Pairwise Sequence Alignments

Patrick Aboyoun
Gentleman Lab
Fred Hutchinson Cancer Research Center
Seattle, WA

October 31, 2025

Contents
I__TInfroduction|

[2__Pairwise Sequence Alignment Problems

[3 Main Pairwise Sequence Alignment Function|

{4 Pairwise Sequence Alignment Classes|
4.1 Exercise 2 L

|5 Pairwise Sequence Alignment Helper Functions|

(7 Application: Using Evolutionary Models in Protein Alignments|
71 Exercise Sl« o e e e

[8__Application: Removing Adapters from Sequence Reads|
8.1 EXercise O e e

[9 Application: Quality Assurance in Sequencing Experiments|
O.1 Exercise 7| o e e e e e

(10 Computation Profiling|
TO.T Exercise 8l o e e e

11
12

12
12

13
17

17
20

20
22

22

12,6 Exercise Ol 26

... 29
28 EXEICISE Bl . . . o o e o e e e 31
1 1on Informati 33

1 Introduction

In this document we illustrate how to perform pairwise sequence alignments using the pwalign package’s central
function pairwiseAlignment. This function aligns a set of pattern strings to a subject string in a global, local,
or overlap (ends-free) fashion with or without affine gaps using either a fixed or quality-based substitution scoring
scheme. This function’s computation time is proportional to the product of the two string lengths being aligned.

2 Pairwise Sequence Alignment Problems

The (Needleman-Wunsch) global, the (Smith-Waterman) local, and (ends-free) overlap pairwise sequence alignment
problems are described as follows. Let string S; have n; characters c(; jy with j € {1,...,n;}. A pairwise sequence
alignment is a mapping of strings S7 and S5 to gapped substrings 5’1 and S5 that are defined by

S = 9(1a1)C(Lar) " 9,61)C1,01)I(1,b14+1)
S’y

9(2,a2)C(2,a2) """ 9(2,b2)C(2,b2)9(2,b2+1)

where
a;, b; € {1, Ce ,77,1'} with a; < b;
9,5y = 0 or more gaps at the specified position j for aligned string %
length(S’1) = length(S’s)

Each of these pairwise sequence alignment problems is solved by maximizing the alignment score. An alignment
score is determined by the type of pairwise sequence alignment (global, local, overlap), which sets the [a;, b;] ranges
for the substrings; the substitution scoring scheme, which sets the distance between aligned characters; and the gap
penalties, which is divided into opening and extension components. The optimal pairwise sequence alignment is
the pairwise sequence alignment with the largest score for the specified alignment type, substitution scoring scheme,
and gap penalties. The pairwise sequence alignment types, substitution scoring schemes, and gap penalties influence
alignment scores in the following manner:

Pairwise Sequence Alignment Types: The type of pairwise sequence alignment determines the substring ranges to
apply the substitution scoring and gap penalty schemes. For the three primary (global, local, overlap) and two
derivative (subject overlap, pattern overlap) pairwise sequence alignment types, the resulting substring ranges
are as follows:

Global - [a1,b1] = [1,n1] and [ag, bo] = [1, ng]

Local - [ay, b1] and [ag, bo)

Overlap - {[al, bl] = [al, Tll], [CLQ, bg] = [1, bQ]} or {[al, bl} = [1, bl}, [ag, bg} = [CLQ, ng}}
Subject Overlap - [a1,b1] = [1,n1] and [ag, bs]
Pattern Overlap - [a1, b1] and [ag, ba] = [1, no]

Substitution Scoring Schemes: The substitution scoring scheme sets the values for the aligned character pairings
within the substring ranges determined by the type of pairwise sequence alignment. This scoring scheme can
be fixed for character pairings or quality-dependent for character pairings. (Characters that align with a gap are
penalized according to the “Gap Penalty” framework.)

Fixed substitution scoring - Fixed substitution scoring schemes associate each aligned character pairing with
a value. These schemes are very common and include awarding one value for a match and another for a
mismatch, Point Accepted Mutation (PAM) matrices, and Block Substitution Matrix (BLOSUM) matrices.

Quality-based substitution scoring - Quality-based substitution scoring schemes derive the value for the
aligned character pairing based on the probabilities of character recording errors [3]. Let €; be the proba-
bility of a character recording error. Assuming independence within and between recordings and a uniform
background frequency of the different characters, the combined error probability of a mismatch when the
underlying characters do match is €. = €1 + €3 — (n/(n— 1)) x €1 * €2, where n is the number of characters
in the underlying alphabet (e.g. in DNA and RNA, n = 4). Using €., the substitution score is given by
bx10gs (V(w,y) * (1 —€c) ¥ n+ (1 —7(z,y)) ¥ € * (n/(n—1))), where b is the bit-scaling for the scoring and
V(x,y) 1S the probability that characters x and y represents the same underlying letters (e.g. using IUPAC,
Y(a,a) = Land y(a ny = 1/4).

Gap Penalties: Gap penalties are the values associated with the gaps within the substring ranges determined by
the type of pairwise sequence alignment. These penalties are divided into gap opening and gap extension
components, where the gap opening penalty is the cost for adding a new gap and the gap extension penalty is
the incremental cost incurred along the length of the gap. A constant gap penalty occurs when there is a cost
associated with opening a gap, but no cost for the length of a gap (i.e. gap extension is zero). A linear gap
penalty occurs when there is no cost associated for opening a gap (i.e. gap opening is zero), but there is a cost
for the length of the gap. An affine gap penalty occurs when both the gap opening and gap extension have a
non-zero associated cost.

3 Main Pairwise Sequence Alignment Function

The pairwiseAlignment function solves the pairwise sequence alignment problems mentioned above. It aligns
one or more strings specified in the pattern argument with a single string specified in the subject argument.

> library (pwalign)
> pairwiseAlignment (pattern = c("succeed", "precede"), subject = "supersede")

Global PairwiseAlignmentsSingleSubject (1 of 2)
pattern: succ——-eed

subject: supersede

score: —-33.99738

The type of pairwise sequence alignment is set by specifying the fype argument to be one of "global", "local™",
"overlap", "global-local",and "local—-global".

> pairwiseAlignment (pattern = c("succeed", "precede"), subject
+ type = "local')

"supersede”,

Local PairwiseAlignmentsSingleSubject (1 of 2)
pattern: [1] su
subject: [1] su
score: 5.578203

The gap penalties are regulated by the gapOpening and gapExtension arguments.

> pairwiseAlignment (pattern = c("succeed", "precede"), subject = "supersede”,
+ gapOpening = 0, gapExtension = 1)

Global PairwiseAlignmentsSingleSubject (1 of 2)
pattern: su-cce-—-ed-

subject: sup-—-ersede

score: 7.945507

The substitution scoring scheme is set using three arguments, two of which are quality-based related (pattern-
Quality, subjectQuality) and one is fixed substitution related (substitutionMatrix). When the substitution scores are
fixed by character pairing, the substituionMatrix argument takes a matrix with the appropriate alphabets as dimension
names. The nucleotideSubstitutionMatrix function tranlates simple match and mismatch scores to the full
spectrum of [UPAC nucleotide codes.

> submat <-—

+ matrix (-1, nrow = 26, ncol = 26, dimnames = list (letters, letters))

> diag(submat) <- 0

> pairwiseAlignment (pattern = c("succeed", "precede"), subject = "supersede”,
+ substitutionMatrix = submat,

+ gapOpening = 0, gapExtension = 1)

Global PairwiseAlignmentsSingleSubject (1 of 2)
pattern: succe-ed-

subject: supersede

score: -5

When the substitution scores are quality-based, the patternQuality and subjectQuality arguments represent the
equivalent of [z — 99] numeric quality values for the respective strings, and the optional fuzzyMatrix argument repre-
sents how the closely two characters match on a [0, 1] scale. The parternQuality and subjectQualiry arguments accept
quality measures in either a PhredQuality, SolexaQuality, or IlluminaQuality scaling. For PhredQuality and Illumi-
naQuality measures Q) € [0, 99], the probability of an error in the base read is given by 10~ Q/10 and for SolexaQuality
measures) € [—5,99], they are given by 1 —1/(1+10~%/19), The qualitySubstitutionMatrices function
maps the patternQuality and subjectQuality scores to match and mismatch penalties. These three arguments will be
demonstrated in later sections.

The final argument, scoreOnly, to the pairwiseAlignment function accepts a logical value to specify whether
or not to return just the pairwise sequence alignment score. If scoreOnly is FALSE, the pairwise alignment with the
maximum alignment score is returned. If more than one pairwise alignment has the maximum alignment score ex-
ists, the first alignment along the subject is returned. If there are multiple pairwise alignments with the maximum
alignment score at the chosen subject location, then at each location along the alignment mismatches are given pref-

erence to insertions/deletions. For example, pattern: [1] ATTA; subject: [1] AT-Ais chosen above
pattern: [1] ATTA; subject: [1] A-TA if they both have the maximum alignment score.

