edge:
Extraction of Differential Gene Expression
Version 2.43.0

John D. Storey*!2, Jeffrey T. Leek?®, and Andrew J. Bass!

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ USA
2Center for Statistics and Machine Learning, Princeton University, Princeton NJ USA
3Department of Biostatistics, John Hopkins University, Baltimore MD USA

October 31, 2025

First edition: October 2005
Most recent edition: March 2015

Note: edge was first released in 2005 and described in the publication ( ). It was an
independently released R package by the John Storey Lab, which included multi-threading and a graph-
ical user interface. However, the current version is now available through Bioconductor as a standard R

package.

*http://genomine.org/contact.html


http://www.genomine.org/
http://genomine.org/contact.html

Contents

1 Introduction

2 Citing this package
3 Getting help

4 Quick start guide

5 Case study: static experiment

5.1 Importing the data . . . . . . . . . .. e
5.2 Creating the full and null models . . . . . . .. .. ..
5.3 The deSet object . . . . . . . . L e e e
5.4 Fitting thedata . . . . . . . . . L
5.5 Significance analysis . . . . ... L L e

5.5.1 Likelihood ratio test . . . . . . . . . .

5.5.2  Optimal discovery procedure . . . . . . .. . . .. Lo
5.6 Significance results . . . . . . . L L e e e e e e

6 Case study: independent time course experiment

6.1 Importing the data . . . . . . . . . . e
6.2 Creating the full and null models . . . . . . . . . . . . ... ... .. .. ...
6.3 The deSet object . . . . . . . . L e e e e
6.4 Fitting the data . . . . . . . . L e
6.5 Significance analysis . . . . . . . Lo e

6.5.1 Likelihood ratio test . . . . . . . . . L L

6.5.2 Optimal discovery procedure . . . . . . . . . . . i e
6.6 Significance results . . . . . .. L L L e e

7 Case study: longitudinal time course experiment

7.1 TImporting the data . . . . . . . . L L e e e
7.2 Creating the full and null models . . . . . . . . . . . . .. ...
7.3 The deSet object . . . . . . . . L e e e
7.4 Fitting the data . . . . . . . . L e
7.5 Significance analysis . . . . . . Lo

7.5.1 Likelihood ratio test . . . . . . . . . L L e

7.5.2  Optimal discovery procedure . . . . . . . . . . .
7.6 Significance results . . . . .. L e

8 sva: Surrogate variable analysis
9 gvalue: Estimate the g-values

10 Advanced topic: Using the ExpressionSet object

1 Introduction

[t
e =RRCHEN N )]

11
11
11

14
14
14
16
17
18
18
18
19

21
21
22
23
24
25
26
26
26

29

31

31

The edge package implements methods for carrying out differential expression analyses of genome-wide gene
expression studies. Significance testing using the optimal discovery procedure and generalized likelihood
ratio test (equivalent to F-tests and t-tests) are implemented for general study designs. Special functions
are available to facilitate the analysis of common study designs, including time course experiments. Other



packages such as sva and qvalue are integrated in edge to provide a wide range of tools for gene expression
analysis.

edge performs significance analysis by using a framework developed by ( ) called the optimal
discovery procedure (ODP). Whereas standard methods employ statistics that are essentially designed for
testing one gene at a time (e.g., t-statistics and F-statistics), the ODP-statistic uses information across all
genes to test for differential expression. ( ) shows that the ODP is a principled, often times
more powerful, approach to multiple hypothesis testing compared to traditional methods. The improvements
in power from using the optimal discovery procedure can be substantial; Figure 1 shows a comparison between
edge and five leading software packages based on the ( ) breast cancer expression
study.

600
|

ODP in EDGE (Storey et al. 2005)

° SAM (Tusher et al. 2001)

3 t-test (Dudoit et al. 2002)

MA-ANOVA (Cui et al. 2005)

Bayesian "local FDR" (Efron et al. 2001)
Limma (Lonnstedt and Speed 2002)

400
|

number significant genes
300
!

100
|

T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12

g-value cut-off

Figure 1: Comparison of EDGE to various other leading methods for identifying differential expressed genes
in the ( ) study. This figure is from ( ).

edge also implements strategies that have been specifically designed for time course experiments and other
complex study designs. Specifically, ( ) developed a procedure that simplifies the modelling
process for time course experiments. In addition to identifying differentially expressed genes in multi-class,
time course, and general study designs, edge includes implementations of popular packages such as sva and
gvalue to help simplify the analysis process for researchers.

The rest of the document details how to use edge in three different case studies: static sampling among
K groups, independent time course, and longitudinal time course. For additional information regarding
the optimal discovery procedure or the ( ) methodology for time course experiments, see
section 2.



2 Citing this package

When reporting results involving the estimation of false discovery rate or g-value quantities,
please cite:

JD Storey. A direct approach to false discovery rates. Journal of the Royal Statistical Society Series B-
Statistical Methodology, 64:479-498, 2002

John D Storey and Robert Tibshirani. Statistical significance for genomewide studies. Proc Natl Acad Sci
U S A, 100(16):9440-5, Aug 2003. doi: 10.1073/pnas.1530509100

When reporting results involving the analysis of time course studies, please cite:

John D. Storey, Wenzhong Xiao, Jeffrey T. Leek, Ronald G. Tompkins, and Ronald W. Davis. Significance
analysis of time course microarray experiments. Proceedings of the National Academy of Sciences of the
United States of America, 102(36):12837-12842, 2005. doi: 10.1073/pnas.0504609102. URL http://www.
pnas.org/content/102/36/12837.abstract

When reporting results involving use of the optimal discovery procedure (odp), please cite:

John D. Storey. The optimal discovery procedure: a new approach to simultaneous significance testing. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology), 69(3):347-368, 2007. ISSN 1467-9868.
doi: 10.1111/j.1467-9868.2007.005592.x. URL http://dx.doi.org/10.1111/j.1467-9868.2007.005592.
X

John D. Storey, James Y. Dai, and Jeffrey T. Leek. The optimal discovery procedure for large-scale signif-
icance testing, with applications to comparative microarray experiments. Biostatistics, 8(2):414-432, 2007.
doi: 10.1093/biostatistics/kx1019. URL http://biostatistics.oxfordjournals.org/content/8/2/414.
abstract

Sangsoon Woo, Jeffrey T. Leek, and John D. Storey. A computationally efficient modular optimal dis-
covery procedure. Bioinformatics, 27(4):509-515, 2011. doi: 10.1093/bioinformatics/btq701. URL http:
//bioinformatics.oxfordjournals.org/content/27/4/509.abstract

Andrew J Bass and John D Storey. The optimal discovery procedure for significance analysis of general
gene expression studies. Bioinformatics, 37(3):367-374, 08 2020. doi: 10.1093/bioinformatics/btaa707. URL
https://doi.org/10.1093/bioinformatics/btaa707

When reporting results involving surrogate variable analysis (apply_sva), please cite:

Jeffrey T Leek and John D Storey. Capturing heterogeneity in gene expression studies by surrogate variable
analysis. PLoS Genet, 3(9):e161, 09 2007. doi: 10.1371/journal.pgen.0030161

Jeffrey T Leek and John D Storey. A general framework for multiple testing dependence. Proc Natl Acad
Sci U S A, 105(48):18718-23, Dec 2008. doi: 10.1073/pnas.0808709105

To cite the edge R package itself, please type the following to retrieve the citation:

citation("edge")

## To cite package 'edge' in publications
## use:

#it

##  Storey JD, Leek JT, Bass AJ (2025).


http://www.pnas.org/content/102/36/12837.abstract
http://www.pnas.org/content/102/36/12837.abstract
http://dx.doi.org/10.1111/j.1467-9868.2007.005592.x
http://dx.doi.org/10.1111/j.1467-9868.2007.005592.x
http://biostatistics.oxfordjournals.org/content/8/2/414.abstract
http://biostatistics.oxfordjournals.org/content/8/2/414.abstract
http://bioinformatics.oxfordjournals.org/content/27/4/509.abstract
http://bioinformatics.oxfordjournals.org/content/27/4/509.abstract
https://doi.org/10.1093/bioinformatics/btaa707

