
Analyse RT–PCR data with ddCt

Jitao David Zhang, Rudolf Biczok and Markus Ruschhaupt

October 30, 2025

Abstract

Quantitative real–time PCR (qRT–PCR or RT–PCR for short) is a laboratory technique based on
the polymerase chain reaction, and is commonly used to amplify and quantify a targeted nucleotide
molecule simultaneously. The data analysis of qRT–PCR experiments can be divided in subsequent
steps: importing the data, setting reference sample(s) and housekeeping gene(s), (optional) filtering,
applying algorithm for the relative expression, and finally reporting the results in the form of text
and figure. ddCt package implements the 2−∆∆CT algorithm in a pipeline as described above and
performs end–to–end analysis of qRT-PCR experiments in R and Bioconductor. In this vignette
we introduce the usage of the pipeline1.

This vignette introduces the analysis of RT–PCR data with ddCt by a step–to–step guide through
the pipeline. The idea is that the user could read the vignette, modify the parameters to her/his need,
and then use the Sweave function in R to perform the analysis. The Sweave function converts the
’.Rnw’ version into a LATEX file while processing the RT–PCR data in the background. It gives the same
result as if the user invokes the pipeline in the way described in the section 3.1.

The vignette begins with a short description of the values to be calculated by the ddCt. Then it
explains the paramters to be specified by the user in depth.

1 Introduction

Several values are calculated during pipeline by Sweaving this document. The most important ones
are explained here in the order of the execution. To simply the discussion, the values discussed are
calculated without efficiencies (see below).

1. The mean or median of the technical replicates for one gene–sample pair combination is the CT

value.

2. For a sample A the CT value of the housekeeping gene (or the median of the CT values of all
housekeeping genes) is subtracted from the corresponding CT value of a gene Gene1. The result
is the dCT value for Gene1 and sample A. This value is used for the t-test and the Wilcoxon test.

3. For a gene Gene1 the dCT value of the reference sample (or the mean of the dCT values of all
reference samples) is subtracted from the corresponding dCT value of Gene1 and a sample B.
This is called the ddCT value for Gene1 and sample B.

1For more general information about qRT–PCR and the 2−∆∆CT algorithm, please follow the another vignette rtPCR
released along the package ddCt.

1

4. The transformation x → 2−x is applied to each ddCT value. The resulting value is called ’exprs’
(used to be named as ’level’, these two words are exchangable in this document).

Additionally, for each value an error is calculated. This is based on the standard error of the mean
(S.E.M) if the mean is used to summarize the replicates. If the median is used for summarization of
the individual Ct values, the MAD2 divided by the square root of replicate number is used as an error
estimate.

2 Prerequisites

The package ddCt requires the latest version of R to perform properly. Please check the DESCRIP-
TION file along the package for the requirement of packages.

To run this document and perform the analysis, you need a tab-delimited plain text file containing
the individual Ct values of your experiment. This file is usually exported from the software used to
measure the Ct values, for example from SDM©Software of Roche Coop.. It is important that you ex-
port the individual Ct values, since normally the software combines the replicates of the measurements
to one value. See the file extdata/Experiment1.txt in the directory of the ddCt package for an example.

Once the file is ready you can go on to set parameters.

3 Using ddCt

3.1 Invoke the pipeline

To use the functionality of the ddCt package, one can

• Writting R scripts with the functions implemented in the ddCt. It requires basic programming
skills but provides the maximum flexibility. See the vignette rtPCR for a short example and the
manual pages of the functions in the package.

• Calling the ddCt script in the scripts sub–directory in the ddCt installation package. This script
can be invoked by either typing in the command line, or by modifying the parameters in this
vigenette and then run the Sweave function. Actually this vignette is just a wrapper of the ddCt
script which describes the parameters. In the vigette we discuss this approach.