> submat <-—

+ matrix (-1, nrow = 26, ncol = 26, dimnames = list (letters, letters))

> diag(submat) <- 0

> pairwiseAlignment (pattern = c("succeed", "precede"), subject = "supersede”,
+ substitutionMatrix = submat,

+ gapOpening = 0, gapExtension = 1, scoreOnly = TRUE)

[1] -5 -5

3.1 Exercise 1

1. Using pairwiseAlignment, fit the global, local, and overlap pairwise sequence alignment of the strings
"syzygy" and "zyzzyx" using the default settings.

2. Do any of the alignments change if the gapExtension argument is set to —Inf?
[Answers provided in section]

4 Pairwise Sequence Alignment Classes

Following the design principles of Bioconductor and R, the pairwise sequence alignment functionality in the pwalign
package keeps the end user close to their data through the use of five specialty classes: PairwiseAlignments, Pair-
wiseAlignmentsSingleSubject, PairwiseAlignmentsSingleSubjectSummary, AlignedXStringSet, and QualityAlignedXStringSet.
The PairwiseAlignmentsSingleSubject class inherits from the PairwiseAlignments class and they both hold the results

of a fit from the pairwiseAlignment function, with the former class being used to represent all patterns aligning

to a single subject and the latter being used to represent elementwise alignments between a set of patterns and a set of
subjects.

> pal <- pairwiseAlignment (pattern = c("succeed", "precede"), subject = "supersede")
> class (pal)

[1] "PairwiseAlignmentsSingleSubject"
attr (, "package")
[1] "pwalign"

and the pairwiseAlignment Summary function holds the results of a summarized pairwise sequence align-
ment.

> summary (pal)

Global Single Subject Pairwise Alignments

Number of Alignments: 2
Scores:
Min. 1lst Qu. Median Mean 3rd Qu. Max

-34.00 -31.78 -29.56 -29.56 -27.34 -25.12

Number of matches:
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.00 3.25 3.50 3.50 3.75 4.00

Top 7 Mismatch Counts:
SubjectPosition Subject Pattern Count Probability

1 3 P c 1 0.5
2 4 e c 1 0.5
3 4 e r 1 0.5
4 5 r e 1 0.5
5 6 S c 1 0.5
6 8 d e 1 0.5
7 9 e d 1 0.5
> class (summary (pal))

[1] "PairwiseAlignmentsSingleSubjectSummary"

attr (, "package")
[1] "pwalign"

The AlignedXStringSet and QualityAlignedXStringSet classes hold the “gapped” S’; substrings with the former
class holding the results when the pairwise sequence alignment is performed with a fixed substitution scoring scheme
and the latter class a quality-based scoring scheme.

> class (pattern(pal))

[1] "QualityAlignedXStringSet"

attr (, "package")
[1] "pwalign"

substitutionMatrix = submat,
gapOpening = 0, gapExtension = 1)

> submat <-—

+ matrix (-1, nrow = 26, ncol = 26, dimnames = 1list (letters, letters))

> diag(submat) <- 0

> pa2 <-

+ pairwiseAlignment (pattern = c("succeed"”", "precede"), subject = "supersede",
+

+

>

class (pattern (paZz))

[1] "AlignedXStringSet"

attr (, "package")
[1] "pwalign"

4.1 Exercise 2

1. What is the primary benefit of formal summary classes like PairwiseAlignmentsSingleSubjectSummary and

summary.lm to end users?

[Answer provided in section[12.2}]

5 Pairwise Sequence Alignment Helper Functions

Tables (T} [T]and B]show functions that interact with objects of class PairwiseAlignments, PairwiseAlignmentsSingleSub-
ject, and AlignedXStringSet. These functions should be used in preference to direct slot extraction from the alignment

objects.

The score, nedit, nmatch, nmismatch, and nchar functions return numeric vectors containing informa-
tion on the pairwise sequence alignment score, number of matches, number of mismatches, and number of aligned

characters respectively.

> submat <-—

+ matrix (-1, nrow = 26, ncol = 26, dimnames = 1list (letters, letters))

> diag(submat) <- 0

> pa2 <-

+ pairwiseAlignment (pattern = c("succeed"”", "precede"), subject = "supersede",
+ substitutionMatrix = submat,

+ gapOpening = 0, gapExtension = 1)

> score (pa2)

[1] -5 -5

> nedit (paZ2)
[1] 4 5

> nmatch (paZ2)
[1] 4 4

> nmismatch (pa2)

[1]

Function

Description

[

alphabet
compareStrings
deletion
length
mismatchTable
nchar

nedit

indel
insertion
nindel

nmatch
nmismatch
pattern, subject
pid

rep

score

type

Extracts the specified elements of the alignment object

Extracts the allowable characters in the original strings

Creates character string mashups of the alignments

Extracts the locations of the gaps inserted into the pattern for the alignments
Extracts the number of patterns aligned

Creates a table for the mismatching positions

Computes the length of “gapped” substrings

Computes the Levenshtein edit distance of the alignments

Extracts the locations of the insertion & deletion gaps in the alignments
Extracts the locations of the gaps inserted into the subject for the alignments
Computes the number of insertions & deletions in the alignments

Computes the number of matching characters in the alignments

Computes the number of mismatching characters in the alignments

Extracts the aligned pattern/subject

Computes the percent sequence identity

Replicates the elements of the alignment object

Extracts the pairwise sequence alignment scores

Extracts the type of pairwise sequence alignment

Table 1: Functions for PairwiseAlignments and PairwiseAlignmentsSingleSubject objects.

3

> nchar (paZ2)

(1]

> aligned(paZ2)

BStringSet object of length 2:

(1]
(2]

width seq

9 succe-ed-
9 pr-ec-ede

> as.character (paZ2)

(1]

"succe-ed-"

> as.matrix (paZl)

> consensusMatrix (pal)

O Q Q

(11 [,2] [,3]
"S" "u" "C"

"p" "r" n_mn

[,4]
"C" "e" n_nmn "e"

"pr-ec-ede"

(51 [,e1 [,7] [,8] [,9]

"d" n_mn

" n d " " e n

llc" n_nmn “e"

oN O O —
==

Function Description

aligned Creates an XStringSet containing either “filled-with-gaps” or degapped aligned strings
as.character Creates a character vector version of aligned
as.matrix Creates an “exploded" character matrix version of aligned

consensusMatrix | Computes a consensus matrix for the alignments
consensusString | Creates the string based on a 50% + 1 vote from the consensus matrix

coverage Computes the alignment coverage along the subject
mismatchSummary | Summarizes the information of the mi smatchTable

summary Summarizes a pairwise sequence alignment

toString Creates a concatenated string version of aligned

Views Creates an XStringViews representing the aligned region along the subject

Table 2: Additional functions for PairwiseAlignmentsSingleSubject objects.

2w R o
o o
— o P o
oo oo
oo oo
o o oo
oo oo
oo oo
o o oo
oo oo

The summary, mismatchTable, and mismatchSummary functions return various summaries of the pairwise
sequence alignments.

> summary (paZ2)

Global Single Subject Pairwise Alignments

Number of Alignments: 2
Scores:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-5 -5 -5 -5 -5 -5

Number of matches:
Min. 1st Qu. Median Mean 3rd Qu. Max.
4 4 4 4 4 4

Top 6 Mismatch Counts:
SubjectPosition Subject Pattern Count Probability

1 1 S o) 1 0.5
2 2 u r 1 0.5
3 3 P c 1 0.5
4 4 e c 1 0.5
5 5 r c 1 0.5
6 5 r e 1 0.5

> mismatchTable (paZ2)

PatternId PatternStart PatternkEnd PatternSubstring SubjectStart
1 3 3 c 3

=W N

1 4 4 c 4
1 5 5 e 5
2 1 1 P 1

5 2 2 2 r 2

6 2 4 4 c 5
SubjectEnd SubjectSubstring

1 3 P

2 4 e

3 5 r

4 1 S

5 2 u

6 5 r

> mismatchSummary (pal)

Spattern
Spattern$position

Position Count Probability
1 1 1 0.5
2 2 1 0.5
3 3 1 0.5
4 4 2 1.0
5 5 1 0.5
6 6 0 0.0
7 7 0 0.0
$subject

SubjectPosition Subject Pattern Count Probability
1 1 S P 1 0.5
2 2 u r 1 0.5
3 3 P c 1 0.5
4 4 e c 1 0.5
5 5 r c 1 0.5
6 5 r e 1 0.5

The pattern and subject functions extract the aligned pattern and subject objects for further analysis. Most
of the actions that can be performed on PairwiseAlignments objects can also be performed on AlignedXStringSet and
QualityAlignedXStringSet objects as well as operations including start, end, and width that extracts the start,
end, and width of the alignment ranges.

