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Abstract

In this vignette, we demonstrate the pathview package as a tool set for pathway based data integration and visualiza-
tion. It maps and renders user data on relevant pathway graphs. All users need is to supply their gene or compound data
and specify the target pathway. Pathview automatically downloads the pathway graph data, parses the data file, maps
user data to the pathway, and renders pathway graph with the mapped data. Although built as a stand-alone program,
pathview may seamlessly integrate with pathway and gene set (enrichment) analysis tools for a large-scale and fully
automated analysis pipeline. In this vignette, we introduce common and advanced uses of pathview. We also cover
package installation, data preparation, other useful features and common application errors. In gage package, vignette
"RNA-Seq Data Pathway and Gene-set Analysis Workflows"| demonstrates GAGE/Pathview workflows on RNA-seq
(and microarray) pathway analysis.

1 Cite our work

Please cite the Pathview paper formally if you use this package. This will help to support the maintenance and growth of
the open source project.

Weijun Luo and Cory Brouwer. Pathview: an R/Bioconductor package for pathway-based data integration and visu-
alization. Bioinformatics, 29(14):1830-1831, 2013. doi: 10.1093/bioinformatics/btt285.

2 Quick start with demo data

This is the most basic use of pathview, please check the full description below for details. Here we assume that the input
data are already read in R as in the demo examples. If you are not sure how to do so, you may check [Section Common|
[uses for data visualization|or gage secondary vignette, "Gene set and data preparation”!

> library (pathview)

> data(gsel6873.d)

> pv.out <- pathview(gene.data = gselé6873.d[, 1], pathway.id = "04110",
+ species = "hsa", out.suffix = "gsel6873")

If you have difficulties in using R in general, you may use the Pathview Web server: pathview.uncc.edu. In addition
to a user friendly access, the server| provides many extra useful features including a comprehensive pathway analysis
workflow. Please check the overview page and the NAR web server paper (Luo et al.,[2017) for details.

Note pathview focuses on KEGG pathways, which is good for most regular analyses. If you are interested in working
with other major pathway databases, including Reactome, MetaCyc, SMPDB, PANTHER, METACROP etc, you can use
SBGNview. SBGNview, covers 5,200 reference pathways and over 3,000 species by default, and offer more extensive
graphics control, sub-pathway highlight, and more. Please check the quick start page| and the main tutorial for details.
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3 New features

Pathview (> 1.5.4) provides paths.hsa data, the full list of human pathway ID/names from KEGG, as to help user specify
target pathway IDs when calling pathview. Please check[Section Common uses|for details.

Pathview (> 1.5.4) adjust the definitions of 7 arguments for pathview function: discrete, limit, bins,
both.dirs, trans.fun, low, mid, high. These arguments now accept 1- or 2-element vectors beside of
2-element lists. For example, limit=1 is equivalent to limit=list(gene=1, cpd=1), and bins=c(3, 10) is equivalent to
bins=list(gene=3, cpd=10) etc. This would makes pathview easier to use.

Pathview (> 1.1.6) can plot/integrate/compare multiple states or samples in the same graph (Subsection 8.2).

Pathview (> 1.2.4) work with all KEGG species (about 4800) plus KEGG Orthology (with species="ko")
[section 8.5).

4 Overview

Pathview (Luo and Brouwer, [2013)) is a stand-alone software package for pathway based data integration and visualiza-
tion. This package can be divided into four functional modules: the Downloader, Parser, Mapper and Viewer. Mostly
importantly, pathview maps and renders user data on relevant pathway graphs.

Pathview generates both native KEGG view (like in PNG format) and Graphviz view (like in PDF
format) for pathways (Section 7). KEGG view keeps all the meta-data on pathways, spacial and temporal information,
tissue/cell types, inputs, outputs and connections. This is important for human reading and interpretation of pathway
biology. Graphviz view provides better control of node and edge attributes, better view of pathway topology, better
understanding of the pathway analysis statistics. Currently only KEGG pathways are implemented. Hopefully, pathways
from Reactome, NCI and other databases will be supported in the future. Notice that KEGG requires subscription for
FTP access since May 2011. However, Pathview downloads individual pathway graphs and data files through API or
HTTP access, which is freely available (for academic and non-commerical uses). Pathview uses KEGGgraph (Zhang and
Wiemann, |2009) when parsing KEGG xml data files.

Pathview provides strong support for data integration (Section 8). It works with: 1) essentially all types of biological
data mappable to pathways, 2) over 10 types of gene or protein IDs, and 20 types of compound or metabolite IDs, 3) path-
ways for about 4800 species as well as KEGG orthology, 4) varoius data attributes and formats, i.e. continuous/discrete
data, matrices/vectors, single/multiple samples etc.

Pathview is open source, fully automated and error-resistant. Therefore, it seamlessly integrates with pathway or
gene set (enrichment) analysis tools. In we will show an integrated analysis using pathview with anothr the
Bioconductor gage package (Luo et al., 2009), available from the Bioconductor website.

Note that although we use microarray data as example gene data in this vignette, Pathview is equally applicable to
RNA-Seq data and other types of gene/protein centered high throughput data. The secondary vignette in gage package,
"RNA-Seq Data Pathway and Gene-set Analysis Workflows", demonstrates such applications.

This vignette is written by assuming the user has minimal R/Bioconductor knowledge. Some descriptions and code
chunks cover very basic usage of R. The more experienced users may simply omit these parts.

5 Installation

Assume R and Bioconductor have been correctly installed and accessible under current directory. Otherwise, please
contact your system admin or follow the instructions on R website| and Bioconductor website. Here I would strongly
recommend users to install or upgrade to the latest verison of R (3.0.2+)/Bioconductor (2.14+) for simpler installation
and better use of Pathview. You may need to update your biocLite too if you upgrade R/Biocondutor under Windows.


www.bioconductor.org/packages/release/bioc/html/gage.html
http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/RNA-seqWorkflow.pdf
http://www.r-project.org/
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Start R: from Linux/Unix command line, type R (Enter); for Mac or Windows GUI, double click the R application
icon to enter R console.

End R: type in g () when you are finished with the analysis using R, but not now.

