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High-throughput technologies such as whole genome transcriptional profil-
ing revolutionized molecular biology and provide an incredible amount of data.
On the other hand, these techniques pose elementary methodological challenges
simply by the huge and ever increasing amount of data produced: researchers
need adequate tools to extract the information content of the data in an effective
and intelligent way. This includes algorithmic tasks such as data compression
and filtering, feature selection, linkage with the functional context, and proper
visualization. Especially, the latter task is very important because an intuitive
visualization of massive data clearly promotes quality control, the discovery of
their intrinsic structure, functional data mining and finally the generation of
hypotheses. We aim at adapting a holistic view on the gene activation pat-
terns as seen by expression studies rather than to consider single genes or sin-
gle pathways. This view requires methods which support an integrative and
reductionist approach to disentangle the complex gene-phenotype interactions
related to cancer genesis and progression. With this motivation we implemented
an analysis pipeline based on data processing by a Self-Organizing Map (SOM)
(Wirth et al., 2011)(Wirth et al., 2012a)(Löffler-Wirth et al., 2015). This ap-
proach simultaneously searches for features which are differentially expressed
and correlated in their profiles in the set of samples studied. We include func-
tional information about such co-expressed genes to extract distinct functional
modules inherent in the data and attribute them to particular types of cellular
and biological processes such as inflammation, cell division, etc. This modular
view facilitates the understanding of the gene expression patterns characterizing
different cancer subtypes on the molecular level. Importantly, SOMs preserve
the information richness of the original data allowing the detailed study of the
samples after SOM clustering. A central role in our analysis is played by the
so-called expression portraits which serve as intuitive and easy-to-interpret fin-
gerprints of the transcriptional activity of the samples. Their analysis provides
a holistic view on the expression patterns activated in a particular sample. Im-
portantly, they also allow identification and interpretation of outlier samples
and, thus, improve data quality (Hopp et al., 2013a)(Hopp et al., 2013b).
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1 Example data: transctiptome of healthy hu-
man tissue samples

The data was downloaded from Gene Expression Omnibus repository (GEO
accession no. GSE7307). About 20,000 genes in more than 650 tissue samples
were measured using the Affymetrix HGU133-Plus2 microarray. A subset of 12
selected tissues from different categories is used here as example data set for the
oposSOM-package.

2 Setting up the environment
In order to set the analysis parameters and to create the enclosing environment
it is obligatory to use opossom.new. If any parameter is not explicitly defined,
default values will be used (see also Parameters section):

> library(oposSOM)
> env <- opossom.new(list(dataset.name="Tissues",
+ dim.1stLvlSom=20))

The oposSOM package requires input of the expression data, for example pre-
processed RNA microarray or sequencing data. It is recommended to transform
data into logarithmic scale prior to utilizing them in the pipeline.
The workflow accepts two formats: Firstly a simple two-dimensional numerical
matrix, where the columns and rows represent the samples and genes, respec-
tively:

> data(opossom.tissues)
> str(opossom.tissues, vec.len=3)

num [1:20957, 1:12] 0.299 2.492 2.293 2.041 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:20957] "ENSG00000115415" "ENSG00000252095" "ENSG00000111640" ...
..$ : chr [1:12] "liver" "kidney cortex" "thyroid gland" ...

> env$indata <- opossom.tissues
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Secondly the input data can also be given as Biobase::ExpressionSet object:

> data(opossom.tissues)
> library(Biobase)
> opossom.tissues.eset = ExpressionSet(assayData=opossom.tissues)
> opossom.tissues.eset

ExpressionSet (storageMode: lockedEnvironment)
assayData: 20957 features, 12 samples

element names: exprs
protocolData: none
phenoData: none
featureData: none
experimentData: use 'experimentData(object)'
Annotation:

> env$indata <- opossom.tissues.eset

Each sample may be assigned to a distinct group and a corresponding color
to improve data visualization and result presentations. group.labels can also
be set to "auto" to apply unsupervised grouping of samples according to their
expression module activation patterns. Otherwise, samples will be collected
within one group and colored using a standard scheme.