> class (pattern (paZ))

[1] "AlignedXStringSet"
attr (, "package")
[1] "pwalign"

> aligned(pattern (pal))

BStringSet object of length 2:

width seq
[1] 8 succe-ed
[2] 9 pr—ec-ede

> nindel (pattern (paZl))

Function Description

[Extracts the specified elements of the alignment object
aligned, unaligned Extracts the aligned/unaligned strings

alphabet Extracts the allowable characters in the original strings
as.character, toString | Converts the alignments to character strings

coverage Computes the alignment coverage

end Extracts the ending index of the aligned range

indel Extracts the insertion/deletion locations

length Extracts the number of patterns aligned

mismatch Extracts the position of the mismatches

mismatchSummary Summarizes the information of the mi smatchTable
mismatchTable Creates a table for the mismatching positions

nchar Computes the length of “gapped” substrings

nindel Computes the number of insertions/deletions in the alignments
nmismatch Computes the number of mismatching characters in the alignments
rep Replicates the elements of the alignment object

start Extracts the starting index of the aligned range

toString Creates a concatenated string containing the alignments
width Extracts the width of the aligned range

Table 3: Functions for AlignedXString and QualityAlignedXString objects.

Length WidthSum
1 1
2 2

> start (subject (paZ2))

(1]

11

> end(subject (pa2))

[1]

5.1

For the overlap pairwise sequence alignment of the strings "syzygy" and "zyzzyx" withthe pairwiseAlignment

8 9

Exercise 3

default settings, perform the following operations:

1.
2.

Use nmatch and nmismath to extract the number of matches and mismatches respectively.

Use the compareStrings function to get the symbolic representation of the alignment.

3. Use the as.character function to the get the character string versions of the alignments.

4. Use the pattern function to extract the aligned pattern and apply the mismatch function to it to find the
locations of the mismatches.

5. Use the subject function to extract the aligned subject and apply the aligned function to it to get the
aligned strings.

[Answers provided in section [12.3]]

10

6 Edit Distances

One of the earliest uses of pairwise sequence alignment is in the area of text analysis. In 1965 Vladimir Levenshtein
considered a metric, now called the Levenshtein edit distance, that measures the similarity between two strings. This
distance metric is equivalent to the negative of the score of a pairwise sequence alignment with a match cost of 0, a
mismatch cost of -1, a gap opening penalty of 0, and a gap extension penalty of 1.

The stringDist uses the internals of the pairwiseAlignment function to calculate the Levenshtein edit
distance matrix for a set of strings.

There is also an implementation of approximate string matching using Levenshtein edit distance in the agrep
(approximate grep) function of the base R package. As the following example shows, it is possible to replicate the
agrep function using the pairwiseAlignment function. Since the agrep function is vectorized in x rather than
pattern, these arguments are flipped in the call to pairwiseAlignment.

> agrepBioC <-
+ function (pattern, x, ignore.case = FALSE, value = FALSE, max.distance = 0.1)
+
if (!is.character (pattern)) pattern <- as.character (pattern)
if (!is.character(x)) x <—- as.character (x)
if (max.distance < 1)
max.distance <- ceiling(max.distance / nchar (pattern))
characters <- unique (unlist (strsplit(c(pattern, x), "", fixed = TRUE)))
if (ignore.case)
substitutionMatrix <-
outer (tolower (characters), tolower (characters), function(x,y) —-as.numeric(x!=y))
else
substitutionMatrix <-
outer (characters, characters, function(x,y) —-as.numeric(x!=y))
dimnames (substitutionMatrix) <- 1list (characters, characters)
distance <-—
- pairwiseAlignment (pattern = x, subject = pattern,
substitutionMatrix = substitutionMatrix,
type = "local-global",
gapOpening = 0, gapExtension = 1,
scoreOnly = TRUE)
whichClose <- which (distance <= max.distance)
if (value)
whichClose <- x[whichClose]
whichClose
}
cbind (base = agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, value = TRUE),
bioc agrepBioC ("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, value = TRUE))

+V o+ + +++ o+t o+ + R+ o+t

base bioc
(1,1 "1 lazy"™ "1 lazy"

> cbind(base = agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, ignore.case = TRUE),
+ bioc agrepBioC ("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, ignore.case = TRUE))

base bioc
(1,1 1 1
(2,1 3 3

11

6.1 Exercise 4
1. Usethe pairwiseAlignment function to find the Levenshtein edit distance between "syzygy" and "zyzzyx".

2. Usethe st ringDist function to find the Levenshtein edit distance for the vector ¢ ("zyzzyx", "syzygy",
"succeed", "precede", "supersede").

[Answers provided in section]

7 Application: Using Evolutionary Models in Protein Alignments

When proteins are believed to descend from a common ancestor, evolutionary models can be used as a guide in
pairwise sequence alignments. The two most common families evolutionary models of proteins used in pairwise se-
quence alignments are Point Accepted Mutation (PAM) matrices, which are based on explicit evolutionary models,
and Block Substitution Matrix (BLOSUM) matrices, which are based on data-derived evolution models. The pwalign
package contains 5 PAM and 5 BLOSUM matrices (PAM30 PAM40, PAM70, PAM120, PAM250, BLOSUM45,
BLOSUM50, BLOSUM62, BLOSUM80, and BLOSUM100) that can be used in the substitutionMatrix argument to
the pairwiseAlignment function.
Here is an example pairwise sequence alignment of amino acids from Durbin, Eddy et al being fit by the pairwiseAlignment

function using the BLOSUM50 matrix:

> data (BLOSUM50)
> BLOSUM50([1:4,1:4]

A R N D
A 5 -2 -1 -2
R-2 7 -1 -2
N-1-1 7 2
D -2 -2 2 8
> nwdemo <-—
+ pairwiseAlignment (AAString ("PAWHEAE"), AAString ("HEAGAWGHEE"), substitutionMatrix =
+ gapOpening = 0, gapExtension = 8)
> nwdemo

Global PairwiseAlignmentsSingleSubject (1 of 1)
pattern: -PA--W-HEAE

subject: HEAGAWGHE-E

score: 1

> compareStrings (nwdemo)
[1] "?A--W-HE+E"
> pid(nwdemo)

[1] 50

7.1 Exercise 5

1. Repeat the alignment exercise above using BLOSUM62, a gap opening penalty of 12, and a gap extension penalty
of 4.

2. Explore to find out what caused the alignment to change.

[Answers provided in section[12.5]]

12

BLOX

8 Application: Removing Adapters from Sequence Reads

Finding and removing uninteresting experiment process-related fragments like adapters is a common problem in ge-
netic sequencing, and pairwise sequence alignment is well-suited to address this issue. When adapters are used to
anchor or extend a sequence during the experiment process, they either intentionally or unintentionally become se-
quenced during the read process. The following code simulates what sequences with adapter fragments at either end

could look like during an experiment.

> simulateReads <-—

+ function (N, adapter, experiment, substitutionRate = 0.01, gapRate = 0.001) |
+ chars <- strsplit (as.character (adapter), "")[[1]]
+ sapply (seq_len (N), function(i, experiment, substitutionRate, gapRate) {
+ width <- experiment|[["width"]][i]
+ side <- experiment|[["side"]][i]
+ randomLetters <-
+ function (n) sample (DNA _ALPHABET[1:4], n, replace = TRUE)
+ randomLettersWithEmpty <-—
+ function (n)
+ sample(c("", DNA ALPHABET[1:4]), n, replace = TRUE,
+ prob = c(1 - gapRate, rep(gapRate/4, 4)))
+ nChars <- length (chars)
+ value <-
+ paste(ifelse (rbinom(nChars, 1, substitutionRate), randomLetters (nChars), chars),
+ randomLettersWithEmpty (nChars),
+ sep = "", collapse = "")
+ 1f (side)
+ value <-
+ paste (c (randomLetters (36 - width), substring(value, 1, width)),
+ sep = "", collapse = "")
+ else
+ value <-
+ paste(c(substring(value, 37 - width, 36), randomLetters (36 - width)),
+ sep = "", collapse = "")
+ value
+ }, experiment = experiment, substitutionRate = substitutionRate, gapRate = gapRate)
+ }
> adapter <- DNAString ("GATCGGAAGAGCTICGTATGCCGICTTCTGCTTGAAA")
> set.seed(123)
> N <- 1000
> experiment <-
+ list (side = rbinom(N, 1, 0.5), width = sample(0:36, N, replace = TRUE))
> table (experiment [["side"]], experiment[["width"]])
o 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21
0 913 10 6 16 9 15 12 19 17 19 16 17 15 12 5 16 20 19 3 15 9
1 913 11 11 15 16 12 17 11 13 18 10 12 10 18 22 16 9 17 13 8 14
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
0 15 15 15 11 13 17 17 11 14 15 16 10 19 13 14
1 17 12 16 13 12 11 14 16 12 10 12 15 15 10 13
> adapterStrings <-—
+ simulateReads (N, adapter, experiment, substitutionRate = 0.01, gapRate = 0.001)

13

> adapterStrings <- DNAStringSet (adapterStrings)

These simulated strings above have 0 to 36 characters from the adapters attached to either end. We can use
completely random strings as a baseline for any pairwise sequence alignment methodology we develop to remove the
adapter characters.