Two options:

Simple way: install with Bioconductor installation script biocLite directly (this included all dependencies auto-
matically too):

> source ("http://bioconductor.org/biocLite.R")
> biocLite ("pathview")

Or a bit more complexer: install through R-forge or manually, but require dependence packages to be installed using
Bioconductor first:

> source ("http://bioconductor.org/biocLite.R")
> biocLite(c ("Rgraphviz", "png", "KEGGgraph", "org.Hs.eg.db"))

Then install pathview through R-forge.
> install.packages ("pathview", repos="http://R-Forge.R-project.org")

Or install manually: download pathview package (from R-forge or Bioconductor, make sure with proper version
number and zip format) and save to /your/local/directory/.

> install.packages ("/your/local/directory/pathview_1.0.0.tar.gz",
+ repos = NULL, type = "source")

Note that there might be problems when installing Rgraphviz or XML (KEGGgraph dependency) package with out-
dated R/Biocondutor. Rgraphviz installation is a bit complicate with R 2.5 (Biocondutor 2.10) or earlier versions. Please
check this Readme file|on Rgraphviz. On Windows systems,XML frequently needs to be installed manually. Its windows
binary can be downloaded from CRAN and then:

> install.packages ("/your/local/directory/XMI,_3.95-0.2.zip", repos = NULL)

6 Get Started
Under R, first we load the pathview package:
> library (pathview)

To see a brief overview of the package:
> library (help=pathview)

To get help on any function (say the main function, pathview), use the he1lp command in either one of the following
two forms:

> help (pathview)
> ?pathview


http://pathview.r-forge.r-project.org/Rgraphviz.README
http://cran.r-project.org/web/packages/XML/index.html

7 Common uses for data visualization

Pathview is primarily used for visualizing data on pathway graphs. pathview generates both native KEGG view (like
and Graphviz view (like [Figure 2). The former render user data on native KEGG pathway graphs, hence is
natural and more readable for human. The latter layouts pathway graph using Graphviz engine, hence provides better
control of node or edge attributes and pathway topology.

We load and look at the demo microarray data first. This is a breast cancer dataset. Here we would like to view the
pair-wise gene expression changes between DCIS (disease) and HN (control) samples. Note that the microarray data are
log?2 transformed. Hence expression changes are log?2 ratios.

> data(gsel6873.d)

Here we assume that the input data are already read in R. If not, you may use R functions read.delim, read.table
etc to read in your data. For example, you may read in a truncated version of gse16873 and process it as below.

> filename=system.file ("extdata/gsel6873.demo", package = "pathview")
> gselé6873=read.delim(filename, row.names=1)
> gsel6873.d=gsel6873[,2+(1:6)]-gsel6873[,2x(1:6)-1]

We also load the demo pathway related data, which includes 3 pathway ids and related plotting parameters.
> data (demo.paths)

We may also check the full list of KEGG pathway ID/names if needed. We provide human pathway IDs (in the form
of hsa+5 digits) mapping to pathway names. It is almost the same for other species, excpet for the 3 or 4 letter species

code. Please check [Subsection 8.5|for KEGG species code.

> data (paths.hsa)
> head(paths.hsa, 3)

hsa00010 hsa00020
"Glycolysis / Gluconeogenesis" "Citrate cycle (TCA cycle)"
hsa00030

"Pentose phosphate pathway"

First, we view the exprssion changes of a single sample (pair) on a typical signaling pathway, "Cell Cycle", by
specifying the gene . data and pathway . id (Figure 1a). The microarray was done on human tissue, hence species
= "hsa". Note that such native KEGG view was outupt as a raster image in a PNG file in your working directory.

1 <=1
pv.out <- pathview(gene.data = gselé6873.d[, 1], pathway.id = demo.pathsSsel.paths[i],

>
>
+ species = "hsa", out.suffix = "gsel6873", kegg.native = T)
> list.files (pattern="hsa04110", full.names=T)

[1] "./hsa04110.gsel6873.png" "./hsa04110.png"
[3] "./hsa04110.xml1"

> str(pv.out)

List of 2
$ plot.data.gene:'data.frame': 112 obs. of 10 wvariables:
..$ kegg.names: chr [1:112] "1029"™ "51343" "4171" "4998"
..$ labels : chr [1:112] "CDKNZ2A"™ "FZR1" "MCM2" "ORC1"

..$ all.mapped: chr [1:112] "1029" "51343" "4171,4172,4173,4174,4175,4176" "4998,4999



..$ type : chr [1:112] "gene" "gene" "gene" "gene"
.8 x : num [1:112] 532 981 553 494 981 981 188 432 780 873
.5y : num [1:112] 218 630 681 681 392 613 613 285 562 392
..$ width : num [1:112] 46 46 46 46 46 46 46 46 46 46
..S$ height : num [1:112] 17 17 17 17 17 17 17 17 17 17

.$ mol.data : num [1:112] 0.129 -0.404 -0.42 0.986 0.936

S mol.col : chr [1:112] "#BEBEBE" "#5FDESF" "#5FDFSF" "#FF0000"

$ plot.data.cpd : NULL

> head(pv.outSplot.data.gene)

kegg.names labels all.mapped type X vy
4 1029 CDKN2A 1029 gene 532 218
5 51343 FZR1 51343 gene 981 630
6 4171 MCM2 4171,4172,4173,4174,4175,4176 gene 553 681
7 4998 ORC1 4998,4999,5000,5001,23594,23595 gene 494 681
8 996 CDC27 996,8697,8881,10393,25847,25906,29882,51433 gene 981 392
9 996 CDC27 996,8697,8881,10393,25847,25906,29882,51433 gene 981 613
width height mol.data mol.col
4 46 17 0.1291987 #BEBEBE
5 46 17 -0.4043256 #5FDF5F
6 46 17 -0.4202181 #5FDF5F
7 46 17 0.9864873 #FF0000
38 46 17 0.9363018 #FF0000
9 46 17 0.9363018 #FF0000

Graph from the first example above has a single layer. Node colors were modified on the original graph layer, and
original KEGG node labels (node names) were kept intact. This way the output file size is as small as the original KEGG
PNG file, but the computing time is relative long. If we want a fast view and do not mind doubling the output file size,
we may do a two-layer graph with same.layer = F (Figure 1b). This way node colors and labels are added on an
extra layer above the original KEGG graph. Notice that the original KEGG gene labels (or EC numbers) were replaced
by official gene symbols.