##  _edge: Extraction of Differential Gene
##  Expression_. doi:10.18129/B9.bioc.edge
##  <https://doi.org/10.18129/B9.bioc.edge>.
## R package version 2.43.0,

##  <https://bioconductor.org/packages/edge>.

#i

## A BibTeX entry for LaTeX users is

#i#

##  @Manuald{,

## title = {edge: Extraction of Differential Gene Expression},
#H# author = {John D. Storey and Jeffrey T. Leek and Andrew J. Bass},
## year = {2025},

#t note = {R package version 2.43.0},

## url = {https://bioconductor.org/packages/edge},

#i#t doi = {10.18129/B9.bioc.edgel},

##

#i

## ATTENTION: This citation information has
## been auto-generated from the package

## DESCRIPTION file and may need manual

## editing, see 'help("citation")'.

3 Getting help

Many questions about qvalue will hopefully be answered by this documentation and references therein. As
with any R package, detailed information on functions, their arguments and values, can be obtained in the
help files. To view the help for gvalue within R, type

help(package = "edge")

If you identify bugs related to basic usage please contact the authors directly, preferably via GitHub at https:
//github.com/jdstorey/edge/issues. Otherwise, any questions or problems regarding edge will most
efficiently be addressed on the Bioconductor support site, https://support.bioconductor.org/.

4 Quick start guide

To get started, first load the kidney dataset included in the package:

library(edge)
data(kidney)

age <- kidney$age

sex <- kidney$sex

kidexpr <- kidney$kidexpr

The kidney study is interested in determining differentially expressed genes with respect to age in the kidney.
The age variable is the age of the subjects and the sex variable is whether the subjects are male or female.
The expression values for the genes are contained in the kidexpr variable.

Once the data has been loaded, the user has two options to create the experimental models: build models
or build_study. If the experiment models are unknown to the user, build_study can be used to create the
models:


https://github.com/jdstorey/edge/issues
https://github.com/jdstorey/edge/issues
https://support.bioconductor.org/

de_obj <- build_study(data = kidexpr, adj.var = sex,
tme = age, sampling = "timecourse")

full_model <- fullModel(de_obj)

null_model <- nullModel(de_obj)

sampling describes the type of experiment performed, adj.var is the adjustment variable and time is
the time variable in the study. If the experiment is more complex then type ?build_study for additional
arguments.

If the full and null models are known to the user then build models can be used to make an deSet object:

library(splines)

cov <- data.frame(sex = sex, age = age)

null_model <- “sex

full_model <- “sex + ns(age, df = 4)

de_obj <- build_models(data = kidexpr, cov = cov,
null.model = null_model, full.model = full_model)

cov is a data frame of covariates, null.model is the null model and full.model is the full model. The input
cov is a data frame with the column names the same as the variables in the full and null models.

The odp or 1rt function can be used on de_obj to implement either the optimal discovery procedure or the
likelihood ratio test, respectively:

de_odp <- odp(de_obj, bs.its = 50, verbose = FALSE)

de_lrt <- 1rt(de_obj)

To access the 7y estimate, p-values, g-values and local false discovery rates for each gene, use the function
qvalueObj:

gval_obj <- gvalueObj(de_odp)
gvals <- gval_obj$qvalues
pvals <- qval_obj$pvalues
1fdr <- qval_obj$lfdr

pi0 <- gval_obj$piO

The following sections of the manual go through various case studies for a more comprehensive overview of
the edge package.

5 Case study: static experiment

In the static sampling experiment, the arrays have been collected from distinct biological groups without
respect to time. The goal is to identify genes that have a statistically significant difference in average
expression across these distinct biological groups. The example data set that will be used in this section is
the gibson data set and it is a random subset of the data from [daghdour et al..

The gibson data set provides gene expression measurements in peripheral blood leukocyte samples from
three Moroccan Amazigh groups leading distinct ways of life: desert nomadic (DESERT), mountain agrar-
ian (VILLAGE), and coastal urban (AGADIR). We are interested in finding the genes that differentiate



-1.0-

-1.2-
I ° gender:batch
S s 1 FEM:A
(9] [ ] ®
@ o x * FEM:B
3 . 1 * MALA
() ™ °
-1.4- ¢ MAL:B
[ ]
o (]
[ ]
-16-
AGADIR DESERT VILLAGE
location
Figure 2: Plot of gene 1 in the gibson study.
the Moroccan Amazigh groups the most. See for additional information regarding the
data.

5.1 Importing the data

To import the gibson data use the data function:

data(gibson)

gibexpr <- gibson$gibexpr
batch <- gibson$batch
gender <- gibson$gender
location <- gibson$location

There are a few variables in the data set: batch, gibexpr, gender, and location. The three covariates of
interest are gender, batch and location. The biological variable is the location variable, which contains
information on where individuals are sampled: “VILLAGE”, “DESERT” or “AGADIR”. The gender variable
specifies whether the individual is a male or a female and there are two different batches in the study. The
gibexpr variable contains the gene expression measurements.

As an example, the expression values of the first gene are shown in Figure 2. In the figure, it appears that
the individuals from “VILLAGE” are more expressed when compared to the other lifestyles. We should stop
short of that observation because the data needs to be adjusted with the experimental models. Before that,
the full and null models of the study needs to be carefully formulated.

5.2 Creating the full and null models

In order to find deferentially expressed genes, there first needs to be a full and null model for the study. There
are two ways to input the experimental models in edge: build.models and build_study. build_study
should be used by users unfamiliar with formulating the full and null models but are familiar with the



covariates in the study:

de_obj <- build_study(data = gibexpr, adj.var = cbind(gender,
batch), grp = location, sampling = "static")

adj.var is for the adjustment variables, grp is the variable containing the group assignments for each
individual in the study and sampling describes the type of experiment. Since gibson is a static study, the
sampling argument will be “static”. The grp variable will be the location variable and the adjustment
variables are gender and batch.

Alternatively, if the user is familiar with their full and null models in the study then build models can be
used to input the models directly:

cov <- data.frame(Gender = gender, Batch = batch,
Location = location)

null_model <- “Gender + Batch

null_model <- “Gender + Batch + Location

de_obj <- build_models(data = gibexpr, cov = cov,
full.model = null_model, null.model = null_model)

The cov argument is a data frame of all the relevant covariates, full.model and null.model are the full
and null models of the experiment, respectively. Notice that the models must be formatted as a formula and
contain the same variable names as in the cov data frame. The null model contains the gender and batch
covariates and the full model includes the location variable. Therefore, we are interested in testing whether
the full model improves the model fit of a gene when compared to the null model. If it does not, then we
can conclude that there is no significant difference between Moroccan Amazigh groups for this particular
gene.

The variable de_obj is an deSet object that stores all the relevant experimental data. The deSet object is
discussed further in the next section.

5.3 The deSet object

Once either build models or build_study is used, an deSet object is created. To view the slots contained
in the object:

slotNames(de_obj)

## [1] "null.model" "full .model"
## [3] "null.matrix" "full .matrix"
## [5] "individual" "qvalueObj"

## [7] "experimentData" "assayData"

## [9] "phenoData" "featureData"
## [11] "annotation" "protocolData"
## [13] ".__classVersion__"

A description of each slot is listed below:

e full.model: the full model of the experiment. Contains the biological variables of interest and the
adjustment variables.

e null.model: the null model of the experiment. Contains the adjustment variables in the experiment.

e full.matrix: the full model in matrix form.



e null.matrix: the null model in matrix form.
e individual: variable that keeps track of individuals (if same individuals are sampled multiple times).

e gvalueObj: qvalue list. Contains p-values, g-values and local false discovery rates of the significance
analysis. See the qvalue package for more details.

e ExpressionSet: inherits the slots from ExpressionSet object.

ExpressionSet contains the expression measurements and other information from the experiment. The
deSet object inherits all the functions from an ExpressionSet object. As an example, to access the expres-
sion values, one can use the function exprs or to access the covariates, pData:

gibexpr <- exprs(de_obj)
cov <- pData(de_obj)

The ExpressionSet class is a widely used object in Bioconductor and more information can be found here.
See the section 10 on ExpressionSet to get a better understanding of how it integrates into the edge
framework.

