact on measurements from high-throughput biological experiments.
For these cases the function may be more appropriate for removing these
artifacts. It is also possible to use the function with the function to
remove both known batch effects and other potential latent sources of variation.
Removing batch effects and using surrogate variables in differential expression
analysis have been shown to reduce dependence, stabilize error rate estimates,
and improve reproducibility (see [2, 3, 4] for more detailed information).

This document provides a tutorial for using the sva package. The tutorial

includes information on (1) how to estimate the number of latent sources of

variation, (2) how to apply thesva package to estimate latent variables such

as batch effects, (3) how to directly remove known batch effects using the
function, (4) how to perform differential expression analysis using surrogate

variables either directly or with thelimma package, and (4) how to apply “frozen”
to improve prediction and clustering.

As with any R package, detailed information on functions, along with their
arguments and values, can be obtained in the help files. For instance, to view
the help file for the function within R, type ?sva. The analyses performed
in this experiment are based on gene expression measurements from a bladder
cancer study [5]. The data can be loaded from the bladderbatch data package.
The relevant packages for the Vignette can be loaded with the code:

library(sva)
library(bladderbatch)
data(bladderdata)
library(pamr)
library(limma)

V V. V V V

2 Setting up the data

The first step in using the sva package is to properly format the data and
create appropriate model matrices. The data should be a matrix with features
(genes, transcripts, voxels) in the rows and samples in the columns. This is
the typical genes by samples matrix found in gene expression analyses. The
sva package assumes there are two types of variables that are being considered:

The SVA package for removing batch effects and other unwanted variation in high-
throughput experiments

(1) adjustment variables and (2) variables of interest. For example, in a gene
expression study the variable of interest might an indicator of cancer versus
control. The adjustment variables could be the age of the patients, the sex of
the patients, and a variable like the date the arrays were processed.

Two model matrices must be made: the “full model” and the “null model”.
The null model is a model matrix that includes terms for all of the adjustment
variables but not the variables of interest. The full model includes terms for
both the adjustment variables and the variables of interest. The assumption
is that you will be trying to analyze the association between the variables of
interest and gene expression, adjusting for the adjustment variables. The model
matrices can be created using the

3 Setting up the data from an ExpressionSet

For the bladder cancer study, the variable of interest is cancer status. To begin
we will assume no adjustment variables. The bladder data are stored in an
expression set - a Bioconductor object used for storing gene expression data.
The variables are stored in the phenotype data slot and can be obtained as
follows:

> pheno = pData(bladderEset)

The expression data can be obtained from the expression slot of the expression
set.

> edata = exprs(bladderEset)

Next we create the full model matrix - including both the adjustment variables
and the variable of interest (cancer status). In this case we only have the

variable of interest. Since cancer status has multiple levels, we treat it as a
factor variable.

> mod = model.matrix(~as.factor(cancer), data=pheno)
The null model contains only the adjustment variables. Since we are not ad-

justing for any other variables in this analysis, only an intercept is included in
the model.

> mod@ = model.matrix(~1,data=pheno)

Now that the model matrices have been created, we can apply the function
to estimate batch and other artifacts.

The SVA package for removing batch effects and other unwanted variation in high-
throughput experiments

4 Applying the sva function to estimate batch
and other artifacts

The sva function performs two different steps. First it identifies the number of
latent factors that need to be estimated. If the sva function is called without
the n.sv argument specified, the number of factors will be estimated for you.
The number of factors can also be estimated using the num.sv.

> n.sv = num.sv(edata, mod, method="1eek")
> n.sv

[1] 2

Next we apply the sva function to estimate the surrogate variables:
> svobj = sva(edata,mod,mod0O,n.sv=n.sv)

Number of significant surrogate variables is: 2
Iteration (out of 5):1 2 3 4 5

The sva function returns a list with four components, sv, pprob.gam, pprob.b,
n.sv. sv is a matrix whose columns correspond to the estimated surrogate vari-
ables. They can be used in downstream analyses as described below. pprob.gam
is the posterior probability that each gene is associated with one or more latent
variables [?]. pprob.b is the posterior probability that each gene is associated
with the variables of interest [?]. n.sv is the number of surrogate variables
estimated by the sva.