> pv.out <- pathview(gene.data = gsel6873.d[, 1], pathway.id = demo.pathsSsel.paths/[i],
+ species = "hsa'", out.suffix = "gselé6873.2layer", kegg.native = T,
+ same.layer = F)

In the above two examples, we view the data on native KEGG pathway graph. This view we get all notes and meta-
data on the KEGG graphs, hence the data is more readable and interpretable. However, the output graph is a raster image
in PNG format. We may also view the data with a de novo pathway graph layout using Graphviz engine (Figure 2). The
graph has the same set of nodes and edges, but with a different layout. We get more controls over the nodes and edge
attributes and look. Importantly, the graph is a vector image in PDF format in your working directory.

> pv.out <- pathview(gene.data = gsel6873.d[, 1], pathway.id = demo.pathsSsel.paths[i],

+ species = "hsa", out.suffix = "gsel6873", kegg.native = F,
+ sign.pos = demo.pathsSspos[i])
[,11 [,2]
[l,] "9" "300"
[2,] "9" "306"

> #pv.out remains the same
> dim(pv.outSplot.data.gene)



CELL CYCLE HDACE » B N 1
FIkt
v
+p T Szl Cohesin
Cohesin loading Cohesion establishment Loz T
DNA damage checkpoint P
Growth factor Growth factor =
| mmd‘mm Eopl | Separin
| |
| ¥
| G5H3|
|
PTTG | Securin
MAPK
signaling
pathway
L
|
|
|
: Ubiguitin
iated
I protealysis
l -
— — . Repoint -
(START)™ ™
O —— e Sphase proteins, —— % DNA biosynthesis
DNA Cyek
Gl s G2 M
Data on KEGG graph
Rendered by Pathview

CELL CYCLE [ATRX] - _ 1
PLK1
[MAUz | i
1
+p TEBK Seol Cohesin
Cohesin loading. Cohesion establishment Lol ) T
DNA damage checkpoint P
Growth factor Growth factor =
| withdrawal i~ Separin
I ! FAN -
l v
| (GSKaB)
|
Securin
MAPK
signaling
pathway
1
|
|
|
: Ubiguitin
iated
| proteolysis
|
l 3
— — . Repoint =
(START) ™
DNA replication
O——p Sphuseproteins, ¢ ——-# DNA biosynthesis
DNA CycE DNA
Gl s G2 M
Data on KEGG graph
Rendered by Pathview

(b)

Figure 1: Example native KEGG view on gene data ®ith the (a) default settings; or (b) same . layer=F.
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Figure 2: Example Graphviz view on gene data with default settings. Note that legend is put on the same page as main
graph.



[1] 112 10

> head(pv.outSplot.data.gene)

kegg.names labels all.mapped type X y
4 1029 CDKNZ2A 1029 gene 532 218
5 51343 FZR1 51343 gene 981 630
6 4171 MCM2 4171,4172,4173,4174,4175,4176 gene 553 681
7 4998 ORC1 4998,4999,5000,5001,23594,23595 gene 494 681
38 996 CDC27 996,8697,8881,10393,25847,25906,29882,51433 gene 981 392
9 996 CDC27 996,8697,8881,10393,25847,25906,29882,51433 gene 981 613

width height mol.data mol.col

4 46 17 0.1291987 #BEBEBE
5 46 17 -0.4043256 #5FDF5F
6 46 17 -0.4202181 #5FDF5F
7 46 17 0.9864873 #FF0000
8 46 17 0.9363018 #FF0000
9 46 17 0.9363018 #FF0000

In the example above, both main graph and legend were put in one layer (or page). We just list KEGG edge types and
ignore node types in legend as to save space. If we want the complete legend, we can do a Graphviz view with two layers
(Figure 3)): page 1 is the main graph, page 2 is the legend. Note that for Graphviz view (PDF file), the concept of “layer"
is slightly different from native KEGG view (PNG file). In both cases, we set argument same . 1layer=F for two-layer
graph.

> pv.out <- pathview(gene.data = gsel6873.d[, 1], pathway.id = demo.paths$Ssel.paths[i],

+ species = "hsa", out.suffix = "gsel6873.2layer", kegg.native = F,
+ sign.pos = demo.paths$spos[i], same.layer = F)
[,11 [,2]
[l,] "9" "300"
[2,] "9" "306"

In Graphviz view, we have more control over the graph layout. We may split the node groups into individual detached
nodes (Figure 4a). We may even expand the multiple-gene nodes into individual genes (Figure 4b). The split nodes
or expanded genes may inherit the edges from the unsplit group or unexpanded nodes. This way we tend to get a
gene/protein-gene/protein interaction network. And we may better view the network characteristics (modularity etc) and
gene-wise (instead of node-wise) data. Note in native KEGG view, a gene node may represent multiple genes/proteins
with similar or redundant functional role. The number of member genes range from 1 up to several tens. They are
intentionally put together as a single node on pathway graphs for better clarity and readability. Therefore, we do not
split node and mark each member genes separately by default. But rather we visualize the node-wise data by summarize
gene-wise data, users may specify the summarization method using node . sum arguement.

> pv.out <- pathview (gene.data = gselé6873.d[, 1], pathway.id = demo.pathsSsel.paths[i],
+ species = "hsa", out.suffix = "gsel6873.split", kegg.native = F,

+ sign.pos = demo.pathsSspos[i], split.group = T)

> dim(pv.outSplot.data.gene)

[1] 112 10

> head (pv.outSplot.data.gene)
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Figure 4: Example Graphviz view on gene data with (f% split.group = T;or(b) expand.node =



kegg.names labels all.mapped type X y

4 1029 CDKN2A 1029 gene 532 218
5 51343 FZR1 51343 gene 981 630
6 4171 MCM2 4171,4172,4173,4174,4175,4176 gene 553 681
7 4998 ORC1 4998,4999,5000,5001,23594,23595 gene 494 681
8 996 CDC27 996,8697,8881,10393,25847,25906,29882,51433 gene 981 392
9 996 CDC27 996,8697,8881,10393,25847,25906,29882,51433 gene 981 613

width height mol.data mol.col

4 46 17 0.1291987 #BEBEBE
5 46 17 -0.4043256 #5FDF5F
6 46 17 -0.4202181 #5FDF5F
7 46 17 0.9864873 #FF0000
8 46 17 0.9363018 #FF0000
9 46 17 0.9363018 #FF0000