As an example of how to access the slots of de_obj suppose we are interested in viewing the full and null
models. The models can be accessed by:

fullModel (de_obj)
## ~“Gender + Batch + Location
nullModel (de_obj)

## ~“Gender + Batch + Location

Next, we can extract the models in matrix form for computational analysis:

full_matrix <- fullMatrix(de_obj)
null_matrix <- nullMatrix(de_obj)

See 7deSet for additional functions to access different slots of the deSet object.

5.4 Fitting the data

The fit_models function is an implementation of least squares using the full and null models:

ef_obj <- fit_models(de_obj, stat.type = "lrt")

The stat.type argument specifies whether you want the odp or 1rt fitted values. The difference between
choosing “odp” and “Irt” is that “odp” centers the data by the null model fit which is necessary for down-
stream analysis in the optimal discovery procedure. fit models creates another object with the following
slots:

e fit.full: fitted values from the full model.
e fit.null: fitted values from null model.

e res.full: residuals from the full model.


http://www.bioconductor.org/packages/release/bioc/html/qvalue.html
http://www.bioconductor.org/packages/2.14/bioc/html/Biobase.html

null.model full. model raw

-1.0-
[ ]
[ ]
[ ]
129 T . gender:batch
[ 3
) s s FEM:A
Q [ ]
% L T 5 e FEM:B
> o
L ° ' ® MALA
-1.4- § + | . MAL:B
[ ]
® °
[ ]
-1.6-

1 1 1 1 1 1 1 1 1
AGADIR DESERT VILLAGE AGADIR DESERT VILLAGE AGADIR DESERT VILLAGE
location

Figure 3: Plot of gene 1 in the gibson study after applying the full and null model fit. The “raw” column
are the expression values of the original data.

res.null: residuals from the null model.

e dH.full: diagonal elements in the projection matrix for the full model.

beta.coef: the coefficients for the full model.

e stat.type: statistic type used, either “odp” or “Irt”.

To access the fitted coefficients of the full model in ef_obj:
betaCoef (ef __obj)

To access the full and null residuals:

alt_res <- resFull(ef_obj)
null_res <- resNull(ef_obj)

To access the fitted values:

alt_fitted <- fitFull(ef_obj)
null_fitted <- fitNull(ef_obj)

See 7deFit for more details on accessing the slots in an deFit object. The fitted values of the first gene are
shown in Figure 3. The null model fit is the average expression value across the interaction of batch and
sex. The full model fit seems to pick up some differences relative to the null model. Next, we have to test
whether the observed differences between the model fits are significant.

10



5.5 Significance analysis

Interpreting the models in a hypothesis test is very intuitive: Does the full model better fit the data when
compared to the null model? For the fitted values of the first gene plotted in Figure 3, it seems that the
full model fits the data better than the null model. In order to conclude that it is significant, we need to
calculate the p-value. The user can use either the optimal discovery procedure or likelihood ratio test.

5.5.1 Likelihood ratio test

The 1rt function performs a likelihood ratio test to determine p-values:

de_1lrt <- 1lrt(de_obj, nullDistn = "normal")

If the null distribution, nullDistn, is calculated using “bootstrap” then residuals from the full model are
re-sampled and added to the null model to simulate a distribution where there is no differential expression.
Otherwise, the default input is “normal” and the assumption is that the null statistics follow a F-distribution.
See 71rt for additional arguments.

5.5.2 Optimal discovery procedure

odp performs the optimal discovery procedure, which is a new approach developed by Storey et al. (2007) for
optimally performing many hypothesis tests in a high-dimensional study. When testing a feature, information
from all the features is utilized when testing for significance of a feature. It guarantees to maximize the
number of expected true positive results for each fixed number of expected false positive results which is
related to the false discovery rate.

The optimal discovery procedure can be implemented on de_obj by the odp function:

de_odp <- odp(de_obj, bs.its = 50, verbose = FALSE,
n.mods = 50)

The number of bootstrap iterations is controlled by bs.its, verbose prints each bootstrap iteration number
and n.mods is the number of clusters in the k-means algorithm.

A k-means algorithm is used to assign genes to groups in order to speed up the computational time of the
algorithm. If n.mods is equal to the number of genes then the original optimal discovery procedure is used.
Depending on the number of genes, this setting can take a very long time. Therefore, it is recommended to
use a small n.mods value to substantially decrease the computational time. In Woo et al. (2011), it is shown
that assigning n.mods to about 50 will cause a negligible loss in power. Type 7odp for more details on the
algorithm.

5.6 Significance results

The summary function can be used on an deSet object to give an overview of the analysis:

summary (de_odp)

##

## ExpressionSet Summary

##

## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 500 features, 46 samples

## element names: exprs

## protocolData: none

## phenoData

11



p—value density histogram

9 -
6 -
3 -
0 -
0.00 0.25 0.50
p-value

Variables

= (-values
=== |ocal FDR
—_— ,=0.298

Figure 4: Applying the function hist to the slot qvalueObj in the gibson data set. Function is derived
from the qvalue package.

##
#i#
#Hit
##
##
##
##
#i#t
#Hi#t
##
##
##
##
#Hi#t
Hit
##
##
##
#it
##
##
##
##
#i#
#Hit
##
##

sampleNames: 1 2 ... 46 (46 total)
varLabels: gender batch grp
varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
Annotation:

de Analysis Summary

Total number of arrays: 46
Total number of probes: 500

Biological variables:
Null Model:“gender + batch
<environment: 0x594309fd6d50>

Full Model:"gender + batch + grp
<environment: 0x594309fd6d50>

Statistical significance summary:
pi0: 0.2983845

Cumulative number of significant calls:

12



## <le-04 <0.001 <0.01 <0.025 <0.05 <0.1

## p-value 73 87 153 192 227 262
## g-value 72 85 154 212 244 326
## local fdr 0 73 102 132 160 198
Hit <1

## p-value 500
## q-value 500
## local fdr 500

There are three core summaries: ExpressionSet summary, edge analysis and statistical significance sum-
mary. The ExpressionSet summary shows a summary of the ExpressionSet object. edge analysis shows
an overview of the models used and other information about the data set. The significance analysis shows
the proportion of null genes, 7y, and significant genes at various cutoffs in terms of p-values, g-values and
local false discovery rates.

The function qvalueObj can be used on de_odp to extract the significance results:

sig_results <- gvalueObj(de_odp)

The object sig _results is a list with the following slots:

names (sig_results)

## [1] "call" "pi0" "qvalues"
## [4] "pvalues" "1fdr" "pi0.lambda"
## [7] "lambda" "pi0.smooth" "stat0"

## [10] "stat"

The key variables are pi0O, pvalues, 1fdr and gvalues. The piO variable provides an estimate of the
proportion of null p-values, pvalues are the p-values, qvalues are the estimated g-values and 1fdr are the
local false discovery rates. Using the function hist on sig_results will produce a p-value histogram along
with the density curves of g-values and local false discovery rate values:

hist(sig_results)

The plot is shown in Figure 4. To extract the p-values, g-values, local false discovery rates and the g
estimate:

pvalues <- sig_results$pvalues
qvalues <- sig_results$qvalues
1fdr <- sig_results$lfdr

pi0 <- sig_results$pio

Making significance decisions based on p-values in multiple hypothesis testing problems can lead to accepting
a lot of false positives in the study. Instead, using g-values to determine significant genes is recommended
because it controls the false discovery rate. Q-values measure the proportion of false positives incurred when
calling a particular test significant. For example, to complete our analysis of gene 1 in this example, lets
view the g-value estimate:

gvalues[1]

## [1] 0.01332074

So for this particular gene, the g-value is 0.0133207. If we consider a false discovery rate cutoff of 0.1 then this

13



gene is significant. Therefore, the observed differences observed in Figure 3 are significant so this particular
gene is differentially expressed between locations.

To get a list of all the significant genes at a false discovery rate cutoff of 0.01:

fdr.level <- 0.01
sigGenes <- qvalues < fdr.level

View the gqvalue vignette to get a more thorough discussion in how to use p-values, g-values, my estimate
and local false discovery rates to determine significant genes.