When using the ddCt script, One can call the ddCt script in the scripts sub–directory in the ddCt
installation package (PKG_DIR in the following samples) via the Rscript command in the command
line3:

Rscript PKG_DIR/scripts/ddCt.R -inputFile="PKG_DIR/extdata/Experiment1.txt"

This command-line approach does not need to invoke a R session and is easy to be built into
automatic analysis pipelines. It is however hard to know all the possible parameters and not easy to be
used by users who are not familiar with the command line.

2median absolute deviation, defined as MAD = median|xi − x̃|, where x̃ is the median of x. Its relationship with
standard deviation σ can be expressed as σ ≈ 1.4826MAD

3The examples shown here are for Debian Linux system, on the windows system the path separator has to be modified,
however the functionality is the same

2

Alternatively, one could load the script via the source function in the R prompt. If you do so,
you have to pass the parameters as a list to the ddCtExec function, which is an end–to–end function
combining data import, analysis and report:

> scFile <- system.file("scripts/ddCt.R", package="ddCt")
> inputFile <- system.file("extdata/Experiment1.txt", package="ddCt")
> source(scFile)
> ddCtExec(list(inputFile=inputFile, ...))

The parameters for the ddCtExec function are all equal with parameters in the Rscript call.
In this example, we use the second way to invoke the ddCt package.

> source(system.file("scripts", "ddCt.R", package="ddCt"))

3.2 Parameters

Table 1 on the page 3 illustrates the usable parameters in the ddCt.R script. Not all parameters have to be
set or they already have default values. Only inputFile, referenceGene and referenceSample
are required parameters.

Table 1: List of parameters

Parameter Description Required Default
inputFile a valid SDS input file Yes NULL
referenceGene houskeeping gene to use Yes NULL
referenceSample calibration sample to use Yes NULL
loadPath directory, from which the in-

put files are loaded
No Working directory

savePath output directory No Working directory
confFile load parameters from this R

script
No NULL

sampleAnnotationFile optional annotation file No NULL
columnForGrouping columns used to group out-

put
No NULL

onlyFromAnnotation only use annotated samples No FALSE
geneAlias replace specified gene

names
No NULL

sampleAlias replace specified sample
names

No NULL

threshold threshold value No 40
mode the used algorithm mode No median
plotMode the kind of values which

schould be ploted (Ct, level,
...)

No c("level","Ct")

algorithm use ddCt or ddCtWihtE al-
gorithm

No ddCt

efficiencies efficience vaue for each gene No NULL
Continued on next page

3

Table 1 – continued from previous page
Parameter Description Required Default
efficienciesError error value No NULL
genesRemainInOutput show only these specified

genes in output
No NULL

samplesRemainInOutput show only these specified
genessamples in output

No NULL

genesNotInOutput dont show these specified
genes in output

No NULL

samplesNotInOutput dont show these specified
genessamples in output

No NULL

groupingBySamples plot output by No TRUE
plotPerObject generate one plot per kind of

value (Ct, level, ...)
No TRUE

groupingForPlot group also in plot No NULL
groupingColor The color for each bar No c("#E41A1C","#377EB8","#4DAF4A",

"#984EA3","#FF7F00")
cutoff cutoff value No NULL
brewerColor color for the brewer No c("Set3","Set1","Accent",

"Dark2","Spectral","PuOr","BrBG")
legend show legend No TRUE
ttestPerform perform a TTest No FALSE
ttestCol color of the TTest No NULL
pairsCol color of the pairs No NULL
samplesRemainInTTest use this samples for TTest No NULL
samplesNotInTTest dont use this samples for

TTest
No NULL

samplesRemainInCor use this samples for correla-
tion plot

No NULL

samplesNotInCor dont use this samples for
correlation plot

No NULL

4 Setting parameters

4.1 Input and output directories

First you have to specify the directory where your data is stored (loadPath) and the directory where
the results are supposed to be stored (savePath). You can specify the path relatively to the directory
you are in when starting the script in R.

