
multiscan: Combining multiple laser scans of microarrays

Mizanur R. Khondoker∗† Chris A. Glasbey ‡ Bruce J. Worton §

October 30, 2025

Contents

1 Introduction 1

2 Package documentation 2
2.1 Help files . 2
2.2 Package vignettes . 2

3 Data 2

4 Example usage of multiscan 3

5 Model diagnostics 6

6 Computing time and memory usage 6

7 Alternative software 6

8 Acknowledgments 8

9 References 8

1 Introduction

The sensitivity level of microarray scanners is adjustable and plays a crucial role in getting reliable
measurement of the fluorescence intensity. A change in scanner setting transforms the intensity
measurements by a multiplicative constant. A scanner’s sensitivity has to be raised to a certain
level to ensure that the intensity levels of weakly expressed genes exceed the intrinsic noise level of
the scanner and so become measurable. This may, however, cause another problem: signal censoring

∗Package maintainer, Email: Mizanur.Khondoker@ed.ac.uk
†Division of Pathway Medicine, The University of Edinburgh Medical School, The Chancellor’s Building, 49 Little

France Crescent, Edinburgh EH16 4SB, UK.
‡Biomathematics & Statistics Scotland, King’s Buildings, Edinburgh, EH9 3JZ, Scotland, UK.

Email:chris@bioss.ac.uk.
§School of Mathematics, University of Edinburgh, King’s Buildings, Edinburgh, EH9 3JZ, Scotland, UK. Email:

Bruce.Worton@ed.ac.uk.

1

for highly expressed genes. Scanners cannot record pixel intensities above some software dependent
threshold (216 − 1 = 65535, for a 16-bit computer storage system), so highly expressed genes can
have pixel values which are right censored at the largest possible value that the scanner software
allows. It is not usually possible to find a scanner setting which is optimal for both weakly and
highly expressed genes. So, it seems reasonable to consider multiple scanning of the same microarray
at different scanner settings and estimate spot intensities from these combined data.

The multiscan package implements the method of Khondoker et al. (2006) for estimating gene
expressions from multiple laser scans of hybridised microarrays. The method is based on a non-
linear functional regression model with both additive and multiplicative error terms. Maximum
likelihood estimation based on a Cauchy distribution is used to fit the model, which reduces the
sampling variability in expression estimates and is able to estimate gene expressions taking account
of outliers and the systematic bias caused by signal censoring of highly expressed genes.

The package contains a function multiscan, and a small data set murine for illustrating the use of
the function. The function produces output of class multiscan. S3 print and plot methods are also
defined for this new class.

After installation, the package can be loaded using

> library(multiscan)

2 Package documentation

2.1 Help files

After installing and loading the package, the help file with detailed information of the multiscan
function, its usage, arguments and values, can be viewed by issuing the command help(multiscan)
or ?multiscan at the R command prompt.

2.2 Package vignettes

To view the package vignette (this document) you need to use

> vignette("multiscan")

and a PDF file will open in your PDF reader. For Windows, the package vignette can also be
accessed through the R menu bar item Vignettes.

3 Data

The only required argument for the multiscan function is the data argument which should be a
numeric matrix or data frame containing the intensity data of a single microarray scanned at multi-
ple (two or more) scanner settings. The data frame can be created by reading text or csv files into
R, using read.table or read.csv command.

2

The number of rows (n) of the data matrix should be equal to the number of spots/probes on the
array, and the number of columns (m) equal to the number of scans. Replicated probes on the array
are treated as individual spots. Columns can be given in any order, but will be arranged in order
of scanner’s sensitivity before fitting the model. The data should be on the raw scale, i.e., not
transformed!

An example data set, murine, has been included as part of the package, which can be loaded using

> data(murine)

and the first few rows of the data can be viewed by typing

> murine[1:10,]

scan1 scan2 scan3 scan4
1 1145.1677 1778.3423 3138.7314 4516.025
2 296.0000 472.0000 869.0000 1374.000
3 467.0000 692.0000 1179.8000 1992.000
4 795.4694 1247.3893 2176.6643 3329.654
5 2084.2793 3334.1765 6084.2651 10014.496
6 525.0000 688.6923 1169.9434 1825.786
7 266.2000 384.1875 732.1111 1072.600
8 495.9074 742.3148 1313.9796 2009.833
9 565.9101 895.0319 1616.3943 2495.142
10 1160.0336 1832.7114 3259.6541 5295.662

To see a brief description of this example data use

> help(murine)

4 Example usage of multiscan

Suppose that we want to obtain estimates of gene expressions combining the 4 scans of the murine
data set. This can be done using

> data(murine)
> fit<-multiscan(murine)

Estimating 1000 gene expressions using 4 scans of data
--
Log-likelihood at initial parameters: -21348.7187
--
End of global iteration: 1, Log-likelihood: -19542.94736
End of global iteration: 2, Log-likelihood: -19373.08458
End of global iteration: 3, Log-likelihood: -19351.64478
End of global iteration: 4, Log-likelihood: -19349.44816
End of global iteration: 5, Log-likelihood: -19348.63585
End of global iteration: 6, Log-likelihood: -19348.63585