> env$group.labels <- c(rep("Homeostasis", 2),
+ "Endocrine",
+ "Digestion",
+ "Exocrine",
+ "Epithelium",
+ "Reproduction",
+ "Muscle",
+ rep("Immune System", 2),
+ rep("Nervous System", 2) )

> env$group.colors <- c(rep("gold", 2),
+ "red2",
+ "brown",
+ "purple",
+ "cyan",
+ "pink",
+ "green2",
+ rep("blue2", 2),
+ rep("gray", 2) )
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Alternatively, the group.labels and group.colors can also be defined within
the phenotype information of the ExpressionSet:

> group.info <- data.frame(
+ group.labels = c(rep("Homeostasis", 2),
+ "Endocrine",
+ "Digestion",
+ "Exocrine",
+ "Epithelium",
+ "Reproduction",
+ "Muscle",
+ rep("Immune System", 2),
+ rep("Nervous System", 2) ),
+
+ group.colors = c(rep("gold", 2),
+ "red2",
+ "brown",
+ "purple",
+ "cyan",
+ "pink",
+ "green2",
+ rep("blue2", 2),
+ rep("gray", 2) ),
+
+ row.names=colnames(opossom.tissues))

> opossom.tissues.eset = ExpressionSet(assayData=opossom.tissues,
+ phenoData=AnnotatedDataFrame(group.info) )
> opossom.tissues.eset

ExpressionSet (storageMode: lockedEnvironment)
assayData: 20957 features, 12 samples

element names: exprs
protocolData: none
phenoData

sampleNames: liver kidney cortex ... cerebral cortex (12 total)
varLabels: group.labels group.colors
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'
Annotation:

> env$indata <- opossom.tissues.eset
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Finally the pipeline will run through all analysis modules without further
input. Periodical status messages are given to inform about running and ac-
complished tasks. Please note that the tissue sample will take approx. 30min
to finish, depending on the users’ hardware:

> opossom.run(env)

(a) 

(b) 

(c) 

Spot module expression profile 

Functional enrichment analysis 
GO:Synaptic transmission 
GO:Nervous system development 
GO:Neurotransmitter secretion 

p<10-25 

p<10-12 

p<10-10 

Signature gene list 
CALM1; SPARCL1; PRNP;ENO2 
UCHL1; FSCN1; LUM 
PKP4; ALDOC  

p<10-16 

p<10-15 

p<10-14 

kidney cortex 
liver 
prostate 
thyroid gland 
lymph node 
bone marrow 
cerebral cortex 
accumbens 
testis 
tongue 
small intestine 
skeletal muscle 

Figure 1: Few selected results provided by the oposSOM package: (a) Expres-
sion landscape portraits represent fingerprints of transcriptional activity. The
group.labels and group.colors parameters are used to arrange and represent the
samples throughout all analyses. (b) Functional expression modules are iden-
tified in the expression landscapes and described using appropriate summary
portraits (left part), and expression profiles, enrichment analyses and differen-
tial gene lists (right part). (c) Sample similarity structure is analysed using
different algorithms and distance metrics. Here a clustered pairwise correlation
matrix is shown.
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3 Browsing the results
The pipeline will store the results in a defined folder structure. These results
comprise a variety of PDF documents with plots and images addressing the input
data, supplementary descriptions of the SOM generated, the metadata obtained
by the SOM algorithm, the sample similarity structures and also functional an-
notations. The PDF reports are accompanied by detailed CSV spreadsheets
which render the complete information richness accessible.
Figure 1 shows few selected outputs generated by the pipeline. The expression
landscape portraits (Figure 1a) represent fingerprints of transcriptional activ-
ity. They are used to identify functional expression modules, which are further
visualized and evaluated (Figure 1b). Sample similarity structure is analysed
using different algorithms and distance metrics, for example by clustering the
pairwise sample correlation matrix (Figure 1c).
Detailed description of the respective algorithms and visualizations would ex-
ceed the scope of this outline. We therefore refer to our publications aiming
at methodical issues and application of the pipeline (Wirth et al., 2011)(Wirth
et al., 2012b)(Wirth et al., 2012a)(Wirth, 2012)(Steiner et al., 2012)(Binder
et al., 2012)(Hopp et al., 2013a)(Hopp et al., 2013b).
HTML files are generated to provide straightforward access to this great amount
of analysis results (see Figure 2). They guide the user in terms of giving the
most prominent links at a glance and leading from one analsis module to an-
other. The Summary.html is the starting point of this browsing and can be
found in the results folder created by the oposSOM pipeline.
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(a) (b) 

(c) (d) 

Figure 2: HTML files allow browsing all results provided by the oposSOM
package: (a) The central Summary.html serves as starting point and contains
general information and results, as well as links to other HTML files such as
(b) the sample summary page, (c) the spot module summary page and (d) the
functional analyses page.
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4 Parameter settings
All parameters are optional and will be set to default values if missing. However
we recommend to adapt the following parameters according to the respective
analysis:

• dataset.name (character): name of the dataset. Used to name results
folder and environment image (default: "Unnamed").