6 Case study: independent time course experiment

In the independent time course study, the arrays have been sampled with respect to time from one biological
group and the goal is to identify genes that show “within-class temporal differential expression”, i.e., genes
that show statistically significant changes in expression over time. The example data set used in this section
is a kidney data set by ( ). Gene expression measurements, from cortex and medulla
samples in the kidney, were obtained from 72 human subjects ranging in age from 27 to 92 years. Only one
array was obtained per sample and the age and tissue type of each subject was recorded. See

( ) for additional information regarding the data set.

6.1 Importing the data

To import the kidney data use the data function:

data(kidney)

age <- kidney$age

sex <- kidney$sex

kidexpr <- kidney$kidexpr

There are a few covariates in this data set: sex, age, and kidexpr. The two main covariates of interest are
the sex and age covariates. The sex variable is whether the subject was male or female and the age variable
is the age of the patients. kidexpr contains the gene expression values for the study.

As an example of a gene in the study, the expression values of the fifth gene are shown in Figure 5. It is
very difficult to find a trend for this particular gene. Instead, we need to adjust the data with the models in
the study which is discussed in the next section.

6.2 Creating the full and null models

In order to find differentially expressed genes, the full and null model for the study need to be formulated.
There are two ways to input the experimental models in edge: build models and build_study. build_study
should be used by users unfamiliar with formulating the full and null models but are familiar with the
covariates in the study:

de_obj <- build_study(data = kidexpr, adj.var = sex,
tme = age, sampling = "timecourse", basis.df = 4)

adj.var is for the adjustment variables, tme is the time variable, basis.df is the degrees of freedom for
the spline fit, and sampling describes the type of experiment. Since kidney is a time course study, the
sampling argument will be “timecourse”. The tme variable will be the age variable, basis.df will be 4
based on previous work by ( ) and the adjustment variable is sex. To view the models
generated by build_study:

14


http://www.bioconductor.org/packages/release/bioc/html/qvalue.html

2.78- o

° °
°
2.77- ° S ° © ° ° °
° ° L °
°
5 ¢ . S e sex
G LIPS ee ° °
@ ° ° e © . $ o o f
5 2.76- o o . °°c o
e m
& @ C ° ° ° ') ®e °
° - ..
> °, °
2.75- ¢
L4 e o
°
2.74- °
1 1 1
40 60 80
age

Figure 5: Plot of gene 5 in the kidney study.

fullModel (de_obj)

## “adj.var + ns(tme, df = 4, intercept = FALSE)
## <environment: 0x594313b32098>

nullModel(de_obj)

## “adj.var
## <environment: 0x594313b32098>

Notice that the difference between the full and null model is the natural spline fit of the age variable. If we
look at Figure 5, it becomes evident that a spline curve can be used to approximate the fit of the data, and
4 degrees of freedom is chosen based on previous analysis of the expression patterns. See Storey et al. (2005)
for a detailed discussion on modelling in time course studies.

Alternatively, if the user is familiar with their full and null models in the study then build models can be
used to input the models directly:

library(splines)

cov <- data.frame(sex = sex, age = age)

null_model <- “sex

null_model <- “sex + ns(age, df = 4)

de_obj <- build_models(data = kidexpr, cov = cov,
full.model = null_model, null.model = null_model)

The cov argument is a data frame of all the relevant covariates, full.model and null.model are the full
and null models of the experiment, respectively. Notice that the models must be formatted as a formula
and contain the same variable names as in the cov data frame. The null model contains the sex covariate
and the full model includes the age variable. Therefore, we are interested in testing whether the full model

15



improves the model fit of a gene significantly when compared to the null model. If it does not, then we can
conclude that there is no significant difference in the gene as it ages in the cortex.

The variable de_obj is an deSet object that stores all the relevant experimental data. The deSet object is
discussed further in the next section.

6.3 The deSet object

Once either build models or build_study is used, an deSet object is created. To view the slots contained
in the object:

slotNames(de_obj)

## [1] "null.model" "full .model"
## [3] "null.matrix" "full .matrix"
## [56] "individual" "qvalueObj"

## [7] "experimentData" "assayData"

## [9] "phenoData" "featureData"
## [11] "annotation" "protocolData"
## [13] ".__classVersion__"

A description of each slot is listed below:

e full.model: the full model of the experiment. Contains the biological variables of interest and the
adjustment variables.

e null.model: the null model of the experiment. Contains the adjustment variables in the experiment.
e full.matrix: the full model in matrix form.
e null .matrix: the null model in matrix form.
e individual: variable that keeps track of individuals (if same individuals are sampled multiple times).

e gvalueObj: qvalue list. Contains p-values, g-values and local false discovery rates of the significance
analysis. See the qvalue package for more details.

e ExpressionSet: inherits the slots from ExpressionSet object.

ExpressionSet contains the expression measurements and other information from the experiment. The
deSet object inherits all the functions from an ExpressionSet object. As an example, to access the expres-
sion values, one can use the function exprs or to access the covariates, pData:

gibexpr <- exprs(de_obj)

cov <- pData(de_obj)

The ExpressionSet class is a widely used object in Bioconductor and more information can be found here.
See the section 10 on ExpressionSet to get a better understanding of how it integrates into the edge
framework.

As an example of how to access the slots of de_obj suppose we are interested in viewing the full and null
models. The models can be accessed by:

fullModel (de_obj)
nullModel(de_obj)

16


http://www.bioconductor.org/packages/release/bioc/html/qvalue.html
http://www.bioconductor.org/packages/2.14/bioc/html/Biobase.html

null.model full. model raw

2.78- ~
(]
(]
[ ]
2.77- o ° > S °
o) < o .c o, Sex
® @
% o ® VT B WiVand o o '“"\( ° - : b f
S 2.76- ‘.’ % o B N .
o % °
%
[ ]
2.75-
C (X
°
2.74- ~
1 1 1 1 1 1 1 1 1
40 60 80 40 60 80 40 60 80
age

Figure 6: Plot of gene 5 in the kidney study after applying the full and null model fit. The “raw” column
are the expression values of the original data.

Next, we can extract the models in matrix form for computational analysis:

full_matrix <- fullMatrix(de_obj)
null_matrix <- nullMatrix(de_obj)

See 7deSet for additional functions to access different slots of the deSet object.

6.4 Fitting the data

The fit_models function is an implementation of least squares using the full and null models:

ef_obj <- fit_models(de_obj, stat.type = "lrt")

The stat.type argument specifies whether you want the odp or 1rt fitted values. The difference between
choosing “odp” and “Irt” is that “odp” centers the data by the null model fit which is necessary for down-
stream analysis in the optimal discovery procedure. fit models creates another object with the following
slots:

e fit.full: fitted values from the full model.

fit.null: fitted values from null model.

e res.full: residuals from the full model.

res.null: residuals from the null model.

e dH.full: diagonal elements in the projection matrix for the full model.

e beta.coef: the coefficients for the full model.

17



e stat.type: statistic type used, either “odp” or “Irt”.

To access the fitted coefficients of the full model in ef_obj:
betaCoef (ef _obj)

To access the full and null residuals:

alt_res <- resFull(ef_obj)
null_res <- resNull(ef_obj)

To access the fitted values:

alt_fitted <- fitFull(ef_obj)
null_fitted <- fitNull(ef_obj)

See 7deFit for more details on accessing the slots in a deFit object. The fitted values of the fifth gene are
shown in Figure 6. The null model fit is the average expression. It appears that the full model fits the raw
data better than the null model. Next, we have to test whether the observed differences between the model
fits are significant.

6.5 Significance analysis

Interpreting the models in a hypothesis test is very intuitive: Does the full model better fit the data when
compared to the null model? For the fitted values of the fifth gene plotted in Figure 6, it seems that the full
model fits the data better than the null model. In order to conclude it is significant, we need to calculate
the p-value. The user can use either the optimal discovery procedure or likelihood ratio test.

6.5.1 Likelihood ratio test

The 1rt function performs a likelihood ratio test to determine p-values:

de_1lrt <- 1lrt(de_obj, nullDistn = "normal")

If the null distribution, nullDistn, is calculated using “bootstrap” then residuals from the full model are
re-sampled and added to the null model to simulate a distribution where there is no differential expression.
Otherwise, the default input is “normal” and the assumption is that the null statistics follow a F-distribution.
See 71rt for additional arguments.