M <- 5000
randomStrings <-—
apply (matrix (sample (DNA_ALPHABET[1:4], 36 x M, replace = TRUE),
nrow = M), 1, paste, collapse = "")
randomStrings <—- DNAStringSet (randomStrings)

vV + + Vv VvV

Since edit distances are easy to explain, it serves as a good place to start for developing a adapter removal method-
ology. Unfortunately given that it is based on a global alignment, it only is useful for filtering out sequences that are
derived primarily from the adapter.

> ## Method 1: Use edit distance with an FDR of 1e-03
> submatl <- nucleotideSubstitutionMatrix(match = 0, mismatch = -1, baseOnly = TRUE)
> randomScoresl <-—
+ pairwiseAlignment (randomStrings, adapter, substitutionMatrix = submatl,
+ gapOpening = 0, gapExtension = 1, scoreOnly = TRUE)
> quantile (randomScoresl, seq(0.99, 1, by = 0.001))
99% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6% 99.7% 99.8% 99.9% 100%
-16 -16 -16 -16 -16 -16 -16 -16 -15 -15 -14
> adapterAlignsl <-
+ pairwiseAlignment (adapterStrings, adapter, substitutionMatrix = submatl,
+ gapOpening = 0, gapExtension = 1)
> table (score (adapterAlignsl) > quantile (randomScoresl, 0.999), experiment|[["width"]])

o 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
FALSE 18 26 21 17 31 25 27 29 30 30 37 26 29 25 30 27 32 29 36 1l6 23
TRUE o 0 o o 0o 06 0600 0O 0O 0O 0 O 0O 0 o0 o o 0 O

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
FALSE 23 32 27 31 24 2528 31 4 0 0 O O O O O
TRUE 0O 0 0 0O O 0 0 0 23 26 25 28 25 34 23 27

One improvement to removing adapters is to look at consecutive matches anywhere within the sequence. This is
more versatile than the edit distance method, but it requires a relatively large number of consecutive matches and is
susceptible to issues related to error related substitutions and insertions/deletions.

Method 2: Use consecutive matches anywhere in string with an FDR of 1e-03
submatZ2 <- nucleotideSubstitutionMatrix (match = 1, mismatch = -Inf, baseOnly = TRUE)
randomScores2 <-
pairwiseAlignment (randomStrings, adapter, substitutionMatrix = submatZ2,
type = "local", gapOpening = 0, gapExtension = Inf,
scoreOnly = TRUE)
quantile (randomScores2, seq(0.99, 1, by = 0.001))

vV + + + Vv Vv V

99% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6% 99.7% 99.8% 99.9% 100%
7 8 8 8 8 8 8 8 8 9 10

X

adapterAligns2 <-
pairwiseAlignment (adapterStrings, adapter, substitutionMatrix = submatZ2,
type = "local", gapOpening = 0, gapExtension = Inf)
table (score (adapterAligns2) > quantile (randomScores2, 0.999), experiment[["width"]])

vV + + Vv

o 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
FALSE 18 26 21 17 31 25 27293030 1 1 2 1 1 O 1 1 1 0 O
TRUE O 0 0 0 0 0O O O 0 0 36 2527 24 29 27 31 28 35 16 23

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
FALSE 0 0 O O O O o O 0O O O 0 o o0 o0 O
TRUE 23 32 27 31 24 25 28 31 27 26 25 28 25 34 23 27

> # Determine 1if the correct end was chosen
table (start (pattern (adapterAligns2)) > 37 - end(pattern (adapterAligns2)),
+ experiment [["side"]])

%

0 1
FALSE 455 53
TRUE 52 440

Limiting consecutive matches to the ends provides better results, but it doesn’t resolve the issues related to substi-
tutions and insertions/deletions errors.

Method 3: Use consecutive matches on the ends with an FDR of 1e-03
submat3 <- nucleotideSubstitutionMatrix (match = 1, mismatch = -Inf, baseOnly = TRUE)
randomScores3 <-—
pairwiseAlignment (randomStrings, adapter, substitutionMatrix = submat3,
type = "overlap", gapOpening = 0, gapExtension = Inf,
scoreOnly = TRUE)
quantile (randomScores3, seq(0.99, 1, by = 0.001))

vV + + + Vv Vv V

99% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6% 99.7% 99.8% 99.9% 100%
4 4 4 4 4 4 4 4 5 5 7

adapterAligns3 <-—
pairwiseAlignment (adapterStrings, adapter, substitutionMatrix = submat3,
type = "overlap", gapOpening = 0, gapExtension = Inf)
table (score (adapterAligns3) > quantile (randomScores3, 0.999), experiment|[["width"]])

vV + + Vv

o 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
FALSE 18 26 21 17 30 25 1 3 3 3 2 2 3 3 3 0 1 4 6 3 5
TRUE 0O 0 O 0O 1 0 26 26 27 27 35 24 26 22 27 27 31 25 30 13 18

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
FALSE 3 5 4 4 5 31010 7 4 5 6 9 8 6 10
TRUE 20 27 23 27 19 22 18 21 20 22 20 22 16 26 17 17

> # Determine if the correct end was chosen
> table (end (pattern (adapterAligns3)) == 36, experiment[["side"]])

0 1
FALSE 475 66
TRUE 32 427

15

Allowing for substitutions and insertions/deletions errors in the pairwise sequence alignments provides much better
results for finding adapter fragments.

> ## Method 4: Allow mismatches and indels on the ends with an FDR of le-03
> randomScores4 <-
+ pairwiseAlignment (randomStrings, adapter, type = "overlap", scoreOnly = TRUE)
> quantile (randomScores4, seq(0.99, 1, by = 0.001))
99% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6%
7.927024 7.927024 7.927024 7.927024 7.927024 7.927024 7.927208
99.7% 99.8% 99.9% 100%

7.973007 9.908780 9.908826 13.872293

> adapterAligns4d <-—
+ pairwiseAlignment (adapterStrings, adapter, type = "overlap")
> table(score (adapterAligns4) > quantile (randomScores4, 0.999), experiment|[["width"]])

o 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
FALSE 18 26 21 17 3025 1 3 3 2 0 1 1 O O O O O O O O
TRUE 0O 0 0 0 1 0 26 26 27 28 37 25 28 25 30 27 32 29 36 16 23

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
FALSE 0 0 O O O o O o0 0O 0O O 0 o 0 0 O
TRUE 23 32 27 31 24 25 28 31 27 26 25 28 25 34 23 27

> # Determine if the correct end was chosen
> table (end (pattern (adapterAligns4)) == 36, experiment[["side"]])

0 1
FALSE 482 10
TRUE 25 483

Using the results that allow for substitutions and insertions/deletions errors, the cleaned sequence fragments can
be generated as follows:

Method 4 continued: Remove adapter fragments
fragmentFound <-

score (adapterAligns4) > quantile (randomScores4, 0.999)
fragmentFoundAtl <-

fragmentFound & (start (pattern (adapterAligns4)) == 1)
fragmentFoundAt36 <-—

fragmentFound & (end(pattern (adapterAligns4)) == 36)

cleanedStrings <- as.character (adapterStrings)
cleanedStrings[fragmentFoundAtl] <-
as.character (narrow (adapterStrings[fragmentFoundAtl], end = 36,
width = 36 — end(pattern (adapterAligns4[fragmentFoundAtl]))))
cleanedStrings[fragmentFoundAt36] <-
as.character (narrow (adapterStrings[fragmentFoundAt36], start = 1,
width = start (pattern (adapterAligns4[fragmentFoundAt36])) - 1))
cleanedStrings <- DNAStringSet (cleanedStrings)
cleanedStrings

vVV++V++V YV +YV +V + VYV

16

DNAStringSet object of length 1000:
width seq
[1] 24 GTTCGCGAGAACAACTAGTCCGCA
[2] 29 ATAACTACACTGGGTAACACAAACCTTTG
[3] 36 AAGTGCGGTAGATGCTICTGAATGCTAGCCCGTCGCA
[4] 36 TGGACGTGCGAATGCCAAATTGTAAGCGCGGGATCG
[5] 14 ACCTGCAGAGTACG

36 TCCCTGACACGATAGATAACTCATTAGATTGGATCG

[]

[997] 22 TCAGGTGATGAAAGCATCTTTIG
[998] 3 AGC

[999] 2 AC

[1000] 27 TAAAGACTACACAGCAGCTGCAGTATT

8.1 Exercise 6

1. Rerun the simulation time using the simulateReads function with a substitutionRate of 0.005 and gapRate
of 0.0005. How do the different pairwise sequence alignment methods compare?

