Analysis of GC-MS metabolomics data with metaMS

Ron Wehrens
October 31, 2025

1 Introduction

Many packages are available for the analysis of data from GC-MS and LC-MS experiments — typically,
hardware vendors provide software that is optimized for the instrument and allow for a direct interaction
of the lab scientist with the data. For high-throughput applications, however, more automatic pipelines
are needed. Open-source alternatives such as xcms [1] not only are able to handle data from several
different types of spectrometers, but can also be integrated easily in web interfaces [2], allowing large
numbers of files to be processed simultaneously.

Because of the generality of packages like xcms, several other packages have been written to tweak the
functionality of xcms for optimal performance in a particular context. Package metaMS does so for the
field of untargeted metabolomics; this vignette focuses on the analysis of GC-MS data. In comparison
with the usual xcms pipeline several changes have been implemented, the most important of which are:

e the package collects all user-changeable settings in one list, with elements for the individual stages
of the data processing pipeline. This improves consistency and maintainability;

e rather than a feature-based analysis, as is the case with xcms, metaMS$ performs a pseudospectrum-
based analysis, where the basic entity is a collection of (mz, I) pairs at specific retention times.
This avoids the alignment step, which can be extremely difficult for GC-MS data;

e support has been added for the creation of in-house databases of standards; these in-house databases
can then be used for annotation purposes;

e comparison with databases of standard spectra is made on the bases of the pseudospectra, using
a tried and tested similarity function that is fast enough to also search databases of hundreds of
thousands of compounds.

One of the goals of setting up metaMS was to set up a simple system with few user-settable parameters,
capable of handling the vast majority of untargeted metabolomics experiments. Users not proficient in
R can be accomodated by setting up web interfaces, e.g. using RWui [3] — in our institute, the only
pieces of information the users have to provide in such a web interface are the location of the data,
and the protocol used (e.g. GC triple-quad). This will automatically link the appropriate database for
annotation and use the optimized settings. Results are returned both in the form of spreadsheets and R
objects.

2 Example data

Because experimental data are quite big in general, this part has been split off in a separate package
called metaMSdata; since the data are unlikely to see many updates, the user of metaMS can download
future versions without having to download the example data again. Package metaMSdata provides a
small number of example data files that illustrate the functionality of metaMS. For the GC-MS part, they
consist of four injections of mixtures of chemical standards [4]. One of these injections will be used to
create a database for three of the compounds present: Linalool, Methyl salicylate and Ethyl hexanoate.

Once the database of standards has been created, it can be used for annotation purposes. Intermediate
results are typically orders of magnitude smaller than the raw data files, and metaMS itself contains a
number of these to illustrate the concepts and to speed up the examples in the manual pages.

3 GC-MS data processing in metaMS

In untargeted metabolomics, the application of MS/MS and related techniques is usually restricted
to follow-up experiments, where identification of potentially interesting features is the goal. In initial
experiments most often simple LC-MS and GC-MS experiments are done, where annotation is based on
reliable data of chemical standards, often measured in very similar conditions. Package metaMS supports
building these databases, using exactly the same data processing pipeline as is used for real samples.
The settings are gathered in an object of class metaMSsettings:

> library(metaMS)
> data(FEMsettings)
> TSQXLS.GC

Object of class 'metaMSsettings'
Instrument: TSQXLS.QQQ.GC
Chromatography: GC

> metaSetting(TSQXLS.GC, "PeakPicking")

$method
[1] "matchedFilter"

$step
[1] 0.5

$steps
[11 2

$mzdiff
[1] 0.5

$fwhm
[1] 5

$snthresh
[1] 2

$max
[1] 500

The settings used for this particular set of samples are fine-tuned for a Thermo Scientific TSQXLS triple-
quad GC. The PeakPicking field in the settings contains all elements that are passed to the xcmsSet
function from xcms.

3.1 Analysis of samples
The standard workflow of metaMS for GC-MS data is the following:

1. peak picking;
2. definition of pseudospectra;

identification and elimination of artefacts;
annotation by comparison to a database of standards;
definition of unknowns;

A

output.