6.5.2 Optimal discovery procedure

odp performs the optimal discovery procedure, which is a new approach developed by ( ) for
optimally performing many hypothesis tests in a high-dimensional study. When testing a feature, information
from all the features is utilized when testing for significance of a feature. It guarantees to maximize the
number of expected true positive results for each fixed number of expected false positive results which is
related to the false discovery rate.

The optimal discovery procedure can be implemented on de_obj by the odp function:
de_odp <- odp(de_obj, bs.its = 50, verbose = FALSE,
n.mods = 50)
The number of bootstrap iterations is controlled by bs.its, verbose prints each bootstrap iteration number

and n.mods is the number of clusters in the k-means algorithm.

18



A k-means algorithm is used to assign genes to groups in order to speed up the computational time of the
algorithm. If n.mods is equal to the number of genes then the original optimal discovery procedure is used.
Depending on the number of genes, this setting can take a very long time. Therefore, it is recommended to
use a small n.mods value to substantially decrease the computational time. In Woo et al. (2011), it is shown
that assigning n.mods to about 50 will cause a negligible loss in power. Type 7odp for more details on the
algorithm.

6.6 Significance results

The summary function can be used on an deSet object to give an overview of the analysis:

summary (de_odp)

##

## ExpressionSet Summary

##

## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 500 features, 72 samples
#i#t element names: exprs

## protocolData: none

## phenoData

##  sampleNames: 1 2 ... 72 (72 total)
##  varLabels: adj.var tme

##  varMetadata: labelDescription

## featureData: none

## experimentData: use 'experimentData(object)'
## Annotation:

##

## de Analysis Summary

##

## Total number of arrays: 72

## Total number of probes: 500

##

## Biological variables:

## Null Model:"adj.var

## <environment: 0x59431fae8c88>

##

## Full Model:"adj.var + ns(tme, df = 4, intercept = FALSE)
## <environment: 0x59431fae8c88>

##

# oo

##

##

## Statistical significance summary:

## pi0: 0.3386236

##

## Cumulative number of significant calls:

#i

#i# <le-04 <0.001 <0.01 <0.025 <0.05 <0.1
## p-value 4 8 28 42 75 135
## q-value 0 0 5 8 17 62
## local fdr 0 0 4 5 8 33

19



#i <1
## p-value 500
## q-value 500
## local fdr 500

There are three core summaries: ExpressionSet summary, edge analysis and statistical significance sum-
mary. The ExpressionSet summary shows a summary of the ExpressionSet object. edge analysis shows
an overview of the models used and other information about the data set. The significance analysis shows
the proportion of null genes, 7y, and significant genes at various cutoffs in terms of p-values, g-values and
local false discovery rates.

The function qvalueObj can be used on de_odp to extract the significance results:

sig_results <- qvalueObj(de_odp)

The object sig _results is a list with the following slots:

names (sig_results)

## [1] "call" "pi0" "qvalues"
## [4] "pvalues" "1fdr" "pi0.lambda"
## [7] "lambda" "pi0.smooth" "statO"

## [10] "stat"

The key variables are piO, pvalues, 1fdr and qvalues. The piO variable provides an estimate of the
proportion of null p-values, pvalues are the p-values, gvalues are the estimated g-values and 1fdr are the
local false discovery rates. Using the function hist on sig_results will produce a p-value histogram along
with the density curves of g-values and local false discovery rate values:

hist(sig_results)

The plot is shown in Figure 7. To extract the p-values, g-values, local false discovery rates and the g
estimate:

pvalues <- sig_results$pvalues
gvalues <- sig_results$qvalues
1fdr <- sig_results$lfdr

pi0 <- sig_results$pio

Making significance decisions based on p-values in multiple hypothesis testings problems can lead to accepting
a lot of false positives in the study. Instead, using g-values to determine significant genes is recommended
because it controls the false discovery rate at a level alpha. Q-values measure the proportion of false positives
incurred when calling a particular test significant. For example, to complete our analysis of gene 5 in this
example, lets view the g-value estimate:

qvalues[5]

## [1] 0.1363167

So for this particular gene, the g-value is 0.1363167. If we consider a false discovery rate cutoff of 0.1 then
this gene is not significant. Therefore, the observed differences observed in Figure 6 are not significant so
this particular gene is not differentially expressed as the kidney ages.

To get a list of all the significant genes at a false discovery rate cutoff of 0.1:

20



p—value density histogram

3.

2 Variables
> — g-val
.g - g-values
) I — = |ocal FDR
©

—_— ,=0.339
11 | —
4 E0.339
ol s | [ |
0.00 0.25 0.50 0.75 1.00

p-value

Figure 7: Applying the function hist to the slot qvalueObj in the kidney data set. Function is derived
from the qvalue package.

fdr.level <- 0.1
sigGenes <- gvalues < fdr.level

View the gvalue vignette to get a more thorough discussion in how to use p-values, g-values, my estimate
and local false discovery rates to determine significant genes.

7 Case study: longitudinal time course experiment

In the longitudinal time course study, the goal is to identify genes that show “between-class temporal differ-
ential expression”, i.e., genes that show statistically significant differences in expression over time between
the various groups. The endotoxin data set provides gene expression measurements in an endotoxin study
where four subjects were given endotoxin and four subjects were given a placebo. Blood samples were col-
lected and leukocytes were isolated from the samples before infusion. Measurements were recorded at times
2,4, 6,9, 24 hours. We are interested in identifying genes that vary over time between the endotoxin and
control groups. See ( ) for more details regarding the endotoxin dataset.

7.1 Importing the data

To import the endotoxin data use the data function:

data(endotoxin)

endoexpr <- endotoxin$endoexpr
class <- endotoxin$class

ind <- endotoxin$ind

time <- endotoxin$time

There are a few covariates in this data set: endoexpr, class, ind, and time. There are 8 individuals in

21


http://www.bioconductor.org/packages/release/bioc/html/qvalue.html

10.6- °

PY [ ]
[ ] ([ ] [
[ J
10.5- L
5 o class
X7
8 s control
a
Ef) - ® endotoxin
10.4-
e
10.3-
] ] ] ] ] ]
0 5 10 15 20 25

time (hours)

Figure 8: Plot of gene 2 in the endotoxin study.

the experiment (ind) that were sampled at multiple time points (time) that were either “endotoxin” or
“control” (class). The endoexpr variable contains the expression values of the experiment.

To show an example gene, the expression values of the second gene are shown in Figure 8. It is very difficult
to find a trend for this particular gene. Instead, we need to adjust the data with the models in the study.

7.2 Creating the full and null models

In order to find differentially expressed genes, there first needs to be an full and null model for the study.
There are two ways to input the experimental models in edge: build models and build_study. build_study
should be used by users unfamiliar with formulating the full and null models but are familiar with the
covariates in the study:

de_obj <- build_study(data = endoexpr, grp = class,
tme = time, ind = ind, sampling = "timecourse")

grp is for the variable which group each individual belongs to, tme is the time variable, ind is used when
individuals are sampling multiple times and sampling describes the type of experiment. Since endotoxin
is a time course study, the sampling argument will be “timecourse”. The tme variable will be the time
variable, ind is the individuals variable and the grp variable is class. To view the models created by
build_study:

fullModel(de_obj)

## “grp + ns(tme, df = 2, intercept = FALSE) + (grp):ns(tme, df = 2,
#i# intercept = FALSE)

## <environment: 0x59431e43b680>

nullModel (de_obj)

22



## “grp + ns(tme, df = 2, intercept = FALSE)
## <environment: 0x59431e43b680>

See Storey et al. (2005) for how the models in the endotoxin experiment are formed. Alternatively, if the
user is familiar with their full and null models in the study then build models can be used to input the
models directly:

cov <- data.frame(ind = ind, tme = time, grp = class)
null_model <- “grp + ns(tme, df = 2, intercept = FALSE)
null_model <- “grp + ns(tme, df = 2, intercept = FALSE) +

(grp) :ns(tme, df = 2, intercept = FALSE)

de_obj <- build_models(data = endoexpr, cov = cov,

full.model = null_model, null.model = null_model)

The cov argument is a data frame of all the relevant covariates, full.model and null.model are the full
and null models of the experiment, respectively. Notice that the models must be formatted as a formula
and contain the same variable names as in the cov data frame. We are interested in testing whether the full
model improves the model fit of a gene significantly when compared to the null model. If it does not, then
we can conclude that there is no significant difference in this gene between the endotoxin and the control as
time goes on.