• dim.1stLvlSom (integer): dimension of primary SOM (default: "auto").
Given as a single value defining the size of the square SOM grid. Use
"auto" to set SOM size to recommendation (see below).

• feature.centralization (boolean): enables or disables centralization of the
features (default: TRUE).

• sample.quantile.normalization (boolean): enables quantile normalization
of the samples (default: TRUE).

Database parameters are required to enable gene annotations and functional
analyses (details are given below):

• database.dataset (character): type of ensemble dataset queried using biomaRt
interface (default: "auto"). Use "auto" to detect database parameters au-
tomatically.

• database.id.type (character): type of rowname identifier in biomaRt database
(default: ""). Obsolete if database.dataset="auto".

The parameters below are secondary and may be left unattended by the user:

• note (character): a short note shown in html summary file to give some
keywords about the data or analysis parameters (default: "").

• activated.modules (list): activates/deactivates pipeline functionalities:

– reporting (boolean): enables or disables output of pdf and csv results
and html summaries (default: TRUE). When deactivated, only R
workspace will be stored after analysis.

– primary.analysis (boolean): enables or disables data preprocessing
and SOM training (default: TRUE). When deactivated, prior SOM
training results are required to be contained in the workspace envi-
ronment.

– sample.similarity.analysis (boolean): enables or disables diversity
analyses such as clustering heatmaps, correlation networks and ICA
(default: TRUE).
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– geneset.analysis (boolean): enables or disables geneset analysis (de-
fault: TRUE).

– psf.analysis (boolean): enables or disables pathway signal flow (PSF)
analysis (default: TRUE). Human gene expression data is required
as input data.

– group.analysis (boolean): enables or disables group centered analyses
such as group portraits and functional mining (default: TRUE).

– difference.analysis (boolean): enables or disables pairwise compar-
isons of the grous and of pairs provided by pairwise.comparison.list
as described below (default: TRUE).

• dim.2ndLvlSom (integer): dimension of the second level SOM (default:
20). Given as a single value defining the size of the square SOM grid.

• training.extension (numerical, >0): factor extending the number of itera-
tions in SOM training (default: 1).

• rotate.SOM.portraits (integer {0,1,2,3}): number of roations of the pri-
mary SOM in counter-clockwise fashion (default: 0). This solely influences
the orientation of the portraits.

• flip.SOM.portraits (boolean): mirroring the primary SOM along the bottom-
left to top-right diagonal (default: FALSE). This solely influences the ori-
entation of the portraits.

• standard.spot.modules (character, one of {"overexpression", "underexpres-
sion", "kmeans", "correlation", "group.overexpression", "dmap"}): spot
modules utilized in diverse downstream analyses and visualizations, e.g.
PAT detection and module correlation map (default: "dmap").

• spot.threshold.modules (numerical, between 0 and 1): spot detection in
summary maps, expression threshold (default: 0.95).

• spot.coresize.modules (integer, >0): spot detection in summary maps,
minimum spot size (default: 3).

• spot.threshold.groupmap (numerical, between 0 and 1): spot detection in
group-specific summary maps, expression threshold (default: 0.75).

• spot.coresize.groupmap (integer, >0): spot detection in group-specific sum-
mary maps, minimum spot size (default: 5).

• pairwise.comparison.list (list of group lists): group list for pairwise anal-
yses (default: NULL). Each element is a list of two character vectors
containing the sample names to be analysed in pairwise comparison. The
sample names must be contained in the column names of the input data
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matrix. For example, the following setting will compare the homeostasis
(liver, kidney) to the nervous system samples (accumbens, cortex), and
also tongue and intestine to the nervous system:

> env$preferences$pairwise.comparison.list <-
+ list(list(c("liver","kidney cortex"),
+ c("accumbens","cerebral cortex")),
+ list(c("tongue","small intestine"),
+ c("accumbens","cerebral cortex")))
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5 Recommended SOM size and runtime estima-
tion

The size of the SOM required to resolve main expression modules depends on
both the number of features (e.g. genes measured) and the number of samples.
Here we give a recommendation based on previous analyses of a multitude of
different data sets (see Figure 3). Addionally, we give an estimation for runtime
of the SOM training algorithm (upper limits on an Intel Core i7 system with
16GB RAM).