> pv.out <- pathview(gene.data = gselé6873.d[, 1], pathway.id = demo.pathsSsel.paths[i],
+ species = "hsa'", out.suffix = "gselé6873.split.expanded"”", kegg.native = F,

+ sign.pos = demo.pathsSspos[i], split.group = T, expand.node = T)
> dim(pv.outSplot.data.gene)

[1] 158 10

> head(pv.outSplot.data.gene)

kegg.names labels all.mapped type b4 y width height mol.data
hsa:1029 1029 CDKN2A 1029 gene 532 218 46 17 0.12919874
hsa:51343 51343 FZR1 51343 gene 981 630 46 17 -0.40432563
hsa:4171 4171 MCM2 4171 gene 553 681 46 17 0.17968149
hsa:4172 4172 MCM3 4172 gene 553 681 46 17 0.33149955
hsa:4173 4173 MCM4 4173 gene 553 681 46 17 0.06996779
hsa:4174 4174 MCM5 4174 gene 553 681 46 17 -0.42874682

mol.col

hsa:1029 #BEBEBE
hsa:51343 #5FDF5F
hsa:4171 #BEBEBE
hsa:4172 #CE8FS8F
hsa:4173 #BEBEBE
hsa:4174 #5FDF5F

8 Data integration

Pathview provides strong support for data integration. It can be used to integrate, analyze and visualize a wide variety
of biological data (Subsection 8.1)): gene expression, protein expression, genetic association, metabolite, genomic data,
literature, and other data types mappable to pathways. Notebaly, it can be directly used for metagenomic, microbiome or
unknown species data when the data are mapped to KEGG ortholog pathways (Subsection 8.5). The integrated Mapper
module maps a variety of gene/protein IDs and compound/metabolite IDs to standard KEGG gene or compound IDs
(Subsection 8.4). User data named with any of these different ID types get accurately mapped to target KEGG path-
ways. Currently, pathview covers KEGG pathways for about 4800 species (Subsection 8.5)), and species can be specified
either as KEGG code, scientific name or comon name. In addition, pathview works with different data attributes and
formats, both continuous and discrete data (Subsection 8.3)), either in matrix or vector format, with single or multiple
samples/experiments etc. Partcullary, Pathview can now integrate and compare multiple samples or states into one graph

(Subsection 8.2J).
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8.1 Compound and gene data

In examples above, we viewed gene data with canonical signaling pathways. We frequently want to look at metabolic
pathways too. Besides gene nodes, these pathways also have compound nodes. Therefore, we may integrate or visualize
both gene data and compound data with metabolic pathways. Here gene data is a broad concept including genes, tran-
scripts, protein , enzymes and their expression, modifications and any measurable attributes. Same is compound data,
including metabolites, drugs, their measurements and attributes. Here we still use the breast cancer microarray dataset
as gene data. We then generate simulated compound or metabolomic data, and load proper compound ID types (with
sufficient number of unique entries) for demonstration.

> sim.cpd.data=sim.mol.data (mol.type="cpd", nmol=3000)
> data (cpd.simtypes)

We generate a native KEGG view graph with both gene data and compound data (Figure 5a). Such metabolic pathway
graphs generated by pathview is the same as the original KEGG graphs, except that the compound nodes are magnified
for better view of the colors.

> 1 <— 3
> print (demo.pathsSsel.paths[1i])

[1] "00640"

> pv.out <- pathview(gene.data = gselé6873.d[, 1], cpd.data = sim.cpd.data,

+ pathway.id = demo.pathsS$sel.paths([i], species = "hsa", out.suffix = "gsel6873.cpd

+ keys.align = "y", kegg.native = T, key.pos = demo.pathsSkposl[i])
> str (pv.out)

List of 2
$ plot.data.gene:'data.frame': 24 obs. of 10 variables:
.$ kegg.names: chr [1:24] "4329"™ "31" "23417" "18"

..$ labels : chr [1:24] "ALDH6A1" "ACACA"™ "MLYCD"™ "ABAT"

..$ all.mapped: chr [1:24] "4329" "31,32" "23417" "18"

..$ type : chr [1:24] "gene" "gene" "gene" "gene"

.5 0% : num [1:24] 159 159 159 276 377

.8y : num [1:24] 325 262 195 381 327 409 494 390 390 229

..$ width : num [1:24] 46 46 46 46 46 46 46 46 46 46

..$ height : num [1:24] 17 17 17 17 17 17 17 17 17 17

..$ mol.data : num [1:24] 0.747 -0.483 -0.251 2.785 0.77

..$ mol.col : chr [1:24] "#EF3030" "#5FDESE" "#8FCESF" "#FF0000"
$ plot.data.cpd :'data.frame': 42 obs. of 10 variables:

..$ kegg.names: chr [1:42] "C00222"™ "C00804"™ "C01013" "CO0099"

..$ labels : chr [1:42] "C00222"™ "C00804™ "C01013™ "CO0OO099"

..$ all.mapped: chr [1:42] "" "C00804"™ "" "CO0099"

..$ type : chr [1:42] "compound" "compound" "compound”" "compound"

.5 0% : num [1:42] 225 225 324 325 222

.5y : num [1:42] 327 470 327 399 228 105 105 105 157 228

.$ width : num [1:42] 8 8 8 8 8 8 8 8 8 8

..$ height : num [1:42] 8 8 8 8 8 8 8 8 8 8

..$ mol.data : num [1:42] NA 0.564 NA 0.871 NA

.$ mol.col : chr [1:42] "#FFFFFE" "#DFDFSE" "#FFFFEFE" "#FFFFOO"

> head(pv.outSplot.data.cpd)
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kegg.names labels all.mapped type X y width height
30 C00222 C00222 compound 225 327 8 8
31 C00804 cC00804 C00804 compound 225 470 8 8
32 C01013 cCc01013 compound 324 327 8 8
33 C00099 C00099 C00099 compound 325 399 8 8
36 C00083 C00083 compound 222 228 8 8
84 C00109 C00109 compound 806 105 8 8

mol.col
#FFEFFEF
#DFDF5F
#FFEFFFF
#FFFFO00
#FFFFEF
#FFFFEF

mol.data
NA
0.5643663
NA
0.8706309
NA

NA

We also generate Graphviz view of the same pathway and data (Figure 5b). Graphviz view better shows the hierarchi-
cal structure. For metabolic pathways, we need to parse the reaction entries from xml files and convert it to relationships
between gene and compound nodes. We use ellipses for compound nodes. The labels are standard compound names,
which are retrieved from CHEMBL database. KEGG does not provide it in the pathway database files. Chemical names

are long strings, we need to do word wrap to fit them to specified width on the graph.