This has been implemeted in function runGC, which takes a vector of file names, corresponding to the
samples, and a settings list as mandatory arguments. In addition, some extra arguments can be provided.
In particular, a database of standards, as discussed in the previous section, can be provided for annotation
purposes. The call therefore can be as simple as:

library(metaMSdata)

data (threeStdsDB) ## provides DB

cdfdir <- system.file("extdata", package = "metaMSdata")
cdffiles <- list.files(cdfdir, pattern = "_GC_",

full.names = TRUE, ignore.case = TRUE)
result <- runGC(files = cdffiles, settings = TSQXLS.GC, DB = DB,
nSlaves = 2)

+ VvV + v Vv VvV

Alternatively, if the peak picking by xcms is already done, one can provide the xcmsSet object:
> result <- runGC(xset = GCset, settings = TSQXLS.GC, DB = DB)

In both cases, the result is a list containing a set of patterns corresponding with the compounds that
have been found, either annotated or unknown, the relative intensities of these patterns in the individual
annotations, and possibly the xcmsSet object for further inspection. In practice, the runGC function
is all that users need to use. However, to give more details, each of the steps in the workflow will be
discussed briefly below.

All results and intermediate results from this vignette are available in data object GCresults — this
is used here to demonstrate the structure of the data objects without having to create them on the fly,
which simply takes too much time:

> data("GCresults")

3.1.1 Peak picking

The peak picking is performed by the usual xcms functions. A wrapper function, peakDetection, has
been written in metaMS to allow the individual parameters to be passed to the function as a settings
list. The result is that the whole of the xems functionality is available, simply by changing the values of
some settings, or by adding fields. In the runGC function, this step is performed by

> GCset <- peakDetection(cdffiles,
+ settings = metaSetting(TSQXLS.GC, "PeakPicking"),
+ convert2list = TRUE, nSlaves = 2)

Since this part can take quite some time, it is operated in parallel wherever possible (using Rmpi or
snow, and shows some feedback to the user. The last argument of the function determines whether the
results are to be presented for all samples together (the format of xcms), or should be split into a list
with one entry for each individual file. The latter case is useful here, in the analysis of GC data, but
also when setting up a database of standards.

3.1.2 Definition of pseudospectra

Rather than individual peaks, the basic data structure in the GC-MS part of metaMS is a pseudospec-
trum, ie. a set of m/z values showing a chromatographic peak at the same retention time. This
choice is motivated by several considerations. First of all, in GC the amount of overlap is much
less than in LC: peaks are much narrower. This means that even a one- or two-second difference

in retention time can be enough to separate the corresponding mass spectra. Secondly, fragmen-
tation patterns for many compounds are available in extensive libraries like the NIST library (see
http://www.nist.gov/srd/nistla.cfm). In addition, the spectra are somewhat easier to interpret
since adducts, such as found in LC, are not present. The main advantage of pseudospectra, however, is
that their use allows the results to be interpreted directly as relative concentrations of chemical com-
pounds: a fingerprint in terms of chemical composition is obtained, rather than a fingerprint in terms of
hard-to-interpret features.

The pseudospectra are obtained by simply clustering on retention time, using the runCAMERA wrapper
function, which for GC data calls groupFWHM:

> allSamples <- lapply(GCset, runCAMERA, chrom = "GC",
+ settings = metaSetting(TSQXLS.GC, "CAMERA"))

Again, all the usual parameters for the groupFWHM function can be included in the CAMERA slot of the
settings object. The most important parameter is perfwhm, which determines the maximal retention
time difference of features in one pseudospectrum.

The final step is to convert the CAMERA objects into easily handled lists, which are basically the R
equivalent of the often-used msp format from the AMDIS software [5]. In runGC, this step is implemented
as:

> allSamples.msp <- lapply(allSamples, to.msp, file = NULL,
+ settings = metaSetting(TSHXLS.GC, "DBconstruction"))

> sapply(allSamples.msp, length)

STDmix_GC_01 STDmix_GC_02 STDmix_GC_03 STDmix_GC_04
241 237 232 235

> allSamples.msp[[1]1][[26]]

mz maxo rt
[1,] 38 2145159 38.18892
[2,] 101 1338453 38.19257
[3,] 144 352465 38.19257
[4,] 170 341177 38.19620
[6,] 188 182418 38.19257
[6,] 205 139864 38.19257
[7,] 219 278031 38.18525
[8,] 223 105532 38.18892
[9,] 226 161979 38.18525
[10,] 233 93438 38.18525
[11,] 245 82342 38.18162
[12,] 259 81633 38.18162
[13,1 260 67324 38.19620
[14,] 262 145054 38.19620
[15,]1 266 77631 38.18162
[16,] 268 56122 38.18162
[17,]1 337 44739 38.18892
[18,]1 339 30957 38.18525