The variable de_obj is an deSet object that stores all the relevant experimental data. The deSet object is
discussed further in the next section.

7.3 The deSet object

Once either build models or build_study is used, an deSet object is created. To view the slots contained
in the object:

slotNames (de_obj)

##
##
#Hit
it
##
##
##

[1] "null.model" "full.model"
[3] "null.matrix" "full .matrix"
[6] "individual" "qvalueObj"
[7] "experimentData" "assayData"
[9] "phenoData" "featureData"
[11] "annotation" "protocolData"
[13] ".__classVersion__"

A description of each slot is listed below:

full.model: the full model of the experiment. Contains the biological variables of interest and the
adjustment variables.

null.model: the null model of the experiment. Contains the adjustment variables in the experiment.
full.matrix: the full model in matrix form.
null.matrix: the null model in matrix form.
individual: variable that keeps track of individuals (if same individuals are sampled multiple times).

gvalueObj: gvalue list. Contains p-values, g-values and local false discovery rates of the significance

23



analysis. See the qvalue package for more details.
e ExpressionSet: inherits the slots from ExpressionSet object.

ExpressionSet contains the expression measurements and other information from the experiment. The
deSet object inherits all the functions from an ExpressionSet object. As an example, to access the expres-
sion values, one can use the function exprs or to access the covariates, pData:

gibexpr <- exprs(de_obj)
cov <- pData(de_obj)

The ExpressionSet class is a widely used object in Bioconductor and more information can be found here.
See the section 10 on ExpressionSet to get a better understanding of how it integrates into the edge
framework.

As an example of how to access the slots of de_obj suppose we are interested in viewing the full and null
models. The models can be accessed by:

fullModel (de_obj)

## “grp + ns(tme, df = 2, intercept = FALSE) + (grp):ns(tme, df = 2,
## intercept = FALSE)

nullModel(de_obj)

## “grp + ns(tme, df = 2, intercept = FALSE) + (grp):ns(tme, df = 2,

#i# intercept = FALSE)

Next, we can extract the models in matrix form for computational analysis:

full_matrix <- fullMatrix(de_obj)
null_matrix <- nullMatrix(de_obj)

See ?7deSet for additional functions to access different slots of the deSet object.

7.4 Fitting the data

The fit models function is an implementation of least squares using the full and null models:

ef_obj <- fit_models(de_obj, stat.type = "lrt")

The stat.type argument specifies whether you want the odp or 1rt fitted values. The difference between
choosing “odp” and “Irt” is that “odp” centers the data by the null model fit which is necessary for down-
stream analysis in the optimal discovery procedure. fit models creates another object with the following
slots:

e fit.full: fitted values from the full model.

fit.null: fitted values from null model.

res.full: residuals from the full model.

e res.null: residuals from the null model.

dH.full: diagonal elements in the projection matrix for the full model.

24


http://www.bioconductor.org/packages/release/bioc/html/qvalue.html
http://www.bioconductor.org/packages/2.14/bioc/html/Biobase.html

null.model full.model

0.02-
0.00-
class
g
c_g control
-0.02 - === endotoxin
-0.04 -

0 5 10 15 20 25 0 5 10 15 20 25
tme

Figure 9: Plot of gene 2 in the endotoxin study after applying the full and null model fit. The “raw” column
is the expression values of the original data.

e beta.coef: the coefficients for the full model.
e stat.type: statistic type used, either “odp” or “Irt”.

To access the fitted coefficients of the full model in ef_obj:
betaCoef (ef_obj)

To access the full and null residuals:

alt_res <- resFull(ef_obj)
null_res <- resNull(ef_obj)

To access the fitted values:

alt_fitted <- fitFull(ef_obj)
null_fitted <- fitNull(ef_obj)

See 7deFit for more details on accessing the slots in an deFit object. The fitted values of the second gene
are shown in Figure 9. It appears that the full model fits a pattern that might be observed in the raw data.
Next, we have to test whether the observed differences between the model fits are significant.

7.5 Significance analysis

Interpreting the models in a hypothesis test is very intuitive: Does the full model better fit the data when
compared to the null model? For the fitted values of the second gene plotted in Figure 9, it seems that the
full model fits the data better than the null model. In order to conclude it is significant, we need to calculate
the p-value. The user can use either the optimal discovery procedure or likelihood ratio test.

25



7.5.1 Likelihood ratio test

The 1rt function performs a likelihood ratio test to determine p-values:

de_lrt <- 1lrt(de_obj, nullDistn = "normal")

If the null distribution, nullDistn, is calculated using “bootstrap” then residuals from the full model are
re-sampled and added to the null model to simulate a distribution where there is no differential expression.
Otherwise, the default input is “normal” and the assumption is that the null statistics follow a F-distribution.
See 71rt for additional arguments.

7.5.2 Optimal discovery procedure

odp performs the optimal discovery procedure, which is a new approach developed by Storey et al. (2005) for
optimally performing many hypothesis tests in a high-dimensional study. When testing a feature, information
from all the features is utilized when testing for significance of a feature. It guarantees to maximize the
number of expected true positive results for each fixed number of expected false positive results which is
related to the false discovery rate.

The optimal discovery procedure can be implemented on de_obj by the odp function:

de_odp <- odp(de_obj, bs.its = 50, verbose = FALSE,
n.mods = 50)

The number of bootstrap iterations is controlled by bs.its, verbose prints each bootstrap iteration number
and n.mods is the number of clusters in the k-means algorithm.

A k-means algorithm is used to assign genes to groups in order to speed up the computational time of the
algorithm. If n.mods is equal to the number of genes then the original optimal discovery procedure is used.
Depending on the number of genes, this setting can take a very long time. Therefore, it is recommended to
use a small n.mods value to substantially decrease the computational time. In Woo et al. (2011), it is shown
that assigning n.mods to about 50 will cause a negligible loss in power. Type 7odp for more details on the
algorithm.

7.6 Significance results

The summary function can be used on an deSet object to give an overview of the analysis:

summary (de_odp)

##

## ExpressionSet Summary

##

## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 500 features, 46 samples

##  element names: exprs

## protocolData: none

## phenoData

##  sampleNames: 1 2 ... 46 (46 total)

##  varLabels: tme grp

##  varMetadata: labelDescription

## featureData: none

## experimentData: use 'experimentData(object)'
## Annotation:

26



##

## de Analysis Summary

##

## Total number of arrays: 46

## Total number of probes: 500

##

## Biological variables:

## Null Model:“grp + ns(tme, df = 2, intercept
## <environment: 0x59430b8c5cb0>

##

## Full Model:"grp + ns(tme, df = 2, intercept
#Hit intercept = FALSE)

## <environment: 0x59430b8c5cb0>

##

## Individuals:

## [11 111111
## [23] 4 4 5555
## [45] 8 8

## Levels: 1 23 4567 8

##

#o.o......

##

##

## Statistical significance summary:

## pi0: 0.4718977

##

## Cumulative number of significant calls:

##

## <le-04 <0.001 <0.01 <0.025 <0.05 <0.1
## p-value 9 23 65 100 117 146
## q-value 0 0 25 46 91 117
## local fdr 0 0 17 27 44 68
## <1

## p-value 500

## q-value 500

## local fdr 500

FALSE)

FALSE) + (grp):ns(tme, df = 2,

222222 334444
556666 7788

88383 3 3
TTTTTT

There are three core summaries: ExpressionSet summary, edge analysis and statistical significance sum-
mary. The ExpressionSet summary shows a summary of the ExpressionSet object. edge analysis shows
an overview of the models used and other information about the data set. The significance analysis shows
the proportion of null genes, 7y, and significant genes at various cutoffs in terms of p-values, g-values and
local false discovery rates.

The function qvalueObj can be used on de_odp to extract the significance results:

sig_results <- qvalueObj(de_odp)

The object sig results is a list with the following slots:

names (sig_results)

## [1] "call" "pi0" "qvalues"

27



p—value density histogram

4.
Variables

2 — g-val
-g g-values
[} === |ocal FDR
©

2 — T, =0.472

— =+ T = ﬁﬁ__l
- 1 1
0.00 0.25 0.50 0.75 1.00

p-value

Figure 10: Applying the function hist to the slot qvalueObj in the endotoxin data set. Function is derived
from the qvalue package.