> pv.out <- pathview(gene.data = gsel6873.d[, 1], cpd.data =
+ pathway.id = demo.pathsSsel.paths[i], species = "hsa",
+ keys.align = "y", kegg.native = F, key.pos =

+ sign.pos = demo.paths$spos[i], cpd.lab.offset =

8.2 Multiple states or samples

sim.cpd.data,

out.suffix = "gsel6873.cpa

demo.pathsSkpos2[i],
demo.pathsSoffs[i])

In all previous examples, we looked at single sample data, which are either vector or single-column matrix. Pathview also
handles multiple sample data, it used to generate graph for each sample. Since version 1.1.6, Pathview can integrate and

plot multiple samples or states into one graph (Figure[6]-[7).
Let’s simulate compound data with multiple replicate samples first.

> set.seed(10)
> sim.cpd.data? = matrix(sample (sim.cpd.data, 18000,
+ replace = T), ncol = 6)
> rownames (sim.cpd.dataZ) = names (sim.cpd.data)
> colnames (sim.cpd.data2) = paste("exp", 1:6, sep = "")
> head(sim.cpd.dataz, 3)

expl exp2 exp3 exp4 exp5 expb
C00232 0.5223972 -0.357041809 -0.4605917 0.3195047 -0.5248542 -0.9424900
C01881 0.1263224 0.003949847 —-0.3649231 -1.0199797 -2.4024820 0.5059053
C02424 2.0966844 0.571453538 0.2148428 0.3204217 -1.9725272 1.1587705

In the following examples, gene .data has three samples while cpd.

data has two. We may include all these

samples in one graph. We can do either native KEGG view (Figure 6)) or Graphviz view (Figure 7)on such multiple-sample
data. In these graphs, we see that the gene nodes and compound nodes are sliced into multiple pieces corresponding to
different states or samples. Since the sample sizes are different for gene .data and cpd. data, we can choose to match

the data if samples in the two data types are actually paired, i.e. first columns of for gene.

from the same experiment/sample, and so on.

> #KEGG view
> pv.out <- pathview(gene.data

gsel6873.d[, 1:3],

data and cpd.data come

+ cpd.data = sim.cpd.dataz[, 1:2], pathway.id = demo.pathsSsel.paths/[i],
+ species = "hsa'", out.suffix = "gsel6873.cpd.3-2s", keys.align = "y",
+ kegg.native = T, match.data = F, multi.state = T, same.layer = T)

> head(pv.out$Splot.data.cpd)
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Figure 5: Example (a) KEGG view or (b) Graphviz view on both gene data and compound data simultaneously.
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kegg.names labels all.mapped type X y width height expl

30 C00222 C00222 compound 225 327 8 8 NA

31 Cc00804 C00804 C00804 compound 225 470 8 8 —-0.7773255

32 C01013 cCc01013 compound 324 327 8 8 NA

33 C00099 C00099 C00099 compound 325 399 8 8 -0.5785750

36 C00083 €C00083 compound 222 228 8 8 NA

84 C00109 C00109 compound 806 105 8 8 NA
exp2 expl.col exp2.col

30 NA #FFFFFF #FFFFFF

31 -0.1306727 #3030EF #BEBEBE

32 NA #FFFFFF #FFFFFF

33 0.6952993 #5F5FDF #EFEF30

36 NA #FFFFFF #FFFFFF

84 NA #FFFFFF #FFFFFF

> #KEGG view with data match

> pv.out <- pathview(gene.data = gsel6873.d[, 1:3],

+ cpd.data = sim.cpd.dataz2[, 1:2], pathway.id = demo.pathsSsel.paths/[i],

+ species = "hsa'", out.suffix = "gselé6873.cpd.3-2s.match”,

+ keys.align = "y", kegg.native = T, match.data = T, multi.state = T,

+ same.layer = T)

> #graphviz view

> pv.out <- pathview(gene.data = gsel6873.d[, 1:3],

+ cpd.data = sim.cpd.dataz[, 1:2], pathway.id = demo.pathsSsel.paths/[i],

+ species = "hsa'", out.suffix = "gsel6873.cpd.3-2s", keys.align = "y",

+ kegg.native = F, match.data = F, multi.state = T, same.layer = T,

+ key.pos = demo.pathsSkpos2([i], sign.pos = demo.pathsSspos[i])

Again, we may choose to plot the samples separately, i.e. one sample per graph. Note that in this case, the samples in
gene.data and cpd.data has to be matched as to be assigned to the same graph. Hence, argument match.data
isn’t really effective here.

> #plot samples/states separately
> pv.out <- pathview(gene.data = gsel6873.d[, 1:3],

+ cpd.data = sim.cpd.dataz2[, 1:2], pathway.id = demo.pathsSsel.paths[i],
+ species = "hsa", out.suffix = "gsel6873.cpd.3-2s", keys.align = "y",
+ kegg.native = T, match.data = F, multi.state = F, same.layer = T)

As described above, KEGG views on the same layer may takes some time. Again, we can choose to do KEGG view
with two layers as to speed up the process if we don’t mind losing the original KEGG gene labels (or EC numbers).

> pv.out <- pathview(gene.data = gsel6873.d[, 1:3],

+ cpd.data = sim.cpd.dataz2[, 1:2], pathway.id = demo.pathsSsel.paths[i],
+ species = "hsa", out.suffix = "gsel6873.cpd.3-2s.2layer”,

+ keys.align = "y", kegg.native = T, match.data = F, multi.state = T,

+ same.layer = F)

8.3 Discrete data

So far, we have been dealing with continuous data. But we often work with discrete data too. For instance, we select list
of signficant genes or compound based on some statistics (p-value, fold change etc). The input data can be named vector
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of two levels, either 1 or O (signficant or not), or it can be a shorter list of signficant gene/compound names. In the next
two examples, we made both gene .data and cpd.data or gene.data only discrete.