3

> fit

Call: multiscan(data = murine)

Scanning effects:
scan1 scan2 scan3 scan4

1.000000 1.566959 2.764289 4.328168

Scale parameters:
Additive Multiplicative Nu

5.241983306 0.006761393 0.390186429

Log-likelihood at convergence:
Loglf

-19348.64

To view the components of the fitted model use

> str(fit)

List of 12
$ call : language multiscan(data = murine)
$ beta : num [1:4] 1 1.57 2.76 4.33
$ scale : num [1:3] 5.24198 0.00676 0.39019
$ mu : num [1:1000] 1137 313 460 792 2127 ...
$ data : num [1:1000, 1:4] 1145 296 467 795 2084 ...
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:4] "scan1" "scan2" "scan3" "scan4"

$ fitted : num [1:1000, 1:4] 1137 313 460 792 2127 ...
$ sdres : num [1:1000, 1:4] 0.868 -3.042 1.077 0.421 -2.813 ...
$ outerit: int 6
$ gconv : int 0
$ convmu : int [1:1000] 0 0 0 0 0 0 0 0 0 0 ...
$ conv : int 0
$ loglf : num -19349
- attr(*, "class")= chr "multiscan"

The estimated gene expressions can be obtained by extracting the mu component of the fitted object,
i.e., by doing

> gene.exprs<-fit$mu

A plot of the fitted model can be created by using the generic plot function. For example, the plot
in Figure 1 was produced using

> plot(fit)

4

0 10000 20000 30000 40000 50000

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

Estimated gene expression (µ̂i)

R
es

ca
le

d
in

te
ns

iti
es

 (y
ij

β̂ j
)

scan1
scan2
scan3
scan4

Figure 1: A plot of the rescaled intensities (yij/β̂j) against the estimated gene expressions. The
dashed lines represent the fitted model.

5

To view the description of the other optional arguments of the multiscan function please refer to
the help file

> help(multiscan)

5 Model diagnostics

The standardised residuals of the fitted model on the input data are stored in the sdres component
of the fitted multiscan object. These residuals can be plotted against the rank of the estimated
expression values using

> op<-par(mfrow=c(2,2))
> plot(fit,residual=TRUE)
> par(op)

The resulting plot is shown in Figure 2.

6 Computing time and memory usage

The function is computationally slow and memory-intensive. That is due to the nested iteration
loops of the numerical optimization of the likelihood function involving a large number (n+m+2) of
parameters. The optimization uses an alternating algorithm with the Nelder-Mead simplex method
(Nelder and Mead, 1965) in the inner loops. The function multiscan directly uses the C function
nmmin, the internal code used in the general-purpose optimization tool optim, for implementing the
Nelder-Mead simplex method.

For large data sets with many tens of thousands of probes, it is recommended to consider first
fitting the model using a random subset (e.g. 10,000 rows) of the data matrix, and then using the
estimated scanning effects and scale parameters obtained as initial values for fitting the model to
the full data set.

7 Alternative software

A web interface, created by David Nutter of Biomathematics & Statistics Scotland (BioSS), based
on the original Fortran code written by Khondoker et al. (2006) is available at
http://www.bioss.ac.uk/ktshowcase/create.cgi. Although it uses the same algorithm, results
from the web interface may not be exactly identical to that of multiscan as it uses a different
(non-free IMSL routine) implementation of the Nelder-Mead simplex method.

6

0 200 400 600 800

−
20

0
20

40

scan1

Rank of estimated gene expression

S
ta

nd
ar

di
se

d
re

si
du

al
s

0 200 400 600 800

−
10

10
30

scan2

Rank of estimated gene expression

S
ta

nd
ar

di
se

d
re

si
du

al
s

0 200 400 600 800

−
20

0
10

30

scan3

Rank of estimated gene expression

S
ta

nd
ar

di
se

d
re

si
du

al
s

0 200 400 600 800

−
20

0
20

40

scan4

Rank of estimated gene expression

S
ta

nd
ar

di
se

d
re

si
du

al
s

Figure 2: A plot of standardised residuals against the rank of estimated gene expressions. The
dashed lines show 95% probability limits (±12.71).

7

8 Acknowledgments

We thank Marc Carlson, our colleague Thorsten Forster, and the anonymous reviewers for their
useful comments on the earlier version of the package. The work of M.R.K. and C.A.G. in Khondoker
et al. (2006) was supported by the Scottish Executive Environment and Rural Affairs Department
(SEERAD).

9 References

Khondoker, M. R., Glasbey, C. A. and Worton, B. J. (2006). Statistical estimation of gene expres-
sion using multiple laser scans of microarrays. Bioinformatics 22, 215–219.

Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. The Computer
Journal 7, 308–313.

8

	Introduction
	Package documentation
	Help files
	Package vignettes

	Data
	Example usage of multiscan
	Model diagnostics
	Computing time and memory usage
	Alternative software
	Acknowledgments
	References