2. (Advanced) Modify the simulateReads function to accept different equal length adapters on either side (left
& right) of the reads. How would the methods for trimming the reads change?

[Answers provided in section [12.6]]

9 Application: Quality Assurance in Sequencing Experiments

Due to its flexibility, the pairwiseAlignment function is able to diagnose sequence matching-related issues that
arise when matchPDict and its related functions don’t find a match. This section contains an example involv-
ing a short read Solexa sequencing experiment of bacteriophage ¢ X174 DNA produced by New England BioLabs
(NEB). This experiment contains slightly less than 5000 unique short reads in srPhiX174, with quality measures in
quPhiX174, and frequency for those short reads in wtPhiX174.

In order to demonstrate how to find sequence differences in the target, these short reads will be compared against
the bacteriophage ¢ X174 genome NC_001422 from the GenBank database.

> data (phiX174Phage)
> genBankPhage <- phiX174Phage[[1]]
> nchar (genBankPhage)

[1] 5386

> data (srPhiX174)
> srPhiX174

DNAStringSet object of length 1113:
width seq

[1] 35 GTTATTATACCGTCAAGGACTGIGTGACTATTGAC
[2] 35 GGTGGTTATTATACCGTCAAGGACTGTGTGACTAT
[3] 35 TACCGTCAAGGACTGTGTGACTATTGACGTCCTTC
[4] 35 GTACGCCGGGCAATAATGTITTATGTTGGTTTCATG
[5] 35 GGTTTCATGGTTTGGICTAACTTTACCGCTACTAA
[1109] 35 ATAATGTTTATGTTGGTTTCATGGTTTGTTCTATC

17

[1110]
[1111]
[1112]
[1113]

35 GGGCAATAATGTTTATGITIGGTITTCATTITITTTTTIT

35
35

CAATAATGTTTATGTTGGTTTCATGGTTTGTTTTA
GACGTCCTTCCTCGTACGCCGGGCAATGATGTTTA

35 ACGCCGGGCAATAATGTTTATGTTGTTTTCATTGT

> quPhiX174

BStringSet object of length 1113:

width

35
35
35
35
35

35

35
35
35
35

seq
ZYZZZ222222Z2YYZZYYYYYYYYYYYYYYYYYQYY
ZZYZZYZZZZYYYYYYYYYYYYYYYYYYYVYYYTY
ZZZYZYYZYYZYYZYYYYYYYYYYYYYYVYYYYYY
ZZYZZ2222222Z2YZTYYYYYYYYYYYYYYYYYNYT
20202272YZYYZZ2ZYYYYYYYYYYYYYYYYYSYYSY

Z2272Z2YZ72Z2YZYZZVYYYYVYYYQYYYQCYQYQCT
YYYYTYYYYYTYYYYYYYYTIJTTYOAYIIYYYGAY
ZZYZZ2222222ZVZYYVYYYYYYVQYYYIQYAYW
YZYZZYYYZYYYYYYVYYVYYYYWWVYYYYYWYYV
ZZYYZYYYYYYZYVZYYYYYYVYYJAYYYIGYCJY

> summary (wtPhiX174)

Min.
2.00

1st Qu. Median Mean 3rd Qu. Max
2.

00 3.00 48.34 6.00 965.00

> fullShortReads <—- rep(srPhiX174, wtPhiX174)
> srPDict <- PDict (fullShortReads)
> table(countPDict (srPDict, genBankPhage))

0

1

37018 16784

For these short reads, the pairwiseAlignment function finds that the small number of perfect matches is due
to two locations on the bacteriophage ¢X174 genome.

Unlike the countPDict function from the Biostrings package, the pairwiseAlignment function works off
of the original strings, rather than PDict processed strings, and to be computationally efficient it is recommended that
the unique sequences are supplied to the pairwiseAlignment function, and the frequencies of those sequences
are supplied to the weight argument of functions like summary, mismatchSummary, and coverage. For the
purposes of this exercise, a substring of the GenBank bacteriophage ¢ X174 genome is supplied to the subject argument
of the pairwiseAlignment function to reduce the computation time.

> genBankSubstring <- substring(genBankPhage, 2793-34, 2811+34)
> genBankAlign <-—
+ pairwiseAlignment (srPhiX174, genBankSubstring,

+
+
+
>

patternQuality = SolexaQuality (quPhiX174),
subjectQuality = SolexaQuality(99L),
type = "global-local')

summary (genBankAlign, weight = wtPhiX174)

Global-Local Single Subject Pairwise Alignments
Number of Alignments: 53802

18

Scores:
Min. 1lst Qu. Median Mean 3rd Qu. Max.
-45.08 35.81 50.07 41.24 59.50 67.35

Number of matches:
Min. 1lst Qu. Median Mean 3rd Qu. Max.
21.00 31.00 33.00 31.46 34.00 35.00

Top 10 Mismatch Counts:
SubjectPosition Subject Pattern Count Probability

1 53 c T 22965 0.95536234
2 35 C T 22849 0.99969373
3 76 G T 1985 0.10062351
4 69 A T 1296 0.05654697
5 79 c T 1289 0.07289899
6 58 A C 1153 0.04783637
7 72 G A 1130 0.05248978
8 63 G A 1130 0.04767731
9 67 T G 1130 0.04721514
10 81 A G 1103 0.06672313

> revisedPhage <-—
+ replaceLetterAt (genBankPhage, c (2793, 2811), "TT")
> table(countPDict (srPDict, revisedPhage))

0 1
6768 47034

The following plot shows the coverage of the aligned short reads along the substring of the bacteriophage ¢ X174
genome. Applying the s1ice function to the coverage shows the entire substring is covered by aligned short reads.

> genBankCoverage <- coverage (genBankAlign, weight = wtPhiX174)

> plot ((2793-34):(2811+34), as.integer (genBankCoverage), xlab = "Position", ylab = "Coverage
+ type = "1")

>

nchar (genBankSubstring)
[1] 87
> slice(genBankCoverage, lower = 1)

Views on a 87-length Rle subject

views:
start end width
(1] 1 87 87 [8899 9698 10484 11228 11951 12995 13547 ...]

19

20000
l

Coverage

15000
l

10000
l

I I I I I
2760 2780 2800 2820 2840

Position

9.1 Exercise 7
1. Rerun the global-local alignment of the short reads against the entire genome. (This may take a few minutes.)

2. Plot the coverage of these alignments and use the s1ice function to find the ranges of alignment. Are there
any alignments outside of the substring region that was used above?

3. Use the reverseComplement function on the bacteriophage ¢ X174 genome. Do any short reads have a
higher alignment score on this new sequence than on the original sequence?

[Answers provided in section [12.7]]

10 Computation Profiling

The pairwiseAlignment function uses a dynamic programming algorithm based on the Needleman-Wunsch and
Smith-Waterman algorithms for global and local pairwise sequence alignments respectively. The algorithm consumes
memory and computation time proportional to the product of the length of the two strings being aligned.

> N <- as.integer(seq (500, 5000, by = 500))
> timings <- rep (0, length(N))

20

> names (timings) <- as.character (N)

> for (i in seq_len(length(N))) {

+ stringl <- DNAString (paste (sample (DNA _ALPHABET[1:4], N[i], replace = TRUE), collapse = '
+ string2 <- DNAString (paste (sample (DNA_ALPHABET[1:4], N[i], replace = TRUE), collapse = '
+ timings[i] <- system.time (pairwiseAlignment (stringl, string2, type = "global"))[["user.:
+)

> timings

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.142 0.154 0.180 0.213 0.265 0.317 0.379 0.457 0.545 0.868

> coef (summary (Im(timings ~ poly (N, 2))))

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.3520000 0.01682196 20.925026 1.431133e-07
poly (N, 2)1 0.6168700 0.05319572 11.596235 7.997544e-06
poly (N, 2)2 0.2364845 0.05319572 4.445555 2.987611e-03

> plot (N, timings, xlab = "String Size, Both Strings", ylab = "Timing (sec.)", type = "1",
+ main = "Global Pairwise Sequence Alignment Timings")

Global Pairwise Sequence Alignment Timings

© _|
o
O

~ o 7

(&)

(]

(2]

N

o

£

£

.
o
N
o

I I I I I
1000 2000 3000 4000 5000

String Size, Both Strings

21

When a problem only requires the pairwise sequence alignment score, setting the scoreOnly argument to TRUE
will more than halve the computation time.

scoreOnlyTimings <- rep (0, length(N))

names (scoreOnlyTimings) <- as.character (N)

for (i in seq_len(length(N))) {
stringl <- DNAString (paste (sample (DNA _ALPHABET[1:4], N[i], replace = TRUE), collapse
string2 <- DNAString(paste (sample (DNA_ALPHABET[1:4], N[i], replace = TRUE), collapse =
scoreOnlyTimings[i] <- system.time (pairwiseAlignment (stringl, string2, type = "global"

}

scoreOnlyTimings

vV + + + + VvV VvV

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.137 0.141 0.146 0.166 0.178 0.197 0.226 0.245 0.278 0.310

> round((timings — scoreOnlyTimings) / timings, 2)
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.04 0.08 0.19 0.22 0.33 0.38 0.40 0.46 0.49 0.064

10.1 Exercise 8

1. Rerun the first set of profiling code, but this time fix the number of characters in st ringl to 35 and have the
number of characters in st ring?2 range from 5000, 50000, by increments of 5000. What is the computational
order of this simulation exercise?