8.4 ID mapping

out.suffix
skposl[i],
2),

out.suffix
skposl[i],
10),

> require(org.Hs.eqg.db)

> gsel6873.t <- apply(gsel6873.d, 1, function(x) t.test (x,

+ alternative = "two.sided") Sp.value)

> sel.genes <—- names (gselé6873.t) [gsel6873.t < 0.1]

> sel.cpds <—- names (sim.cpd.data) [abs(sim.cpd.data) > 0.5]

> pv.out <- pathview(gene.data = sel.genes, cpd.data = sel.cpds,
+ pathway.id = demo.pathsSsel.paths[i], species = "hsa",

+ keys.align = "y", kegg.native T, key.pos = demo.paths

+ limit = 1ist (gene = 5, cpd 2), bins = list(gene = 5, cpd
+ na.col = "gray", discrete = list(gene = T, cpd = T))

> pv.out <- pathview(gene.data = sel.genes, cpd.data = sim.cpd.data,
+ pathway.id = demo.pathsSsel.paths[i], species = "hsa",

+ keys.align = "y", kegg.native T, key.pos = demo.paths

+ limit = list (gene = 5, cpd 1), bins = 1list(gene = 5, cpd
+ na.col = "gray", discrete = list(gene = T, cpd = F))

"sel.genes. se

"sel.genes.cp

A distinguished feature of pathview is its strong ID mapping capability. The integrated Mapper module maps over 10
types of gene or protein IDs, and 20 types of compound or metabolite IDs to standard KEGG gene or compound IDs, and
also maps between these external IDs. In other words, user data named with any of these different ID types get accurately
mapped to target KEGG pathways. Pathview applies to pathways for about 4800 species, and species can be specified in

multiple formats: KEGG code, scientific name or comon name.

The following example makes use of the integrated mapper to map external ID types to standard KEGG IDs automati-
cally (Figure 9). We only need to specify the external ID types using gene . idt ype and cpd. idtype arguments. Note
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Figure 9: Example native KEGG view on gene data and compound data with other ID types.

that automatic mapping is limited to certain ID types. For details check: gene.idtype.list anddata (rn.list);
names (rn.list).

>
+
>
+
>
+
+
+
+
+

cpd.cas <— sim.mol.data (mol.type = "cpd", id.type = cpd.simtypes([2],

nmol = 10000)

gene.ensprot <- sim.mol.data(mol.type = "gene", id.type = gene.idtype.list[4],

nmol = 50000)

pv.out <- pathview(gene.data = gene.ensprot, cpd.data = cpd.cas,
gene.idtype = gene.idtype.list[4], cpd.idtype = cpd.simtypes([2],
pathway.id = demo.pathsSsel.paths[i], species = "hsa", same.layer = T,
out.suffix = "gene.ensprot.cpd.cas", keys.align = "y", kegg.native = T,

key.pos = demo.pathsSkpos2[i], sign.pos = demo.pathsSspos([i],
limit = list(gene = 3, cpd = 3), bins = list(gene = 6, cpd = 6))

For external IDs not in the auto-mapping lists, we may make use of the mo1 . sum function (also part of the Mapper

module) to do the ID and data mapping explicitly. Here we need to provide id.map, the mapping matrix between
external ID and KEGG standard ID. We use ID mapping functions including id2eg and cpdidmap etc to get id.map
matrix. Note that these ID mapping functions can be used independent of pathview main function. The following
example use this route with the simulated gene . ensprot and cpd. kc data above, and we get the same results (Figure

not shown).

> id.map.cas <—- cpdidmap(in.ids = names (cpd.cas), in.type = cpd.simtypes[2],
+ out.type = "KEGG COMPOUND accession")

> cpd.kc <—- mol.sum(mol.data = cpd.cas, id.map = id.map.cas)

> id.map.ensprot <- idZ2eg(ids = names (gene.ensprot),

+ category = gene.lidtype.list[4], org = "Hs")

> gene.entrez <- mol.sum(mol.data = gene.ensprot, id.map = id.map.ensprot)

> pv.out <- pathview(gene.data = gene.entrez, cpd.data = cpd.kc,

+ pathway.id = demo.pathsSsel.paths[i], species = "hsa", same.layer = T,
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+ out.suffix =
+ key.pos
+ limit =

"gene.entrez.cpd.kc", keys.align = "y",

kegg.native

= demo.pathsSkpos2[i], sign.pos = demo.pathsSspos/[i],
list (gene = 3, cpd = 3), bins = list(gene = 6, cpd = 6))

8.5 Working with species

Species is a tricky yet important issue when working with KEGG. KEGG has its own dedicated nomenclature and database
for species, which includes about 4800 organisms with complete genomes. In other words, gene data for any of these
organisms can be mapped, visualized and analyzed using pathview. This comprehensive species coverage is a prominent
feature of pathview’s data integration capacity. However, KEGG does not treat all of these organisms/genomes the same
way. KEGG use NCBI GenelD (or Entrez Gene) as the default ID for the most common model animals, including human,
mouse, rat etc and a few crops, e.g. soybean, wine grape and maize. On the other hand, KEGG uses Locus tag and other

IDs for all others organisms, including animals, plants, fungi, protists, as well as bacteria and archaea.

Pathview carries a data matrix korg, which includes a complete list of supported KEGG species and default gene

IDs. Let’s explore korg data matrix as to have some idea on KEGG species and its Gene ID usage.