## [4] "pvalues" "1fdr" "pi0.lambda"
## [7] "lambda" "pi0.smooth" "stat0"
## [10] "stat"

The key variables are piO, pvalues, 1fdr and qvalues. The pi0O variable provides an estimate of the
proportion of null p-values, pvalues are the p-values, qvalues are the estimated g-values and 1fdr are the
local false discovery rates. Using the function hist on sig results will produce a p-value histogram along
with the density curves of g-values and local false discovery rate values:

hist(sig_results)

The plot is shown in Figure 10. To extract the p-values, g-values, local false discovery rates and the m
estimate:

pvalues <- sig_results$pvalues

gvalues <- sig_results$qvalues

1fdr <- sig_results$lfdr

pi0 <- sig_results$piO

Making significance decisions based on p-values in multiple hypothesis testings problems can lead to accepting
a lot of false positives in the study. Instead, using g-values to determine significant genes is recommended
because it controls the false discovery rate at a level alpha. Q-values measure the proportion of false positives
incurred when calling a particular test significant. For example, to complete our analysis of gene 2 in this
example, lets view the g-value estimate:

gvalues[2]

## [1] 0.3091576

28



So for this particular gene, the g-value is 0.3091576. If we consider a false discovery rate cutoff of 0.1 then
this gene is not significant. Therefore, the observed differences observed in Figure 9 are not significant so
this particular gene is not differentially expressed between class as time varies.

To get a list of all the significant genes at a false discovery rate cutoff of 0.1:

fdr.level <- 0.1
sigGenes <- gvalues < fdr.level

View the gqvalue vignette to get a more thorough discussion in how to use p-values, g-values, 7y estimate
and local false discovery rates to determine significant genes.

8 sva: Surrogate variable analysis

The sva package is useful for removing batch effects or any unwanted variation in an experiment. It does
this by forming surrogate variables to adjust for sources of unknown variation. Details on the algorithm
can be found in Leek and Storey (2007). edge uses the sva package in the function apply_sva. Suppose
we are working with the kidney data in 6, then the first step is to create an deSet object by either using
build models or build_study:

library(splines)

cov <- data.frame(sex = sex, age = age)

null_model <- Tsex

full_model <- “sex + ns(age, df = 4)

de_obj <- build_models(data = kidexpr, cov = cov,
full.model = full_model, null.model = null_model)

To find the surrogate variables and add them to the experimental models in de_obj, use the function
apply_sva:

de_sva <- apply_sva(de_obj, n.sv = 3, B = 10)

## Number of significant surrogate variables is: 3
## Iteration (out of 10 ):1 2 3 4 5 6 7 8 9 10

n.sv is the number of surrogate variables and B is the number of bootstraps. See 7apply_sva for additional
arguments. To see the terms that have been added to the models:

fullModel (de_sva)

## “SV1 + SV2 + SV3 + sex + ns(age, df = 4)
## <environment: 0x59431da975c8>

nullModel (de_sva)

## “SV1 + SV2 + SV3 + sex
## <environment: 0x59431da975c8>

The variables SV1, SV2 and SV3 are the surrogate variables formed by sva. To access the surrogate variables:

cov <- pData(de_sva)
names (cov)

29


http://www.bioconductor.org/packages/release/bioc/html/qvalue.html

## [1] "SeX" Ila.ge n |ISV1II n SV2|I I|SV3l|

surrogate.vars <- cov[, 3:ncol(cov)]

Now odp or 1rt can be used as in previous examples:

de_odp <- odp(de_sva, bs.its = 50, verbose = FALSE)
de_lrt <- 1lrt(de_sva, verbose = FALSE)
summary (de_odp)

#i#t

## ExpressionSet Summary

#i#

## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 500 features, 72 samples
## element names: exprs

## protocolData: none

## phenoData

##  sampleNames: 1 2 ... 72 (72 total)
##  varLabels: sex age ... SV3 (5 total)
##  varMetadata: labelDescription

## featureData: none

## experimentData: use 'experimentData(object)'
## Annotation:

#i#t

## de Analysis Summary

#i#

## Total number of arrays: 72

## Total number of probes: 500

#it

## Biological variables:

## Null Model:"SV1 + SV2 + SV3 + sex

## <environment: 0x59431da975c8>

#i#

## Full Model:"SV1 + SV2 + SV3 + sex + ns(age, df = 4)
## <environment: 0x59431da975c8>

#i#

#H oo

#i#

#i#

## Statistical significance summary:

## pi0: 0.2884136

##

## Cumulative number of significant calls:

##

## <le-04 <0.001 <0.01 <0.025 <0.05 <0.1
## p-value 2 8 28 a7 69 124
## gq-value 0 0 2 11 36 98
## local fdr 0 0 2 5 13 42
## <1

## p-value 500
## gq-value 500

30



## local fdr 500

And to extract the 7y estimate, g-values, local false discovery rates and p-values:

qval_obj <- gvalueObj(de_odp)
qvals <- qval_obj$qvalues
1fdr <- gqval_obj$lfdr

pvals <- qval_obj$pvalues
pi0 <- qval_obj$pi0

9 qgvalue: Estimate the g-values

After odp or 1rt is used, the user may wish to change some parameters used when calculating the g-values.
This can be done by using the apply_qvalue function. Lets review the analysis process for the kidney
dataset in 6: create the full and null models and then run odp or 1rt to get significance results. Applying
these steps in the kidney dataset:

library(splines)

cov <- data.frame(sex = sex, age = age)

null_model <- Tsex

full_model <- “sex + ns(age, df = 4)

de_obj <- build_models(data = kidexpr, cov = cov,
full.model = full_model, null.model = null_model)

de_obj <- odp(de_obj, bs.its = 50, verbose = FALSE)

Suppose we wanted to estimate 7y using the “bootstrap” method in qvalue (see qvalue vignette for more
details):

old_piOest <- gvalueObj(de_obj)$pi0
de_obj <- apply_qvalue(de_obj, piO.method = "bootstrap")
new_pilest <- gvalueObj(de_obj)$pi0

#i# old_piOest new_piOest
## 1 0.3358821 0.37

In this case, there is a difference between using the “smoother” method and “bootstrap” method. See
apply_qvalue for additional arguments.

10 Advanced topic: Using the ExpressionSet object

edge was designed for complementing ExpressionSet objects in significance analysis. The deSet inherits
all the slots from an ExpressionSet object and adds vital slots for significance analysis. The rest of this
section is for advanced users because it requires knowledge of full and null model creation. To begin, lets
create an ExpressionSet object from the kidney dataset:

library(edge)
anon_df <- as(data.frame(age=age, sex=sex), "AnnotatedDataFrame")
exp_set <- ExpressionSet(assayData = kidexpr, phenoData = anon_df)

In the kidney experiment they were interested in finding the effect of age on gene expression. In this case,

31


http://www.bioconductor.org/packages/release/bioc/html/qvalue.html

we handle the time variable, age, by fitting a natural spline curve as done in Storey et al. (2005). The
relevant models for the experiment can be written as

library(splines)

null_model <- "1 + sex

full_model <- "1 + sex + ns(age, intercept = FALSE,
af = 4)

where null model is the null model and full model is the full model. The sex covariate is an adjustment
variable while age is the biological variable of interest. It is important to note that it is necessary to include
the adjustment variables in the formulation of the full models as done above.