Object allsamples.msp is a nested list, with one entry for each sample, and each sample represented
by a number of fields. In this case, more than 300 pseudospectra are found in each sample (even though
the samples are mixtures of only fourteen chemical standards). The pseudospectra are three-column
matrices, containing m/z, intensity and retention time information, respectively. One can plot the
individual spectra for visual inspection using the function plotPseudoSpectrum — an example is shown
in Figure 1.

> plotPseudoSpectrum(allSamples.msp([[1]1][[26]])

1500000
|

500000
|

0
|

T T T T T T T
50 100 150 200 250 300 350

m/z

Figure 1: A pseudospectrum from one of the samples.

3.1.3 Annotation

Once we have identified our pseudospectra, we can start the annotation process. This is done by com-
paring every pseudospectrum to a database of spectra. As a similarity measure, we use the weighted
dot product as it is fast, simple, and gives good results [6]. The first step in the comparison is based
on retention, since a comparison of either retention time or retention index is much faster than a spec-
tral comparison. The corresponding function is matchSamples2DB. Since the weighted dot product uses
scaled mass spectra, the scaling of the database is done once, and then used in all comparisons:

> DB.treated <- treat.DB(DB)
> allSam.matches <-

+ matchSamples2DB(allSamples.msp, DB = DB.treated,
+ settings = metaSetting(TSHXLS.GC, "match2DB"),
+ quick = FALSE)

> allSam.matches

$annotations
$annotations$STDmix_GC_01
pattern annotation alternatives

1 21 2
2 54 3
3 104 1

$annotations$STDmix_GC_02
pattern annotation alternatives

1 21 2
43 3
3 119 1

$annotations$STDmix_GC_03
pattern annotation alternatives

1 12 2
15 3
3 47 1

> matchExpSpec(allSamples.msp[[1]][[4]], DB.treated,
+ DB.treated = TRUE, plotIt = TRUE)

[1] 0.009241914 0.000000000 0.000000000

1000
!

== Compound
—— DB best match

600 800
1 1

400
|

200
1

T T T T T
50 100 150 200 250 300 350

mz
Match factor: 0.009

Figure 2: Best match between an experimental pattern (in red) and a database entry (in blue).

$annotations$STDmix_GC_04
pattern annotation alternatives

1 10 2
17 3
3 53 1

This returns a table where all patterns that have a match with a DB entry are shown in the first column,
and the DB entry itself in the second column. If for a particular experimental pattern more than one
match is found, the alternatives (with a lower match factor) are shown in the last column. In this case,
all three patterns in the database match with exactly one pattern in each of the experimental samples.

To see the match for a particular pattern, one can use the function matchExpSpec, returning match
factors (numbers between 0 and 1, where the latter means a perfect match) for all entries in the database.
If the plotIt argument is TRUE, the best match is shown — see Figure 2.

Samples may contain compounds that are not of any interest, such as plasticizers, internal standards,
column material etcetera. These can be filtered out before doing an annotation: metaMS allows certain
categories of database entries (defined in slot matchIrrelevants of the settings object) to be removed
before further annotation. If the spectra of these compounds are very specific (and they often are), the
retention criterion may be bypassed by setting the maximal retention time difference to very high values,
which leads to the removal of such spectra wherever they occur in the chromatogram.

3.1.4 Unknowns

The most important aspect of untargeted metabolomics is the definition of unknowns, patterns that occur
repeatedly in several samples, but for which no annotation has been found. In metaMS these unknowns
are found by comparing all patterns within a certain retention time (or retention index) difference on
their spectral characteristics. The same match function is used, but the threshold may be different from
the threshold used to match with the database of standards. Likewise, the maximum retention time
(index) difference may be different, too. In defining unknowns we have so far used settings that are more

strict than when comparing to a database: since all samples are typically measured in one single run,
expected retention time differences are rather small. In addition, one would expect reproducible spectra
for a single compound. A true unknown, or at least an interesting one, is also present in a significant
fraction of the samples. All these parameters are gathered in the betweenSamples element of the settings
object.