> data (korg)
> head(korg)

scientific.name

"Homo sapiens”

"Pan troglodytes"

"Pan paniscus"

"Gorilla gorilla gorilla"
"Pongo abelii"

"Pongo pygmaeus"
entrez.gnodes kegg.geneid

min "55821"
"in "473375"
nin "100984585"
"ln "101123971"
"in "100437003"
"ln "129036477"

ktax.id tax.id kegg.code
[1,] "TO1001" "9606" "hsa"
[2,] "TO1005™ "9598" "ptr"
[3,] "T02283" "9597" "pps"
[4,] "TO02442™ "9593" "ggo"
[5,]1 "T01416™ "9601" "pon"
[6,] "T10128" "9600" "ppyg"
common .name
[1,] "human"
[2,] "chimpanzee"
[3,] "bonobo"
[4,] "western lowland gorilla"
[5,] "Sumatran orangutan"
[6,] "Bornean orangutan"
ncbi.proteinid uniprot
[1,] "NP_060906" "Q8N6M5"
[2,] "XP_528746" "H2Q5I3"
[3,] "XP_008967038" "AOA2RI9BXY8"
[4,] "XP_004041011" "G3QPY4"
[5,] "XP_002831213" "H2P4G9"
[6,] "XP_054343657" NA

ncbi.geneid
"55821"
"473375"
"100984585"
"101123971"
"100437003"
"129036477"

> #number of species which use Entrez Gene as the default ID
> sum(korg/[, "entrez.gnodes"]=="1",na.rm=T)

[1] 878

> #number of species which use other ID types or none as the default ID

> sum(korg[, "entrez.gnodes"]=="0",na.rm=T)

[1] 9840
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> #new from 2017: most species which do not have Entrez Gene annotation any more
> na.idx=is.na(korg/[, "ncbi.geneid"])
> sum(na.idx)

[1] 9550

From the exploration of korg above, we see that out of the 4800 KEGG species, only a few don’t have NCBI (Entrez)
Gene ID or any gene ID (annotation) at all. Almost all of them have both default KEGG gene ID (often Locus tag) and
Entrez Gene ID annotation. Therefore, pathview accepts gene.idtype="kegg" or "Entrez" (case insensitive)
for all these species. The users need to make sure the right gene . idtype is specified because KEGG and Entrez Gene
IDs are not the same except for 35 common species. For 19 species, Bioconductor provides gene annotation packages.
The users have the freedom to input gene . dat a with other gene . idtype’s. For a list of these Bioconductor annotated
species and extra Gene ID types allowed:

> data (bods)

> bods
package species kegg code id.type
[1,] "org.Ag.eg.db" "Anopheles" "aga" "eg"
[2,] "org.At.tair.db" "Arabidopsis" "ath" "tair"
[3,] "org.Bt.eg.db" "Bovine" "bta" "eg"
[4,] "org.Ce.eg.db" "Worm" "cel" "eg"
[5,] "org.Cf.eg.db" "Canine" "cfa" "eg"
[6,] "org.Dm.eg.db" "Fly" "dme" "eg"
[7,] "org.Dr.eg.db" "Zebrafish" "dre" "eg"
[8,] "org.EcKl2.eg.db" "E coli strain K12" "eco" "eg"
[9,]1 "org.EcSakai.eg.db" "E coli strain Sakai" "ecs" "eg"
[10,] "org.Gg.eg.db" "Chicken" "gga" "eg"
[11,] "org.Hs.eg.db" "Human" "hsa" "eg"
[12,] "org.Mm.eg.db" "Mouse" "mmu" "eg"
[13,] "org.Mmu.eg.db" "Rhesus" "mcc" "eg"
[14,] "org.Pf.plasmo.db" "Malaria" "pfa" "orf"
[15,] "org.Pt.eg.db" "Chimp" "ptr" "eg"
[16,] "org.Rn.eg.db" "Rat" "rno" "eg"
[17,] "org.Sc.sgd.db" "Yeast" "sce" "ort"
[18,] "org.Ss.eg.db" "pPig" "ssc" "eg"
[19,] "org.Xl.eg.db" "Xenopus" "xla" "eg"

> data (gene.idtype.list)
> gene.idtype.list

[1] "SYMBOL" "GENENAME" "ENSEMBL" "ENSEMBLPROT" "UNIGENE"
[6] "UNIPROT" "ACCNUM" "ENSEMBLTRANS" "REFSEQ" "ENZYME"
[11] "TAIR" "PROSITE" "ORE"

All previous examples show human data, where Entrez Gene is KEGG’s default gene ID. Pathview now (since version
1.1.5) explicitly handles species which use Locus tag or other gene IDs as the KEGG default ID. Below are an couple of
examples with E coli strain K12 data. First, we work on gene data with the default KEGG ID (Locus tag) for E coli K12.

> eco.dat.kegg <- sim.mol.data (mol.type="gene",id.type="kegg", species="eco", nmol=3000)
> head(eco.dat.kegqg)

21



b4651 0480 b3265 b3519 b3882 b2894
1.1072340 -0.1987767 -1.3888204 -0.8591284 0.3854746 —-0.8561307

> pv.out <- pathview(gene.data = eco.dat.kegg, gene.idtype="kegg",
+ pathway.id = "00640", species = "eco", out.suffix = "eco.kegg”,
+ kegg.native = T, same.layer=T)

We may also work on gene data with Entrez Gene ID for E coli K12 the same way as for human. Note this part may
not work as org.EcK12.eg.db had some problem from BioC 3.21.

> eco.dat.entrez <- sim.mol.data (mol.type="gene",id.type="entrez", species="eco", nmol=30
> head(eco.dat.entrez)

> pv.out <- pathview(gene.data = eco.dat.entrez, gene.idtype="entrez",

+ pathway.id = "00640", species = "eco", out.suffix = "eco.entrez",

+ kegg.native = T, same.layer=T)

Based on the bods data described above, E coli K12 is an Bioconductor annotated species. Hence we may further
work on its gene data with other ID types, for example, official gene symbols. When calling pathview, such data need
to be mapped to Entrez Gene ID first (if not yet), then to default KEGG ID (Locus tag). Therefore, it takes longer time
than the last example.

egid.eco=eg2id(names (eco.dat.entrez), category="symbol", pkg="org.EcK1lZ2.eg.db")

eco.dat.symbol <- eco.dat.entrez

names (eco.dat.symbol) <- egid.ecol,2]

head (eco.dat.kegg)

pv.out <- pathview(gene.data = eco.dat.symbol, gene.idtype="symbol",
pathway.id = "00640", species = "eco", out.suffix = "eco.symbol.Zlayer",
kegg.native = T, same.layer=F)

+ + VvV VvV Vv VvV

Importantly, pathview can be directly used for metagenomic or microbiome data when the data are mapped to KEGG
ortholog pathways. And data from any new species that has not been annotated and included in KEGG (non-KEGG
species) can also been analyzed and visualized using pathview by mapping to KEGG ortholog pathways the same way.
In the next example, we simulate the mapped KEGG ortholog gene data first. Then the data is input as gene . data with
species="ko". Check pathview function for details.