2. Rerun the second set of profiling code using the simulations from the previous exercise with scoreOnly argument
set to TRUE. Is is still twice as fast?

[Answers provided in section[12:8]]

11 Computing alignment consensus matrices

The consensusMatrix function is provided for computing a consensus matrix for a set of equal-length strings
assumed to be aligned. To illustrate, the following application assumes the ORF data to be aligned for the first 10
positions (patently false):

> file <- system.file ("extdata", "someORF.fa", package="Biostrings")
> orf <- readDNAStringSet (file)
> orf

DNAStringSet object of length 7:

width seqg names

[1] 5573 ACTTGTAAATATATCTTTIT...TCGACCTTATTGTTGATAT YALOO1lC TFC3 SGDI...
[2] 5825 TTCCAAGGCCGATGAATTC...AATTTTTTTCTATTCTCTT YALOO2W VPS8 SGDI...
[3] 2987 CTTCATGTCAGCCTGCACT...ACTCATGTAGCTGCCTCAT YALOO3W EFB1 SGDI...
[4] 3929 CACTCATATCGGGGGTCTT...CCGAAACACGAAAAAGTAC YALOO5C SSAl1 SGDI...
[5] 2648 AGAGAAAGAGTTTCACTTC...AATTTATGTGTGAACATAG YALOO7C ERP2 SGDI...
[6] 2597 GTGTCCGGGCCTCGCAGGC...TTTGGCAGAATGTACTTTT YALOO8W FUN14 SGD...
[7] 2780 CAAGATAATGTCAAAGTTA...AGGAAGAAAAAAAAATCAC YALOOSW SPO7 SGDI...
> orfl0 <- DNAStringSet (orf, end=10)

> consensusMatrix (orflo0,

22

as.prob=TRUE, baseOnly=TRUE)

(,1] [,2] [,3] [,4] [,5] [,6]

A 0.2857143 0.2857143 0.2857143 0.0000000 0.5714286 0.4285714

C 0.4285714 0.1428571 0.2857143 0.2857143 0.2857143 0.1428571

G 0.1428571 0.1428571 0.1428571 0.2857143 0.1428571 0.0000000

T 0.1428571 0.4285714 0.2857143 0.4285714 0.0000000 0.4285714

other 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[, 7] [,8] [,9] [,10]

A 0.4285714 0.4285714 0.2857143 0.1428571

c 0.0000000 0.0000000 0.2857143 0.4285714

G 0.4285714 0.4285714 0.1428571 0.2857143

T 0.1428571 0.1428571 0.2857143 0.1428571

other 0.0000000 0.0000000 0.0000000 0.0000000

The information content as defined by Hertz and Stormo 1995 is computed as follows:

> informationContent <- function (Lmers) {

+ zlog <- function(x) ifelse(x==0,0,109(x))

+ co <- consensusMatrix(Lmers, as.prob=TRUE)

+ lets <- rownames (co)

+ fr <- alphabetFrequency (Lmers, collapse=TRUE) [lets]
+ fr <- fr / sum(fr)

+ sum(cox*zlog(co/fr), na.rm=TRUE)

+ }

>

informationContent (orf10)

[1] 2.167186

12 Exercise Answers

12.1 Exercise 1

1. Using pairwiseAlignment, fit the global, local, and overlap pairwise sequence alignment of the strings
"syzygy" and "zyzzyx" using the default settings.

> pairwiseAlignment ("zyzzyx", "syzygy")

Global PairwiseAlignmentsSingleSubject (1 of 1)
pattern: zyzzyx
subject: syzygy
score: —-19.3607

> pairwiseAlignment ("zyzzyx", "syzygy", type = "local")

Local PairwiseAlignmentsSingleSubject (1 of 1)
pattern: [2] yz
subject: [2] yz
score: 4.607359

> pairwiseAlignment ("zyzzyx", "syzygy", type = "overlap")

Overlap PairwiseAlignmentsSingleSubject (1 of 1)
pattern: [1]

subject: [7]

score: 0

23

2. Do any of the alignments change if the gapExtension argument is set to —Inf? Yes, the overlap pairwise
sequence alignment changes.

> pairwiseAlignment ("zyzzyx", "syzygy", type = "overlap", gapExtension = Inf)

Overlap PairwiseAlignmentsSingleSubject (1 of 1)
pattern: [1]

subject: [7]

score: O

12.2 Exercise 2

1. What is the primary benefit of formal summary classes like PairwiseAlignmentsSingleSubjectSummary and
summary.Im to end users? These classes allow the end user to extract the summary output for further operations.

> ex2 <- summary (pairwiseAlignment ("zyzzyx", "syzygy"))
> nmatch (ex2) / nmismatch (ex2)

[1] 0.5

12.3 Exercise 3

For the overlap pairwise sequence alignment of the strings "syzygy" and "zyzzyx" withthe pairwiseAlignment
default settings, perform the following operations:

> ex3 <- pairwiseAlignment ("zyzzyx", "syzygy", type = "overlap")

1. Use nmatch and nmismath to extract the number of matches and mismatches respectively.
> nmatch (ex3)
[1] O
> nmismatch (ex3)
[11 O

2. Use the compareStrings function to get the symbolic representation of the alignment.
> compareStrings (ex3)
(117 ""

3. Use the as.character function to the get the character string versions of the alignments.
> as.character (ex3)

[1] nn

4. Use the pattern function to extract the aligned pattern and apply the mismatch function to it to find the
locations of the mismatches.

> mismatch (pattern (ex3))

IntegerList of length 1
[[1]] integer (0)

24

5. Use the subject function to extract the aligned subject and apply the aligned function to it to get the
aligned strings.

> aligned(subject (ex3))

BStringSet object of length 1:
width seq
[1] 0

12.4 Exercise 4

1. Usethe pairwiseAlignment function to find the Levenshtein edit distance between "syzygy" and "zyzzyx".

submat <- matrix (-1, nrow = 26, ncol = 26, dimnames = list (letters, letters))
diag (submat) <- 0

>

>

> - pairwiseAlignment ("zyzzyx", "syzygy", substitutionMatrix = submat,

+ gapOpening = 0, gapExtension = 1, scoreOnly = TRUE)

[1] 4

2. Usethe st ringDist function to find the Levenshtein edit distance for the vector ¢ ("zyzzyx", "syzygy",
"succeed", "precede", "supersede").

> stringDist (c("zyzzyx", "syzygy", "succeed", "precede", "supersede"))

2 3 4

g w N
O 3 J > =
~J o

ul

(00
(€
(€

12.5 Exercise 5

1. Repeat the alignment exercise above using BLOSUM62, a gap opening penalty of 12, and a gap extension penalty
of 4.

> data (BLOSUM62)
> pairwiseAlignment (AAString ("PAWHEAE"), AAString("HEAGAWGHEE"), substitutionMatrix = B.
+ gapOpening = 12, gapExtension = 4)

Global PairwiseAlignmentsSingleSubject (1 of 1)
pattern: P-—--AWHEAE

subject: HEAGAWGHEE

score: -9

2. Explore to find out what caused the alignment to change. The sift in gap penalties favored infrequent long gaps
to frequent short ones.

25

12.6 Exercise 6

1. Rerun the simulation time using the simulateReads function with a substitutionRate of 0.005 and gapRate
of 0.0005. How do the different pairwise sequence alignment methods compare? The different methods are
much more comprobable when the error rates are lower.