Having both expSet and the hypothesis models, the function deSet can be used to create an deSet object:

de_obj <- deSet (exp_set, full.model = full_model,
null.model = null_model)
slotNames(de_obj)

## [1] "null.model" "full .model"
## [3] "null.matrix" "full .matrix"
## [5] "individual" "qvalueObj"

## [7] "experimentData" "assayData"

## [9] "phenoData" "featureData"
## [11] "annotation" "protocolData"
## [13] ".__classVersion__"

From the slot names, it is evident that the deSet object inherits the ExpressionSet slots in addition to
other slots relating to the significance analysis. See section 6.3 for more details on the deSet slots. We can
now simply run odp or 1rt for significance results:

de_odp <- odp(de_obj, bs.its = 50, verbose = FALSE)
de_lrt <- lrt(de_obj)
summary (de_odp)

##

## ExpressionSet Summary

##

## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 500 features, 72 samples

## element names: exprs

## protocolData: none

## phenoData

##  sampleNames: 1 2 ... 72 (72 total)

##  varLabels: age sex

##  varMetadata: labelDescription

## featureData: none

## experimentData: use 'experimentData(object)'
## Annotation:

##

## de Analysis Summary

##

## Total number of arrays: 72

32



## Total number of probes: 500

##

## Biological variables:

## Null Model:"1 + sex

##

## Full Model:™1 + sex + ns(age, intercept = FALSE, df = 4)
##

#H oo

##

##

## Statistical significance summary:
## pi0: 0.4006894

#i#

## Cumulative number of significant calls:

##

## <le-04 <0.001 <0.01 <0.025 <0.05 <0.1
## p-value 2 9 32 60 103 150
## g-value 0 0 2 13 26 104
## local fdr 0 0 2 5 17 39
## <1

## p-value 500
## g-value 500
## local fdr 500

And use the function gvalueObj to extract the mg estimate, g-values, local false discovery rates and p-values:

qval_obj <- gvalueObj(de_odp)
gvals <- gval_obj$qvalues
1fdr <- gval_obj$lfdr

pvals <- qval_obj$pvalues
pi0 <- qval_obj$piO

Acknowledgements

This software development has been supported in part by funding from the National Institutes of Health
and the Office of Naval Research.

References

Andrew J Bass and John D Storey. The optimal discovery procedure for significance analysis of general gene
expression studies. Bioinformatics, 37(3):367-374, 08 2020. doi: 10.1093/bioinformatics/btaa707. URL
https://doi.org/10.1093/bioinformatics/btaa707.

SE Calvano, W Xiao, DR Richards, RM Felciano, HV Baker, RJ Cho, RO Chen, BH Brownstein, JP Cobb,
SK Tschoeke, C Miller-Graziano, LI, Moldawer, MN Mindrinos, RW Davis, RG Tompkins, and SF Lowry.
A network-based analysis of systemic inflammation in humans. Nature, 437:1032-1037, 2005. doi: 10.1038/
nature03985. URL http://www.nature.com/nature/journal/v437/n7061/full/nature03985.html.

Ingrid Hedenfalk, David Duggan, Yidong Chen, Michael Radmacher, Michael Bittner, Richard Simon,
Paul Meltzer, Barry Gusterson, Manel Esteller, Mark Raffeld, Zohar Yakhini, Amir Ben-Dor, Edward

33


https://doi.org/10.1093/bioinformatics/btaa707
http://www.nature.com/nature/journal/v437/n7061/full/nature03985.html

Dougherty, Juha Kononen, Lukas Bubendorf, Wilfrid Fehrle, Stefania Pittaluga, Sofia Gruvberger,
Niklas Loman, Oskar Johannsson, Hakan Olsson, Benjamin Wilfond, Guido Sauter, Olli-P. Kallion-
iemi, Ake Borg, and Jeffrey Trent. Gene-expression profiles in hereditary breast cancer. New FEng-
land Journal of Medicine, 344(8):539-548, 2001. doi: 10.1056/NEJM200102223440801. URL http:
//dx.doi.org/10.1056/NEJM200102223440801. PMID: 11207349.

Y Idaghdour, JD Storey, SJ Jadallah, and G Gibson. A genome-wide gene expression signature of envi-
ronmental geography in leukocytes of moroccan amazighs. PLoS Genetics, 4. doi: 10.1371/journal.pgen.
1000052.

Jeffrey T Leek and John D Storey. Capturing heterogeneity in gene expression studies by surrogate variable
analysis. PLoS Genet, 3(9):e161, 09 2007. doi: 10.1371/journal.pgen.0030161.

Jeffrey T Leek and John D Storey. A general framework for multiple testing dependence. Proc Natl Acad
Sci U S A, 105(48):18718-23, Dec 2008. doi: 10.1073/pnas.0808709105.

Jeffrey T. Leek, Eva Monsen, Alan R. Dabney, and John D. Storey. Edge: extraction and analysis of
differential gene expression. Bioinformatics, 22(4):507-508, 2006. doi: 10.1093/bioinformatics/btk005.
URL http://bioinformatics.oxfordjournals.org/content/22/4/507 .abstract.

Graham E. J Rodwell, Rebecca Sonu, Jacob M Zahn, James Lund, Julie Wilhelmy, Lingli Wang, Wenzhong
Xiao, Michael Mindrinos, Emily Crane, Eran Segal, Bryan D Myers, James D Brooks, Ronald W Dayvis,
John Higgins, Art B Owen, and Stuart K Kim. A transcriptional profile of aging in the human kidney.
PLoS Biol, 2(12):e427, 11 2004. doi: 10.1371/journal.pbio.0020427.

JD Storey. A direct approach to false discovery rates. Journal of the Royal Statistical Society Series B-
Statistical Methodology, 64:479-498, 2002.

John D. Storey. The optimal discovery procedure: a new approach to simultaneous significance testing.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(3):347-368, 2007. ISSN
1467-9868. doi: 10.1111/j.1467-9868.2007.005592.x. URL http://dx.doi.org/10.1111/j.1467-9868.
2007 .005592.x.

John D Storey and Robert Tibshirani. Statistical significance for genomewide studies. Proc Natl Acad Sci
U S A, 100(16):9440-5, Aug 2003. doi: 10.1073/pnas.1530509100.

John D. Storey, Wenzhong Xiao, Jeffrey T. Leek, Ronald G. Tompkins, and Ronald W. Davis. Significance
analysis of time course microarray experiments. Proceedings of the National Academy of Sciences of
the United States of America, 102(36):12837-12842, 2005. doi: 10.1073/pnas.0504609102. URL http:
//www.pnas.org/content/102/36/12837 . abstract.

John D. Storey, James Y. Dai, and Jeffrey T. Leek. The optimal discovery procedure for large-scale sig-
nificance testing, with applications to comparative microarray experiments. Biostatistics, 8(2):414-432,
2007. doi: 10.1093/biostatistics/kx1019. URL http://biostatistics.oxfordjournals.org/content/
8/2/414 .abstract.

Sangsoon Woo, Jeffrey T. Leek, and John D. Storey. A computationally efficient modular optimal discovery
procedure. Bioinformatics, 27(4):509-515, 2011. doi: 10.1093/bioinformatics/btq701. URL http://

bioinformatics.oxfordjournals.org/content/27/4/509.abstract.

34


http://dx.doi.org/10.1056/NEJM200102223440801
http://dx.doi.org/10.1056/NEJM200102223440801
http://bioinformatics.oxfordjournals.org/content/22/4/507.abstract
http://dx.doi.org/10.1111/j.1467-9868.2007.005592.x
http://dx.doi.org/10.1111/j.1467-9868.2007.005592.x
http://www.pnas.org/content/102/36/12837.abstract
http://www.pnas.org/content/102/36/12837.abstract
http://biostatistics.oxfordjournals.org/content/8/2/414.abstract
http://biostatistics.oxfordjournals.org/content/8/2/414.abstract
http://bioinformatics.oxfordjournals.org/content/27/4/509.abstract
http://bioinformatics.oxfordjournals.org/content/27/4/509.abstract

	Introduction
	Citing this package
	Getting help
	Quick start guide
	Case study: static experiment
	Importing the data
	Creating the full and null models
	The deSet object
	Fitting the data
	Significance analysis
	Likelihood ratio test
	Optimal discovery procedure

	Significance results

	Case study: independent time course experiment
	Importing the data
	Creating the full and null models
	The deSet object
	Fitting the data
	Significance analysis
	Likelihood ratio test
	Optimal discovery procedure

	Significance results

	Case study: longitudinal time course experiment
	Importing the data
	Creating the full and null models
	The deSet object
	Fitting the data
	Significance analysis
	Likelihood ratio test
	Optimal discovery procedure

	Significance results

	sva: Surrogate variable analysis
	qvalue: Estimate the q-values
	Advanced topic: Using the ExpressionSet object