5 Adjusting for surrogate variables using the
f.pvalue function

The f.pvalue function can be used to calculate parametric F-test p-values
for each row of a data matrix. In the case of the bladder study, this would
correspond to calculating a parametric F-test p-value for each of the 22,283
rows of the matrix. The F-test compares the models mod and mod®. They must
be nested models, so all of the variables in mod® must appear in mod. First
we can calculate the F-test p-values for differential expression with respect to
cancer status, without adjusting for surrogate variables, adjust them for multiple
testing, and calculate the number that are significant with a Q-value less than
0.05.

The SVA package for removing batch effects and other unwanted variation in high-
throughput experiments

> pValues f.pvalue(edata, mod, modo)
> qValues = p.adjust(pValues,method="BH")

Note that nearly 70% of the genes are strongly differentially expressed at an
FDR of less than 5% between groups. This number seems artificially high, even
for a strong phenotype like cancer. Now we can perform the same analysis,
but adjusting for surrogate variables. The first step is to include the surrogate
variables in both the null and full models. The reason is that we want to adjust
for the surrogate variables, so we treat them as adjustment variables that must
be included in both models. Then P-values and Q-values can be computed as
before.

modSv = cbind(mod, svobj$sv)

modOSv = cbind(mod@, svobj$sv)

pValuesSv = f.pvalue(edata,modSv,modOSv)
qValuesSv = p.adjust(pValuesSv,method="BH")

V V V V

Now these are the adjusted P-values and Q-values accounting for surrogate
variables.

6 Adjusting for surrogate variables using the
limma package

The limma package is one of the most commonly used packages for differential
expression analysis. The sva package can easily be used in conjunction with
the limma package to perform adjusted differential expression analysis. The
first step in this process is to fit the linear model with the surrogate variables
included.

> fit = ImFit(edata,modSv)

From here, you can use the /imma functions to perform the usual analyses.
As an example, suppose we wanted to calculate differential expression with
respect to cancer. To do that we first compute the contrasts between the
pairs of cancer/normal terms. We do not include the surrogate variables in the
contrasts, since they are only being used to adjust the analysis.

> contrast.matrix <- cbind("Cl"=c(-1,1,0,rep(0,svobj$n.sv)),"C2"=c(0,-1,1,rep(0,svobj$n.sv,
> fitContrasts = contrasts.fit(fit,contrast.matrix)

The next step is to calculate the test statistics using the eBayes function:

> eb = eBayes(fitContrasts)
> topTableF(eb, adjust="BH")

207783_x_at
201492_s_at
208834_x_at
212869_x_at
212284_x_at
208825_x_at
211445_x_at
213084_x_at
201429_s_at
214327_x_at

207783_x_at
201492_s_at
208834 _x_at
212869_x_at
212284 _x_at
208825_x_at
211445_x_at
213084_x_at
201429_s_at
214327_x_at

-13.
-13.
-12.
-13.
-13.
-12.
-10.
-12
-13.
-12

UN WWRRR WR B

C1
45607
27593
76410
77956
59977
70978
15890
.59344
33685
.60146
adj.P.val

[clclolololNololololo]

.419991e-65
.419991e-65
.527454e-63
.080572e-62
.289376e-60
.615314e-60
.133945e-60
.509854e-59
.147514e-58
.029008e-58

Applying the
known batches

C2

.26592438
.15357563
.06133735
.26008134
.29135804
.08250572
.06633392
.03015195
.28358042
.20934756

-13.
-13.
-12.
-13.
-13.
-12.
-10.
-12.
-13.
-12.

C3
19015
12236
70276
51948
30841
62728
22523
56329
05327
39211

12.
13.
13.
13.
13.
13.

13.
12.
11.

AveExpr
938786
336090
160201
452076
070844
108072
.853817
046529
941208
832607

8622.
8605.
6939.
6593.
5495.
5414.
5256.
4790.
4465.
4312.

The SVA package for removing batch effects and other unwanted
throughput experiments

518
631
513
349
721
768
113
119
021
095

variation in high-

N OO R OB~ NBKFE B R R

P.Value

.207560e-69
.274506e-69
.749075e-67
.939725e-66
.893183e-64
.349452¢e-64
.845000e-64
.260101e-62
.673707e-62
.256881e-61

function to adjust for

The

function adjusts for known batches using an empirical Bayesian

framework [1]. In order to use the function, you must have a known batch
variable in your dataset.

> batch = pheno$batch

Just as with

term.