Since the matching is done using scaled patterns, we need to created a scaled version of the experi-
mental pseudospectra first:

> allSamples.msp.scaled <- lapply(allSamples.msp, treat.DB,
+ isMSP = FALSE)

> allSam.matches <-

+ matchSamples2Samples (allSamples.msp.scaled,
+ allSamples.msp,

+ annotations = allSam.matches$annotations,

+ settings = metaSetting(TSHXLS.GC, "betweenSamples"))
> names (allSam.matches)

[1] "annotations" "unknowns"

For large numbers of samples, this process can take quite some time (it scales quadratically), especially
if the allowed difference in retention time is large. The result now is a list of two elements: the first is
the annotation table that we also saw after the comparison with the database, and the second is a list of
pseudospectra corresponding to unknowns. In the annotation table, negative indices correspond to the
pseudospectra in this list.

> allSam.matches$annotations[[1]]

pattern annotation alternatives

1 1 -1
2 5 -2
3 14 -3
4 19 -4
5 67 -5
6 68 -6
7 82 -7
8 84 -8
9 128 -9
10 21 2
11 54 3
12 104 1

In the example above we see that pattern 10 in the first sample corresponds to the first unknown.

3.1.5 Output

At this stage, all elements are complete: we have the list of pseudospectra with an annotation, either as
a chemical standard from the database, or an unknown occurring in a sizeable fraction of the injections.
The only things left to do is to calculate relative intensities for the pseudospectra, and to put the results in
an easy-to-use table. This table consists of two parts. The first part is the information on the “features”,
which here are the pseudospectra:

> features.df <- getFeatureInfo(stdDB = DB, allMatches = allSam.matches,
+ sampleList = allSamples.msp)
> features.df[, c(1:3, ncol(features.df) - 2:0)]

Name CAS RTman std.rt rt.sd rt

1 Linalool 78706 17.86 17.860 0.0012 17.859
2 Methyl salicylate 119368 22.44 22.439 0.0016 22.439
3 Ethyl hexanoate 123660 10.77 10.770 0.0007 10.770
4 Unknown 1 NA NA NA 0.0092 3.792
5 Unknown 2 NA NA NA 0.0014 4.915
6 Unknown 3 NA NA NA 0.0021 30.559
7 Unknown 4 NA NA NA 0.0017 19.669
8 Unknown 5 NA NA NA 0.0012 19.038
9 Unknown 6 NA NA NA 0.0016 13.013
10 Unknown 7 NA NA NA 0.0025 9.754
11 Unknown 8 NA NA NA 0.0018 22.087
12 Unknown 9 NA NA NA 0.0018 9.915
13 Unknown 10 NA NA NA 0.0023 19.039
14 Unknown 11 NA NA NA 0.0084 3.786
15 Unknown 12 NA NA NA 0.0224 3.444
16 Unknown 13 NA NA NA 0.0021 19.667
17 Unknown 14 NA NA NA 0.0000 9.753
18 Unknown 15 NA NA NA 0.0045 20.194

The first three lines are the standards, and the next two are the two unknowns that are identified by
the pipeline. The second part of the table contains the intensities of these features in the individual
injections.

In manual interpretation of this kind of data, the intensities of one or two “highly specific” features are
often used to achieve relative quantitation. In an automatic pipeline, this is a risky strategy: not only can
the intensity of a peak vary quite dramatically (relative standard deviations of up to 30% are assumed
acceptable in GC-MS, e.g. when SPME is applied), but these errors are all the more pronounced in high-
intensity peaks (hence the common use of a relative standard deviation). In addition, one is ignoring the
information in the other peaks of the pseudospectrum. In metaMS$, pseudospectrum intensity is expressed
as a multiple of the corresponding reference pattern (either a database pattern or an unknown), where
the intensity ratio is determined using robust regression to avoid one deviating feature to influence the
results too much [4]. First, we define an object containing all relevant pseudospectra, and next the
intensities are generated:

> PseudoSpectra <- constructExpPseudoSpectra(allMatches = allSam.matches,

+ standardsDB = DB)

> ann.df <- getAnnotationMat(exp.msp = allSamples.msp, pspectra = PseudoSpectra,
+ allMatches = allSam.matches)