> adapter <- DNAString ("GATCGGAAGAGCICGTATGCCGICTTCTGCTTGAAA")
> set.seed(123)
> N <- 1000
> experiment <-
+ list (side = rbinom(N, 1, 0.5), width = sample(0:36, N, replace = TRUE))
> table (experiment [["side"]], experiment[["width"]])
o 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21
0 913 10 6 16 9 15 12 19 17 19 16 17 15 12 5 16 20 19 3 15 9
1 913 11 11 15 16 12 17 11 13 18 10 12 10 18 22 16 9 17 13 8 14

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
0 15 15 15 11 13 17 17 11 14 15 16 10 19 13 14
117 12 16 13 12 11 14 16 12 10 12 15 15 10 13

> ex6Strings <-—

+ simulateReads (N, adapter, experiment, substitutionRate = 0.005, gapRate = 0.0005)

> ex6Strings <—- DNAStringSet (ex6Strings)

> ex6Strings

DNAStringSet object of length 1000:

width seqg

[1] 36 TTCTGCTTGAAAGTTCGCGAGAACAACTAGTCCGCA
[2] 36 ATAACTACACTGGGTAACACAAACCTTTGGATCGGA
[3] 36 AAGTGCGGTAGATGCTICTGAATGCTAGCCCGTICGCA
[4] 36 TGGACGTGCGAATGCCAAATTGTAAGCGCGGGATCG
[5] 36 ACCTGCAGAGTACGGATCGGAAGAGCTCGTATGCCG

[] 36 CAATAGGCCAAATGTGGAAAAAGTAGTCGTGGATICG
[] 36 GATTTAATCCTTGCTCAATCGAGATCGGAAGAGCTC
[998] 36 CGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAACTA
[] 36 CGGATCGGAAGAGCTICGTATGCCGTCTTCTGCTTIGA

] 36 TGCTTGAAAATTCAAGCAGAGAGTCGGCGACAACGG

> ## Method 1: Use edit distance with an FDR of 1le-03
> submatl <- nucleotideSubstitutionMatrix(match = 0, mismatch = -1, baseOnly = TRUE)
> quantile (randomScoresl, seq(0.99, 1, by = 0.001))

99% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6% 99.7% 99.8% 99.9% 100%
-16 -16 -16 -16 -16 -16 -16 -16 -15 -15 -14

ex6Alignsl <-
pairwiseAlignment (ex6Strings, adapter, substitutionMatrix = submatl,
gapOpening = 0, gapExtension = 1)
table (score (ex6Alignsl) > quantile(randomScoresl, 0.999), experiment|[["width"]])

V o+ o+ Vv

26

\

vV + + Vv

\

vV + + Vv Vv Vv

o 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
FALSE 18 26 21 17 31 25 27 29 30 30 37 26 29 25 30 27 32 29 36 16 23
TRUE o 0o o o 6 06 060 00O 0O O0O 0O 0O O0 O0O 0 o0 o0 0 O

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
FALSE 23 32 27 31 24 2528 31 3 0 0 O O O 0O O
TRUE 0O 0 0 O O 0 O 0 24 26 25 28 25 34 23 27

Method 2: Use consecutive matches anywhere in string with an FDR of le-03
submatZ? <- nucleotideSubstitutionMatrix (match = 1, mismatch = -Inf, baseOnly = TRUE)
quantile (randomScores2, seq(0.99, 1, by = 0.001))

99% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6% 99.7% 99.8% 99.9% 100%

7 8 8 8 8 8 8 8 8 9 10
ex6Aligns2 <-
pairwiseAlignment (ex6Strings, adapter, substitutionMatrix = submat2,
type = "local", gapOpening = 0, gapExtension = Inf)

table (score (ex6Aligns2) > quantile(randomScores2, 0.999), experiment[["width"]])

o 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
FALSE 18 26 21 17 31 2527293030 1 1 1 o0 1 O 2 O O O O
TRUE 0o 0 0 0 0 0O O 0O O 0 36 25 28 25 29 27 30 29 36 16 23

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
FALSE 0 0O O O O 0O O o O0O 0 0 O 0 0 o0 O
TRUE 23 32 27 31 24 25 28 31 27 26 25 28 25 34 23 27

Determine i1f the correct end was chosen
table (start (pattern (ex6Aligns2)) > 37 — end(pattern(ex6Aligns’2)),
experiment [["side"]])

0 1
FALSE 461 51
TRUE 46 442

Method 3: Use consecutive matches on the ends with an FDR of le-03
submat3 <- nucleotideSubstitutionMatrix (match = 1, mismatch = -Inf, baseOnly = TRUE)
ex6Aligns3 <-
pairwiseAlignment (ex6Strings, adapter, substitutionMatrix = submat3,
type = "overlap", gapOpening = 0, gapExtension = Inf)
table (score (ex6Aligns3) > quantile(randomScores3, 0.999), experiment/[["width"]])

o 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
FALSE 18 26 21 17 3125 0 1 O O 1 1 2 1 2 2 5 1 2 4 3
TRUE 0O 0 0O O 0 0 27 28 30 30 36 25 27 24 28 25 27 28 34 12 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
FALSE 3 3 2 3 2 3 3 3 3 2 3 4 3 4 5 5
TRUE 20 29 25 28 22 22 25 28 24 24 22 24 22 30 18 22

Determine if the correct end was chosen
table (end(pattern(ex6Aligns3)) == 36, experiment[["side"]])

27

0 1
FALSE 482 34
TRUE 25 459

> ## Method 4: Allow mismatches and indels on the ends with an FDR of 1e-03
> quantile (randomScores4, seq(0.99, 1, by = 0.001))

99% 99.1% 99.2% 99.3% 99.4% 99.5% 99.6%
7.927024 7.927024 7.927024 7.927024 7.927024 7.927024 7.927208
99.7% 99.8% 99.9% 100%

7.973007 9.908780 9.908826 13.872293

> ex6Aligns4 <- pairwiseAlignment (ex6Strings, adapter, type = "overlap")
> table (score (ex6Aligns4) > quantile (randomScores4, 0.999), experiment|[["width"]])

o 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
FALSE 18 26 21 17 3125 0 1 O O O O O O O O O O O O 1
TRUE 0 0 O O 0 0 27 28 30 30 37 26 29 25 30 27 32 29 36 16 22

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
FALSE 0 O O O 0 0 o 0 O 0O O o0 O o 0 O
TRUE 23 32 27 31 24 25 28 31 27 26 25 28 25 34 23 27

> # Determine 1f the correct end was chosen
> table (end (pattern (ex6Aligns4)) == 36, experiment[["side"]])

0 1
FALSE 491 10
TRUE 16 483

2. (Advanced) Modify the simulateReads function to accept different equal length adapters on either side (left
& right) of the reads. How would the methods for trimming the reads change?

> simulateReads <-—
+ function (N, left, right = left, experiment, substitutionRate = 0.01, gapRate = 0.001)
+ leftChars <- strsplit(as.character(left), "")[[1]]
rightChars <- strsplit (as.character (right), "")[[1]]
if (length(leftChars) != length(rightChars))
stop ("left and right adapters must have the same number of characters")
nChars <- length (leftChars)
sapply (seq_len(N), function(i) {
width <- experiment[["width"]][i]
side <- experiment|[["side"]][1i]
randomLetters <-
function (n) sample (DNA_ALPHABET[1:4], n, replace = TRUE)
randomLettersWithEmpty <-
function (n)
sample(c("", DNA _ALPHABET[1:4]), n, replace = TRUE,
prob = c(1 - gapRate, rep(gapRate/4, 4)))
if (side) {
value <-
paste (ifelse (rbinom(nChars, 1, substitutionRate), randomLetters (nChars), rightCi
randomLettersWithEmpty (nChars),

+ + + + + + + ++F o+ o+ o+

28

sep = "", collapse = "")
value <-
paste (c (randomLetters (36 - width),
sep = "", collapse = "")
} else {
value <-

randomLettersWithEmpty (nChars),

ex6bRightAligns4 <-

pairwiseAlignment (ex6LeftRightStrings,
scoreCutoff <- quantile(randomScores4, 0.999)
leftAligned <-

start (pattern (ex6LeftAligns4))
rightAligned <-

end (pattern (ex6RightAligns4))
table (leftAligned, rightAligned)

V+VvV+VV+YV+VVVYVY +++++++++++ ++ + + +

rightAligned
leftAligned FALSE TRUE
FALSE 146 417
TRUE 437 0

> table(leftAligned | rightAligned,

o 1 2 3 4 5 6 7 8 910 11 12 13
FALSE 18 26 21 17 31 25 2 3 2 0 1 0O 0 O
TRUE 0 0 0O O 0 0 25 26 28 30 36 26 29 25

21 22 23 24 25 26 27 28 29 30 31 32 33 34

FALSE 0 0O O O 0O O O 0 O 0O O 0 0 O
TRUE 23 32 27 31 24 25 28 31 27 26 25 28 25 34

12.7 Exercise 7

substring(value, 1,

paste(ifelse (rbinom(nChars, 1, substitutionRate),

rightAdapter,

width)),

randomLetters (nChars),

sep = "", collapse = "")
value <-
paste (c (substring(value, 37 - width, 36), randomLetters (36 - width)),
sep = "", collapse = "")
}
value
})
}
leftAdapter <- adapter
rightAdapter <- reverseComplement (adapter)
ex6LeftRightStrings <- simulateReads (N, leftAdapter, rightAdapter, experiment)
ex6LeftAligns4d <-
pairwiseAlignment (ex6LeftRightStrings, leftAdapter, type = "overlap")

type = "overlap")

== 1 & score(ex6LeftAligns4) > pmax (scoreCutoff,

== 36 & score(ex6RightAligns4) > pmax(scoreCutoff,

experiment [["width"]])

14 15 16 17 18 19 20
o 0 0 o0 0 0 O
30 27 32 29 36 16 23

35 36
0 0
23 27

1. Rerun the global-local alignment of the short reads against the entire genome. (This may take a few minutes.)

> genBankFullAlign <-
+ pairwiseAlignment (srPhiX174,
+ patternQuality =

genBankPhage,

29

SolexaQuality (quPhiXx174),

leftCh.