, we then need to create a model matrix for the adjustment
variables, including the variable of interest. Note that you do not include batch
in creating this model matrix - it will be included later in the
In this case there are no other adjustment variables so we simply fit an intercept

function.

The SVA package for removing batch effects and other unwanted variation in high-
throughput experiments

> modcombat = model.matrix(~1, data=pheno)

Note that adjustment variables will be treated as given to the function.
This means if you are trying to adjust for a categorical variable with p different
levels, you will need to give p-1 indicator variables for this covariate. We
recommend using the function to set these up. For continuous
adjustment variables, just give a vector in the containing the covariate values
in a single column of the model matrix.

We now apply the function to the data, using parametric empirical
Bayesian adjustments.

> combat_edata = ComBat(dat=edata, batch=batch, mod=modcombat, par.prior=TRUE, prior.plots:

This returns an expression matrix, with the same dimensions as your original
dataset. This new expression matrix has been adjusted for batch. Significance
analysis can then be performed directly on the adjusted data using the model
matrix and null model matrix as described before:

> pValuesComBat f.pvalue(combat_edata, mod, mod@)
> gValuesComBat = p.adjust(pValuesComBat, method="BH")

These P-values and Q-values now account for the known batch effects included
in the batch variable.

There are a few additional options for the function. By default, it
performs parametric empirical Bayesian adjustments. If you would like to use
nonparametric empirical Bayesian adjustments, use the par.prior=FALSE op-
tion (this will take longer). Additionally, use the prior.plots=TRUE option to
give prior plots with black as a kernel estimate of the empirical batch effect
density and red as the parametric estimate. For example, you might chose to
use the parametric Bayesian adjustments for your data, but then can check the
plots to ensure that the estimates were reasonable.

Also, we have now added the mean.only=TRUE option, that only adjusts the
mean of the batch effects across batches (default adjusts the mean and vari-
ance). This option is recommended for cases where milder batch effects are
expected (so no need to adjust the variance), or in cases where the variances
are expected to be different across batches due to the biology. For example,
suppose a researcher wanted to project a knock-down genomic signature to be
projected into the TCGA data. In this case, the knockdowns samples may be
very similar to each other (low variance) whereas the signature will be at vary-
ing levels in the TCGA patient data. Thus the variances may be very different

The SVA package for removing batch effects and other unwanted variation in high-
throughput experiments

between the two batches (signature perturbation samples vs TCGA), so only
adjusting the mean of the batch effect across the samples might be desired in
this case.

Finally, we have now added a ref.batch parameter, which allows users to select
one batch as a reference to which other batches will be adjusted. Specifically,
the means and variances of the non-reference batches will be adjusted to make
the mean/variance of the reference batch. This is a useful feature for cases
where one batch is larger or better quality. In addition, this will be useful in
biomarker situations where the researcher wants to fix the traning set/model
and then adjust test sets to the reference/training batch. This avoids test-
set bias in such studies. When using the mean.only=TRUE or the ref.batch
options, please cite [6].

8 ComBat-Seq for batch adjustment on RNA-
Seq count data

ComBat-Seq is an improved model based on the ComBat framework, which
specifically targets RNA-Seq count data. It uses a negative binomial regression
to model the count matrix, and estimate parameters representing the batch
effects. Then it provides adjusted data by mapping the original data to an
expected distribution if there were no batch effects. The adjusted data preserve
the integer nature of count matrix. Like ComBat, it requires known a batch
variable.

> count_matrix <- matrix(rnbinom(400, size=10, prob=0.1),

+ nrow=50, ncol=8)

> batch <- c(rep(1, 4), rep(2, 4))

> adjusted <- ComBat_seq(count_matrix, batch=batch, group=NULL)

Found 2 batches

Using null model in ComBat-seq.

Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions

Fitting the GLM model

Shrinkage off - using GLM estimates for parameters
Adjusting the data

In ComBat-Seq, user may specify biological covariates, whose signals will be
preserved in the adjusted data. If the user would like to specify one biological
variable, they may use the group parameter

The SVA package for removing batch effects and other unwanted variation in high-
throughput experiments

> group <- rep(c(0,1), 4)
> adjusted_counts <- ComBat_seq(count_matrix, batch=batch,
+ group=group)

Found 2 batches

Using full model in ComBat-seq.

Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions

Fitting the GLM model

Shrinkage off - using GLM estimates for parameters
Adjusting the data

If users wish to specify multiple biological variables, they may pass them as a
matrix or data frame to the covar_mod parameter

covl <- rep(c(0,1), 4)

cov2 <- ¢(0,0,1,1,0,0,1,1)

covar_mat <- cbind(covl, cov2)

adjusted_counts <- ComBat_seq(count_matrix, batch=batch,
group=NULL, covar_mod=covar_mat)

+ vV V V V

Found 2 batches

Using null model in ComBat-seq.

Adjusting for 2 covariate(s) or covariate level(s)
Estimating dispersions

Fitting the GLM model

Shrinkage off - using GLM estimates for parameters
Adjusting the data

9 Removing known batch effects with a lin-
ear model

Direct adjustment for batch effects can also be performed using the f.pvalue
function. In the bladder cancer example, one of the known variables is a batch
variable. This variable can be included as an adjustment variable in both mod and
mod@. Then the f.pvalue function can be used to detect differential expression.
This approach is a simplified version of ComBat.

> modBatch = model.matrix(~as.factor(cancer) + as.factor(batch),data=pheno)
> modOBatch = model.matrix(~as.factor(batch), data=pheno)
> pValuesBatch = f.pvalue(edata, modBatch, mod@Batch)

10

The SVA package for removing batch effects and other unwanted variation in high-
throughput experiments

> gValuesBatch = p.adjust(pValuesBatch, method="BH")

10 Surrogate variables versus direct adjust-
ment

The goal of the sva is to remove all unwanted sources of variation while pro-
tecting the contrasts due to the primary variables included in mod. This leads
to the identification of features that are consistently different between groups,
removing all common sources of latent variation.

In some cases, the latent variables may be important sources of biological vari-
ability. If the goal of the analysis is to identify heterogeneity in one or more
subgroups, the sva function may not be appropriate. For example, suppose
that it is expected that cancer samples represent two distinct, but unknown
subgroups. If these subgroups have a large impact on expression, then one or
more of the estimated surrogate variables may be very highly correlated with
subgroup.

In contrast, direct adjustment only removes the effect of known batch variables.
All sources of latent biological variation will remain in the data using this ap-
proach. In other words, if the samples were obtained in different environments,
this effect will remain in the data. If important sources of heterogeneity (from
different environments, lab effects, etc.) are not accounted for, this may lead
to increased false positives.

11 Variance filtering to speed computations
when the number of features is large (m >
100, 000)

When the number of features is very large (m > 100,000) both the num.sv
and sva functions may be slow, since multiple singular value decompositions of
the entire data matrix must be computed. Both functions include a variance
filtering term, vfilter, which may be used to speed up the calculation. vfil
ter must be an integer between 100 and the total number of features m. The
features are ranked from most variable to least variable by standard deviation.
Computations will only be performed on the vfilter most variable features.
This can improve computational time, but caution should be exercised, since the
surrogate variables will only be estimated on a subset of the matrix. Running
the functions with fewer than 1,000 features is not recommended.

11

The SVA package for removing batch effects and other unwanted variation in high-
throughput experiments

> n.sv = num.sv(edata,mod, vfilter=2000, method="1eek")
> svobj = sva(edata,mod,mod@,n.sv=n.sv,vfilter=2000)

Number of significant surrogate variables is: 2
Iteration (out of 5):1 2 3 4 5

12 Applying the fsva function to remove batch
effects for prediction

The surrogate variable analysis functions have been developed for population-
level analyses such as differential expression analysis in microarrays. In some
cases, the goal of an analysis is prediction. In this case, data sets are generally
composed a training set and a test set. For each sample in the training set,
the outcome/class is known, but latent sources of variability are unknown. For
the samples in the test set, neither the outcome/class or the latent sources of
variability are known.

“Frozen” surrogate variable analysis can be used to remove latent variation
in the test data set. To illustrate these functions, the bladder data can be
separated into a training and test set

set.seed(12354)

trainIndicator = sample(1:57,size=30, replace=FALSE)
testIndicator = (1:57)[-trainIndicator]

trainData = edatal[,trainIndicator]

testData = edata[,testIndicator]

trainPheno = pheno[trainIndicator,]

testPheno = pheno[testIndicator,]

V V. V V V V V

Using these data sets, the pamr package can be used to train a predictive model
on the training data, as well as test that prediction on a test data set.