Size recommendation

Number of samples

Number of genes < 100 100 - 500 500 - 1,000 1,000 - 5,000 > 5,000

< 1,000 20 x 20 25 x 25 30 x 30 35 x 35 40 x 40

1,000 - 10,000 30 x 30 35 x 35 40 x 40 45 x 45 50 x 50

10,000 - 50,000 40 x 40 45 x 45 50 x 50 55 x 55 60 x 60

Approx. runtime

Number of samples

Number of genes < 100 100 - 500 500 - 1,000 1,000 - 5,000 > 5,000

< 1,000 < 1 min < 5 min < 5 min < 1 h > 1 h

1,000 - 10,000 < 5 min < 30 min < 2 h < 12 h > 12 h

10,000 - 50,000 < 30 min < 4 h < 10 h < 3 d > 3 d

Figure 3: Recommended size of the SOM and estimated runtime of the SOM
training on an Intel Core i7 system (16GB RAM).
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6 Biomart database settings
Two parameters are required to access gene annotations and functional infor-
mation via biomaRt interface:

database.dataset defines the Ensembl data set to be queried, e.g.
"hsapiens_gene_ensembl", "mmusculus_gene_ensembl" or "rnorvegicus_gene_ensembl".
A complete list of possible entries can be obtained by

> library(biomaRt)
> mart<-useMart("ensembl")
> listDatasets(mart)

The default setting "auto" will cause oposSOM to test frequently used settings
of database.dataset and database.id.type. If this automatic download of annota-
tion data fails, a warning will be given and manual definition of the parameters
will be necessary to enable functional analyses.

database.id.type provides information about the identifier type constituted
by the rownames of the expression matrix, e.g. "ensembl_gene_id", "ref-
seq_mrna" or "affy_hg_u133_plus_2". A complete list of possible entries
can be obtained by

> library(biomaRt)
> mart<-useMart(biomart="ensembl", dataset="hsapiens_gene_ensembl")
> listFilters(mart)
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7 Citing oposSOM
Please cite (Löffler-Wirth et al., 2015) when using the package.

8 Details
This document was written using:

> sessionInfo()

R Under development (unstable) (2025-10-20 r88955)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] Biobase_2.71.0 BiocGenerics_0.57.0 generics_0.1.4
[4] oposSOM_2.29.0 igraph_2.2.1

loaded via a namespace (and not attached):
[1] pixmap_0.4-14 rappdirs_0.3.3 bitops_1.0-9
[4] RSQLite_2.4.3 stringi_1.8.7 lattice_0.22-7
[7] digest_0.6.37 hms_1.1.4 magrittr_2.0.4

[10] grid_4.6.0 fastmap_1.2.0 blob_1.2.4
[13] progress_1.2.3 ape_5.8-1 AnnotationDbi_1.73.0
[16] graph_1.89.0 DBI_1.2.3 httr_1.4.7
[19] XML_3.99-0.19 Biostrings_2.79.1 httr2_1.2.1
[22] cli_3.6.5 rlang_1.1.6 crayon_1.5.3
[25] scatterplot3d_0.3-44 dbplyr_2.5.1 XVector_0.51.0
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[28] fastICA_1.2-7 bit64_4.6.0-1 cachem_1.1.0
[31] parallel_4.6.0 tools_4.6.0 memoise_2.0.1
[34] dplyr_1.1.4 filelock_1.0.3 curl_7.0.0
[37] fdrtool_1.2.18 tsne_0.1-3.1 vctrs_0.6.5
[40] R6_2.6.1 png_0.1-8 stats4_4.6.0
[43] BiocFileCache_3.1.0 lifecycle_1.0.4 KEGGREST_1.51.0
[46] Seqinfo_1.1.0 stringr_1.5.2 S4Vectors_0.49.0
[49] IRanges_2.45.0 bit_4.6.0 pkgconfig_2.0.3
[52] RcppParallel_5.1.11-1 pillar_1.11.1 Rcpp_1.1.0
[55] glue_1.8.0 tibble_3.3.0 tidyselect_1.2.1
[58] nlme_3.1-168 compiler_4.6.0 prettyunits_1.2.0
[61] biomaRt_2.67.0 RCurl_1.98-1.17
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