SCO.

SC

+ subjectQuality = SolexaQuality(99L),
+ type = "global-local")
> summary (genBankFullAlign, weight = wtPhiX174)

Global-Local Single Subject Pairwise Alignments
Number of Alignments: 53802

Scores:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-45.08 56.72 59.89 60.59 69.56 69.85

Number of matches:
Min. 1lst Qu. Median Mean 3rd Qu. Max.
24 .00 33.00 34.00 34.01 35.00 35.00

Top 10 Mismatch Counts:
SubjectPosition Subject Pattern Count Probability

1 2811 C T 22965 0.999912919
2 2793 C T 22845 0.999693681
3 2834 G T 1985 0.106800818
4 2835 G T 605 0.033570081
5 2829 G T 489 0.023314580
6 2782 G T 325 0.013882363
7 2839 A T 287 0.018648473
8 2807 A c 169 0.007657801
9 2827 A T 168 0.007714207
10 2837 C T 159 0.009612478

. Plot the coverage of these alignments and use the s1ice function to find the ranges of alignment. Are there
any alignments outside of the substring region that was used above? Yes, there are some alignments outside of
the specified substring region.

> genBankFullCoverage <- coverage (genBankFullAlign, weight = wtPhiX174)
> plot (as.integer (genBankFullCoverage), xlab = "Position", ylab = "Coverage", type = "1
> slice(genBankFullCoverage, lower = 1)

Views on a 5386-length Rle subiject

views:
start end width

[1] 1195 1230 36 [2 4444444444444 414444444 ...]
[2] 2514 2548 35 (2222 222222222222222222...]
[3] 2745 2859 115 [416 946 1536 2135 2797 3374 4011 ...]
[4] 3209 3247 39 [32 54 440 1069 1130 1130 1130 1130 ...]

[5] 3964 3998 35 (999999999999 99999999 99 ...]

. Use the reverseComplement function on the bacteriophage ¢ X174 genome. Do any short reads have a
higher alignment score on this new sequence than on the original sequence? Yes, there are some strings with a
higher score on the new sequence.

> genBankFullAlignRevComp <-—
+ pairwiseAlignment (srPhiX174, reverseComplement (genBankPhage),
+ patternQuality = SolexaQuality (quPhiX174),

30

+ subjectQuality = SolexaQuality(99L),
+ type = "global-local")
> table (score (genBankFullAlignRevComp) > score (genBankFullAlign))

FALSE TRUE
1112 1
12.8 Exercise 8

1. Rerun the first set of profiling code, but this time fix the number of characters in stringl to 35 and have the
number of characters in st ring2 range from 5000, 50000, by increments of 5000. What is the computational
order of this simulation exercise? As expected, the growth in time is now linear.

> N <- as.integer(seq (5000, 50000, by = 5000))

> newTimings <- rep (0, length (N))

> names (newTimings) <- as.character (N)

> for (i in seq_len(length(N))) {

+ stringl <- DNAString(paste (sample (DNA ALPHABET([1:4], 35, replace = TRUE), collapse -
+ string2 <- DNAString (paste (sample (DNA _ALPHABET[1:4], N[i], replace = TRUE), collaps:
+ newTimings/[i] <- system.time (pairwiseAlignment (stringl, string2, type = "global")) /[
+ }

> newTimings

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
0.138 0.135 0.141 0.139 0.143 0.145 0.148 0.149 0.151 0.151

> coef (summary (Im(newTimings ~ poly (N, 2))))

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.1440000000 0.000571074 252.1564524 4.073201e-15
poly (N, 2)1 0.0164043601 0.001805895 9.0837859 4.016040e-05
poly (N, 2)2 0.0002611165 0.001805895 0.1445912 8.891086e-01

> plot (N, newTimings, xlab = "Larger String Size", ylab = "Timing (sec.)”,
+ type = "1", main = "Global Pairwise Sequence Alignment Timings")

31

Global Pairwise Sequence Alignment Timings

o
Lo
<
o
Lo
<
(&)
(DO
2
~
(@]
£
£
'_
(@)
<
o
o
Lo
™
S
o

I I I I I
10000 20000 30000 40000 50000

Larger String Size

2. Rerun the second set of profiling code using the simulations from the previous exercise with scoreOnly argument
set to TRUE. Is is still twice as fast? Yes, it is still over twice as fast.

newScoreOnlyTimings <- rep (0, length(N))

names (newScoreOnlyTimings) <- as.character (N)

for (i in seq_len(length(N))) {
stringl <- DNAString(paste (sample (DNA_ALPHABET[1:4], 35, replace = TRUE), collapse -
string2 <- DNAString (paste (sample (DNA_ALPHABET[1:4], N[i], replace = TRUE), collaps:
newScoreOnlyTimings[i] <- system.time (pairwiseAlignment (stringl, string2, type = "g

}

newScoreOnlyTimings

vV + + + + VvV Vv Vv

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
0.130 0.131 0.133 0.133 0.135 0.137 0.139 0.140 0.140 0.143

> round((newTimings - newScoreOnlyTimings) / newTimings, 2)

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
0.06 0.03 0.06 0.04 0.06 0.06 0.06 0.06 0.07 0.05

32

13 Session Information

All of the output in this vignette was produced under the following conditions:
> sessionInfo /()

R Under development (unstable) (2025-10-20 r88955)
Platform: x86_64-pc—-linux—gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.23-bioc/R/1lib/1ibRblas.so

LAPACK: /usr/lib/x86_64-1inux—-gnu/lapack/liblapack.so0.3.12.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:

[1] stats4 stats graphics grDevices utils datasets

[7] methods base

other attached packages:

[1] pwalign_1.7.0 Biostrings_2.79.1 Seginfo_1.1.0
[4] XVector_0.51.0 IRanges_2.45.0 S4Vectors_0.49.0

[7] BiocGenerics_0.57.0 generics_0.1.4

loaded via a namespace (and not attached):
[1] compiler_4.6.0 tools_4.6.0 crayon_1.5.3

References

LAPACK version 3.12.0

[1] Durbin, R., Eddy, S., Krogh, A., and Mitchison G. Biological Sequence Analysis. Cambridge UP 1998, sec 2.3.

[2] Haubold, B. and Wiehe, T. Introduction to Computational Biology. Birkhauser Verlag 2006, Chapter 2.

[3] Malde, K. The effect of sequence quality on sequence alignment. Bioinformatics, 24(7):897-900, 2008.

[4] Needleman,S. and Wunsch,C. A general method applicable to the search for similarities in the amino acid sequence

of two proteins. Journal of Molecular Biology, 48, 443-453, 1970.

[5] Smith, H.; Hutchison, C.; Pfannkoch, C.; and Venter, C. Generating a synthetic genome by whole genome
assembly: {phi}X174 bacteriophage from synthetic oligonucleotides. Proceedings of the National Academy of

Sciences, 100(26): 15440-15445, 2003.

[6] Smith,T.F. and Waterman,M.S. Identification of common molecular subsequences. Journal of Molecular Biology,

147, 195-197, 1981.

33

	Introduction
	Pairwise Sequence Alignment Problems
	Main Pairwise Sequence Alignment Function
	Exercise 1

	Pairwise Sequence Alignment Classes
	Exercise 2

	Pairwise Sequence Alignment Helper Functions
	Exercise 3

	Edit Distances
	Exercise 4

	Application: Using Evolutionary Models in Protein Alignments
	Exercise 5

	Application: Removing Adapters from Sequence Reads
	Exercise 6

	Application: Quality Assurance in Sequencing Experiments
	Exercise 7

	Computation Profiling
	Exercise 8

	Computing alignment consensus matrices
	Exercise Answers
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7
	Exercise 8

	Session Information