> mydata = list(x=trainData,y=trainPheno$cancer)
> mytrain = pamr.train(mydata)

123456789101112131415161718192021222324252627282930
> table(pamr.predict(mytrain, testData, threshold=2), testPheno$cancer)

Biopsy Cancer Normal

Biopsy 4 0 0
Cancer 0 15 0
Normal 1 4 3

12

The SVA package for removing batch effects and other unwanted variation in high-
throughput experiments

13

Next, the function can be used to calculate surrogate variables for the
training set.

> trainMod = model.matrix(~cancer,data=trainPheno)
> trainMod@® = model.matrix(~1,data=trainPheno)
> trainSv = sva(trainData, trainMod, trainMod0O)

Number of significant surrogate variables is: 5
Iteration (out of 5):1 2 3 4 5

The function can be used to adjust both the training data and the test
data. The training data is adjusted using the calculated surrogate variables.
The testing data is adjusted using the “frozen” surrogate variable algorithm.
The output of the function is an adjusted training set and an adjusted
test set. These can be used to train and test a second, more accurate, prediction
function.

> fsvaobj = fsva(trainData, trainMod, trainSv, testData)
> mydataSv = list(x=fsvaobj$db,y=trainPheno$cancer)
> mytrainSv = pamr.train(mydataSv)

123456789101112131415161718192021222324252627282930
> table(pamr.predict(mytrainSv, fsvaobj$new, threshold=1), testPheno$cancer)

Biopsy Cancer Normal

Biopsy 5 0 0
Cancer 0 16 0
Normal 0 3 3

sva for sequencing (svaseq)

In our original work we used the identify function for data measured on an
approximately symmetric and continuous scale. For sequencing data, which
are often represented as counts, a more suitable model may involve the use of
a moderated log function [?, ?]. For example in Step 1 of the algorithm we
may first transform the gene expression measurements by applying the function
log(gi; + c) for a small positive constant. In the analyses that follow we will set
c=1.

First we set up the data by filtering low count genes and identify potential con-
trol genes. The group variable in this case consists of two different treatments.

13

The SVA package for removing batch effects and other unwanted variation in high-
throughput experiments

14

library(zebrafishRNASeq)

data(zfGenes)

filter = apply(zfGenes, 1, function(x) length(x[x>5])>=2)
filtered = zfGenes[filter,]

genes = rownames(filtered)[grep("~ENS", rownames(filtered))]
controls = grepl("~ERCC", rownames(filtered))

group = as.factor(rep(c("Ctl", "Trt"), each=3))

datO = as.matrix(filtered)

V V. V V V V VvV V

Now we can apply svaseq to estimate the latent factor. In this case, we set
n.sv = 1 because the number of samples is small (n = 6) but in general svaseq
can be used to estimate the number of latent factors.

> ## Set null and alternative models (ignore batch)
> modl = model.matrix(~group)

> mod@® = cbind(modl[,1])

> svseq = svaseq(datO,modl,modO,n.sv=1)$sv

Number of significant surrogate variables is: 1
Iteration (out of 5):1 2 3 4 5

> plot(svseq,pch=19,col="blue")

Supervised sva

In our original work we introduced an algorithm for estimating the genes affected
only by unknown artifacts empirically [?, ?]. Subsequently, Gagnon-Bartsch and
colleagues [7] used our surrogate variable model but made the important point
that for some technologies or experiments control probes can be used to identify
the set of genes only affected by artifacts. Supervised sva uses known control
probes to estimate the surrogate variables. You can use supervised sva with the
standard sva function. Here we show an example of how to perform supervised
sva with the svaseq function.

> sup_svseq = svaseq(dat@,modl,mod@, controls=controls,n.sv=1)$sv

sva warning: controls provided so supervised sva is being performed.

Number of significant surrogate variables is: 1

> plot(sup_svseq, svseq,pch=19,col="blue")

14

The SVA package for removing batch effects and other unwanted variation in high-
throughput experiments

15

Here we passed the controls argument, which is a vector of values between 0
and 1, representing the probability that a gene is affected by batch but not
affected by the group variable. Since we have known negative control genes
in this example, we simply set controls[ijf = TRUE for all control genes and
controls[i] = FALSE for all non-controls.

What to cite

The sva package includes multiple different methods created by different faculty
and students. It would really help them out if you would cite their work when
you use this software.