> ann.df

STDmix_GC_01 STDmix_GC_02 STDmix_GC_03 STDmix_GC_04

[1,] 0.5393561 0.5106029 1.000000 0.9740733
[2,] 0.5139159 0.5143993 1.000000 1.0048997
[3,] 0.5506663 0.4716969 1.000000 0.9449879
[4,] 1.0000000 0.9779254 0.000000 0.0000000
[5,] 1.0000000 1.0678439 1.012443 1.0116312
[6,] 1.0000000 0.8567742 1.779322 1.9436918
[7,] 1.0000000 1.0727171 0.000000 0.0000000
[8,] 1.0000000 0.0000000 0.000000 1.9793002
[9,] 1.0000000 0.0000000 1.886385 0.0000000
[10,] 1.0000000 0.9750801 0.000000 0.0000000
[11,] 1.0000000 0.0000000 1.745452 0.0000000
[12,] 0.5967444 0.5416304 1.002923 1.0000000
[13,] 0.0000000 1.0000000 1.786243 0.0000000

[14,] 0.0000000 0.0000000 1.000000 0.9995801
[15,] 0.0000000 0.0000000 1.000000 1.0017294
[16,] 0.0000000 0.0000000 1.000000 1.0221790
[17,1] 0.0000000 0.0000000 1.000000 1.0708144
[18,] 0.0000000 0.0000000 1.000000 1.1444677

Since relative intensities are hard to interpret for mass spectrometrists, these are converted into numbers
corresponding to peak heights or peak areas. This is done by multiplication by the highest intensity in
the reference spectrum:

> ann.df2 <- sweep(ann.df, 1, sapply(PseudoSpectra,

+ function(x) max(x$pspectruml[, 2])),
+ FUN = n*n)

> ann.df2

STDmix_GC_01 STDmix_GC_02 STDmix_GC_03 STDmix_GC_04

[1,] 727018.1 688260.6 1347937 1312989.4
[2,] 2252467 .1 2254586. 1 4382949 4404424 .0
[3,] 1354776.8 1160492.4 2460250 2324906.6
[4,] 715872128.0 700069546.2 0 0.0
[5,] 361640992.0 386176144.4 366140725 365847309.5
[6,] 3386176.0 2901188.3 6025097 6581682.4
[7,] 2269447 .0 2434474 .5 0 0.0
[8,] 1184045.0 0.0 0 2343580.6
[9,] 1176973.0 0.0 2220224 0.0
[10,] 897047.0 874692.7 0 0.0
[11,] 855648.0 0.0 1493492 0.0
[12,1] 642690.2 583332.7 1080142 1076994.0
[13,] 0.0 1105883.0 1975375 0.0
[14,] 0.0 0.0 711693760 711394911.2
[15,] 0.0 0.0 698653312 699861583.3
[16,] 0.0 0.0 4265898 4360511.1
[17,] 0.0 0.0 1657900 1775303.2
[18,] 0.0 0.0 244832 280202.3

The three standards (the first three lines) have been identified in all four samples; the two unknowns in
three and two cases, respectively. The final result is obtained by simply concatenating the two tables
column-wise.

3.2 Building a database of standards

From the previous discussion it should be clear how important an in-house database of standards, mea-
sured on the same system as the samples, really is. The point is that the retention behaviour of chemical
compounds can differ substantially across systems — an in-house database is the best way to avoid many
false negative and false positive hits.

Fortunately, the pipeline as discussed so far can be used easily to also process injections of standards.
These may be injected as mixtures, provided that their retention times are not completely overlapping.
Additional information is obtained from a user-provided csv file containing information like CAS number,
retention time, and molecular weight. Such a file is processed with the function readStdInfo. For the
three chemical standards in the metaMSdata package, this leads to the following information:

> library(metaMSdata)
> stddir <- system.file("extdata", package = "metaMSdata")
> input.file <- list.files(stddir, pattern = "csv", full.names = TRUE)

> threeStdsInfo <- readStdInfo(input.file, stddir, sep = ";", dec = ",")
> threeStdsInfol[, "stdFile"] <- file.path(stddir, "STDmix_GC_03.CDF")
> threeStdsInfo[,c(1:4, 8)]

CAS Name RTman ChemspiderID monoMW
1 78706 Linalool 17.86 13849981 154.1358
2 119368 Methyl salicylate 22.44 13848808 152.0473
3 123660 Ethyl hexanoate 10.77 29005 144.1150