> ko.data=sim.mol.data (mol.type="gene.ko", nmol=5000)
> pv.out <- pathview(gene.data = ko.data, pathway.id = "04112",
+ species = "ko", out.suffix = "ko.data", kegg.native = T)

9 Integrated workflow with pathway analysis

Although built as a stand alone program, Pathview may seamlessly integrate with pathway and functional analysis tools
for large-scale and fully automated analysis pipeline. The next example shows how to connect common pathway analysis
to results rendering with pathview. The pathway analysis was done using another Bioconductor package gage (Luo et al.,
2009), and the selected signficant pathways plus the expression data were then piped to pathview for auomated results
visualization (Figure not shown). In gage package, vignette "RNA-Seq Data Pathway and Gene-set Analysis Workflows"
demonstrates GAGE/Pathview workflows on RNA-seq (and microarray) pathway analysis. Note the Pathview Web server
provides a comprehensive workflow for both regular and integrated pathway analysis of multiple omics data (Luo et al.,
2017), as shown in|[Example 4 online.

Note pathview focuses on KEGG pathways, which is good for most regular analyses. If you are interested in working
with other major pathway databases, including Reactome, MetaCyc, SMPDB, PANTHER, METACROP etc, you can use
SBGNview. Please check the quick start page and the main tutorial for details. Also see SBGNview + GAGE based
pathway analysis workflow.
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http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/RNA-seqWorkflow.pdf
https://pathview.uncc.edu/
https://pathview.uncc.edu/example4
https://github.com/datapplab/SBGNview
https://github.com/datapplab/SBGNview
https://bioconductor.org/packages/devel/bioc/vignettes/SBGNview/inst/doc/SBGNview.Vignette.html
https://bioconductor.org/packages/devel/bioc/vignettes/SBGNview/inst/doc/pathway.enrichment.analysis.html
https://bioconductor.org/packages/devel/bioc/vignettes/SBGNview/inst/doc/pathway.enrichment.analysis.html

library (gage)
data (gsel6873)
cn <- colnames (gsel6873)
hn <- grep('HN',cn, ignore.case =TRUE)
dcis <- grep('DCIS',cn, ignore.case =TRUE)
data (kegg.gs)
#pathway analysis using gage
gsel6873.kegg.p <—- gage(gsel6873, gsets = kegg.gs,
ref = hn, samp = dcis)
#prepare the differential expression data
gsel6873.d <- gagePrep(gselé6873, ref = hn, samp = dcis)
#equivalently, you can do simple subtraction for paired samples
gsel6873.d <—- gsel6873[,dcis]—-gsel6873[,hn]
#select significant pathways and extract their IDs

"g.val"])

path.ids <- rownames (gsel6873.kegg.pSgreater) [sel]

path.ids2 <- substr(path.ids([c(1, 2, 7)], 1, 8)

#pathview visualization

pv.out.list <- pathview(gene.data = gsel6873.d[, 1:3], pathway.id = path.idsZ,
species = "hsa')

+ VVvVV+VVVVVYV +YV VYV YV VYVVYV

-y
—

Common Errors

* mismatch between the IDs for gene.data (or cpd.data) and gene.idtype (or cpd. idtype). For exam-

sel <- gsel6873.kegg.pSgreater[, "g.val"] < 0.1 & !is.na(gselé6873.kegg.pSgreater/,

ple, gene.data or cpd.data uses some extern ID types, while gene.idtype = "entrez" and cpd.idtype

= "kegg" (default).

* mismatch between gene .data (or cpd.data) and species. For example, gene . data come from "mouse",
while species="hsa".

* pathway.id wrong or wrong format, right format should be a five digit number, like 04110, 00620 etc.

e any of 1imit, bins, both.dir, trans.fun, discrete, low, mid, high arguments is spec-
ified as a vector of length 1 or 2, instead of a list of 2 elements. Correct format should be like 1imit =
list (gene = 1, cpd = 1).

* key.pos or sign.pos not good, hence the color key or signature overlaps with pathway main graph.

* Special Note: some KEGG xml data files are incomplete, inconsistent with corresponding png image or inaccu-
rate/incorrect on some parts. These issues may cause inaccuracy, incosistency, or error messages although pathview
tries the best to accommodate them. For instance, we may see inconistence between KEGG view and Graphviz
view. As in the latter case, the pathway layout is generated based on data from xml file.

References
Weijun Luo and Cory Brouwer. Pathview: an R/Bioconductor package for pathway-based data integration and

visualization.  Bioinformatics, 29(14):1830-1831, 2013. doi: 10.1093/bioinformatics/btt285. URL http://
bioinformatics.oxfordjournals.org/content/29/14/1830.full.

23


http://bioinformatics.oxfordjournals.org/content/29/14/1830.full
http://bioinformatics.oxfordjournals.org/content/29/14/1830.full

Weijun Luo, Michael Friedman, Kerby Shedden, Kurt Hankenson, and Peter Woolf. GAGE: generally applicable gene set
enrichment for pathway analysis. BMC Bioinformatics, 10(1):161, 2009. URL http://www.biomedcentral.
com/1471-2105/10/161l

Weijun Luo, Gaurav Pant, Yeshvant K Bhavnasi, Steven G Blanchard, and Cory Brouwer. Pathview Web: user friendly
pathway visualization and data integration. Nucleic Acids Research, Web server issue:gkx372, 2017. doi: 10.1093/nar/
gkx372. URLhttps://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkx372.

Jitao David Zhang and Stefan Wiemann. KEGGgraph: a graph approach to KEGG PATHWAY in R and Bioconductor.
Bioinformatics, 25(11):1470-1471, 2009.

24


http://www.biomedcentral.com/1471-2105/10/161
http://www.biomedcentral.com/1471-2105/10/161
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkx372

	Cite our work
	Quick start with demo data
	New features
	Overview
	Installation
	Get Started
	Common uses for data visualization
	Data integration
	Compound and gene data
	Multiple states or samples
	Discrete data
	ID mapping
	Working with species

	Integrated workflow with pathway analysis
	Common Errors