To cite the overall sva package cite:

= Leek JT, Johnson WE, Parker HS, Jaffe AE, and Storey JD. (2012) The
sva package for removing batch effects and other unwanted variation in

high-throughput experiments. Bioinformatics DOI:10.1093/bioinformatics/bts034

For sva please cite:

= Leek JT and Storey JD. (2008) A general framework for multiple testing
dependence. Proceedings of the National Academy of Sciences , 105:
18718-18723.

= Leek JT and Storey JD. (2007) Capturing heterogeneity in gene expression
studies by ‘Surrogate Variable Analysis’. PLoS Genetics, 3: el61.

For combat please cite:

= Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in mi-
croarray expression data using empirical Bayes methods. Biostatistics, 8
(1), 118-127

For mean-only or reference-batch combat please cite:

= Zhang, Y., Jenkins, D. F., Manimaran, S., Johnson, W. E. (2018). Alter-
native empirical Bayes models for adjusting for batch effects in genomic
studies. BMC bioinformatics, 19 (1), 262.

For svaseq please cite:

= Leek JT (2014) svaseq: removing batch and other artifacts from count-
based sequencing data. bioRxiv doi: TBD

For supervised sva please cite:

= Leek JT (2014) svaseq: removing batch and other artifacts from count-
based sequencing data. bioRxiv doi: TBD

15

The SVA package for removing batch effects and other unwanted variation in high-
throughput experiments

= Gagnon-Bartsch JA, Speed TP (2012) Using control genes to correct for
unwanted variation in microarray data. Biostatistics 13:539-52.

For fsva please cite:

= Parker HS, Bravo HC, Leek JT (2013) Removing batch effects for pre-
diction problems with frozen surrogate variable analysis arXiv:1301.3947

For psva please cite:

= Parker HS, Leek JT, Favorov AV, Considine M, Xia X, Chavan S, Chung
CH, Fertig EJ (2014) Preserving biological heterogeneity with a permuted

surrogate variable analysis for genomics batch correction Bioinformatics
doi: 10.1093/bioinformatics/btu375

References

[1] W.E. Johnson, C. Li, and A. Rabinovic. Adjusting batch effects in
microarray data using empirical bayes methods. Biostatistics,
8(1):118-127, 2007.

[2] J.T. Leek and J.D. Storey. Capturing heterogeneity in gene expression
studies by ‘surrogate variable analysis. PLoS Genetics 3:e161, 2007.

[3] J.T. Leek and J.D. Storey. A general framework for multiple testing
dependence. Proceedings of the National Academy of Sciences
105:18718-18723, 2008.

[4] J. T. Leek, R. B. Scharpf, H. C. Bravo, D. Simcha, B. Langmead, W. E.
Johnson, D. Geman, K. Baggerly, and R. A. Irizarry. Tackling the
widespread and critical impact of batch effects in high-throughput data.
Nat. Rev. Genet., 11:733-739, Oct 2010.

[5] L. Dyrskjot, M. Kruhoffer, T. Thykjaer, N. Marcussen, J. L. Jensen,
K. Moller, and T. F. Orntoft. Gene expression in the urinary bladder: a
common carcinoma in situ gene expression signature exists disregarding
histopathological classification. Cancer Res., 64:4040-4048, Jun 2004.

[6] Yuqing Zhang, David F Jenkins, Solaiappan Manimaran, and W Evan
Johnson. Alternative empirical bayes models for adjusting for batch effects
in genomic studies. BMC bioinformatics, 19(1):262, 2018.

[7] Johann A Gagnon-Bartsch and Terence P Speed. Using control genes to
correct for unwanted variation in microarray data. Biostatistics,
13(3):539-552, 2012.

16

	1 Overview
	2 Setting up the data
	3 Setting up the data from an ExpressionSet
	4 Applying the [functioncolor]sva function to estimate batch and other artifacts
	5 Adjusting for surrogate variables using the [functioncolor]f.pvalue function
	6 Adjusting for surrogate variables using the limma package
	7 Applying the [functioncolor]ComBat function to adjust for known batches
	8 [functioncolor]ComBat-Seq for batch adjustment on RNA-Seq count data
	9 Removing known batch effects with a linear model
	10 Surrogate variables versus direct adjustment
	11 Variance filtering to speed computations when the number of features is large (m >100,000)
	12 Applying the [functioncolor]fsva function to remove batch effects for prediction
	13 sva for sequencing (svaseq)
	14 Supervised sva
	15 What to cite