The system gives a warning that some CDF files in the data directory are not used, which can be useful
feedback — in this case, it is so by design. The result is a data.frame object containing all information
about the chemical standards: where to look for them, but also it provides identifiers such as a CAS
number that can be used to compare the data to other databases. This is an essential step, since many
patterns will be identified in the raw data, even when the samples consist of clean mixtures of chemical
standards: for automatic DB construction, a validation step of some kind has to be part of the pipeline.
The main benefit of setting up one’s own database is the exact retention time information, something
that will be essential in the annotation phase lateron. Continuing the example for the three standards,
the in-house database can simply be created by issuing

> data(threeStdsNIST) ## provides smallDB
> DB <- createSTDdbGC(threeStdsInfo, TSQXLS.GC, extDB = smallDB,
+ nSlaves = 2)

The system returns some feedback about the process, which for large numbers of files can take some
time. If parallel processing is supported (Rmpi or snow), this is shown, too. If no validation by comparing
to an external database of spectra is possible, metaMS allows to add manually validated spectra to the
data base using the manualDB argument to the createSTDdbGC function.

> names(DB[[1]])

[1] "cAs" "Name" "RTman" "ChemspiderID" "SMILES"
[6] "InChI" "csLinks" "monoMW" "stdFile" "bestDBmatch"
[11] "pspectrum" "Class" "date" "std.rt" "std.rt.sd"

The database contains all information from the input file, as well as information on the match with the
external database, and the validated spectrum.

4 Alternative annotation strategies

Instead of the strategy outlined above, one could also use the building blocks provided by metaMS in
different ways. Instead of first comparing all pseudospectra in the injections with the database patterns,
one could also first identify all unknowns. Then the pseudospectra corresponding to the unknowns could
be compared with the database to see if any of them matches known standards. This strategy would get
rid of “single hits”, i.e. chemical compounds that are identified in only one or very few injections, and
would make full use of the fact that all injections have been done in a single run, so would lead to very
similar retention time behaviour and very similar spectra. One could hypothesize that over the course of
several months or even years, a database of spectra of standards could show bigger and bigger deviations
with actual measurements, and this alternative strategy could possibly lead to more easily interpretable,
or at least easier-to-correct results.

There are also downsides to this strategy, as can be imagined: first of all, it is slower, especially
with large numbers of samples. Since the comparison with a database scales linearly with the number
of injections, and the defintion of unknowns quadratically, this can be quite a big issue. In addition, the
definition of what is an unknown not only depends on spectral and chromatographic similarities, but also
on the fraction of injections in which this pattern is found: an additional parameter that can make quite

10

a big difference in the outcome. Finally, it is easy to remove annotations from the “standard” strategy
that occur in only very few samples: one can even assess whether alternative annotations are present
that are more in line with what is found in the other samples.

Whichever strategy is most useful depends on the data and the scientific questions at hand. Given
the building blocks provided by xems and CAMERA | and on a more abstract level by metaMS, it is now
quite easy to implement different strategies for different purposes.

11

References

[1] C. A. Smith, E. J. Want, G. O’Maille, R. Abagyan, and G. Siuzdak. XCMS: Processing mass spec-
trometry data for metabolite profiling using nonlinear peak alignment, matching, and identification.
Anal. Chem., 78:779-787, 2006.

[2] R. Tautenhahn, G.J. Patti, D. Rinehart, and G. Siuzdak. XCMS Online: A web-based platform to
process untargeted metabolomic data. Anal. Chem., 84(11):5035-5039, 2012.

[3] R. Newton and L. Wernisch. RWui: a web application to create user friendly web interfaces for R
scripts. R News, 7:32-35, 2007.

[4] R. Wehrens, G. Weingart, and F. Mattivi. An open-source pipeline for GC-MS-based untargeted
metabolomics. J. Chrom. B, 966:109-116, 2014.

[5] S.E. Stein. An integrated method for spectrum extraction and compound identification from gas
chromatography/mass spectrometry data. J. Am. Soc. Mass Spectrom., 10:770-781, 1999.

[6] S.E. Stein and D.R. Scott. Optimization and testing of mass spectral library search algorithms for
compound identification. J. Am. Soc. Mass Spectrom., 5:859-866, 1994.

12