> params <- list(loadPath = system.file("extdata", package="ddCt"),
+ savePath = getwd())

4.2 Input files

Then you have to specify the name of the exported file from the RT–PCR device containing the indi-
vidual Ct values (inputFile). Optionally, you may specify a file containing additional annotation

4

data related to the samples (sampleAnnotationFile). Refer to the file ’SampleAnno.txt’ released
along the package as an example. The file should be a tab-delimited with several columns and one row
for each sample. The first column must has the column name of ’Sample’ and include the sample
names. Also a valid annotation file is in the form of Table 2:

Sample Variable1 Variable2 Variable3
Sample2 1 0 1
Sample1 1 1 1

Table 2: Simple structure of an annotation file

This file with additional information is important if you want to perform the t–test, if you use special
colors for groups of samples, or if you want the samples to be grouped according to one column of the
sample annotation file that can be specified through the parameter columnForGrouping. If none of
these is important, just set all parameters to NULL. This also holds true for other parameters described
below: setting NULL will make the ddCt neglect the parameter. If you have a sample annotation
file and want to include only samples from this file into your final object, you can set the parameter
’useOnlySamplesFromAnno’.

> params$confFile <- system.file("scripts", "ddCt.conf", package="ddCt")
> params$inputFile <- c("Experiment1.txt")
> params$sampleAnnotationFile = NULL
> params$columnForGrouping = NULL
> params$onlyFromAnnotation = FALSE

4.3 Change gene names and sample names (optional)

You may change gene names and sample names, for instance to make the figure report of the data
pretty. These can be done in the ddCt package.

In the following example, ’Gene1’ will become ’Gene A’, ’Gene4’ will become ’Gene B’, and so
on. In the final plot, ’Gene A’ will be plotted first, then ’Gene B’ followed by ’Gene C’, ’HK1’ and
finally ’HK2’, which is the result of default ordering or factor. If you want to rename genes, all genes
have to be included into this list, otherwise an error will be raised.

The rename of the samples follow a similar way by setting the variable sampleAlias in the
params list.

> #params$geneAlias = c("Gene1"="Gene A",
> # "Gene4"="Gene B",
> # "Gene5"="Gene C",
> # "Gene2"="HK1",
> # "Gene3"="HK2")
> #params$sampleAlias = NULL

Attention: If you rename genes or samples, the new names must be used for the parameters in the
settings below.
In the commald-line you can set sutch a parameter in this way:

Rscript ddCt.R -geneAlias=Gene1="Gene A",Gene2="Gene B" ...

5

4.4 Housekeeping genes and reference samples

To calculate relative expression, one has to specify the housekeeping gene(s) and the reference sam-
ple(s). In this sample, one reference sample and two housekeeping genes are used. If more than one
object is specified, the names have to be given as shown in this example.

If you specify more than one housekeeping gene, the software will use the mean of the Ct values
of the housekeeping genes for the normalization. If you use more than one sample, the algorithm uses
the mean of the chosen samples as the reference.

> params$referenceGene <- c("Gene1", "Gene2")
> params$referenceSample <- c("Sample1")

The comand-line version would look like this:

Rscript ddCt.R -referenceGene=Gene1,Gene2 ...

You may set a threshold to filter the CT values, which is used to set an upper boundary of the CT

value to be considered. Any CT value above this threshold will be treated as ’undetermined’.

> params$threshold <- 40

And next step you have to specify if you want to use the ’mean’ or the ’median’ to summarize
the individual CT values for a gene/sample combination. The median is often more appropriate when
replicate number is large since it is more robust.

> params$mode = "median"

4.5 Efficiencies (optional)

You may include amplification efficiency for each gene (see the vignette rtPCR for more background
information). There is also the possibility to include error estimates for the efficiencies (for example
the standard deviation). These estimates will be used for the error calculation. These efficiencies can
be specified in the following way:

> params$efficiencies = c("Gene1"=1.9, "Gene2"=2, ...)

where "Gene1" represents the gene and 1.9 the efficience which is used for this gene
If you use efficiencies, only the raw Ct value and the final ’level’ is calculated. There are no ’dCt’ or
’ddCt’ values. Hence no t-test can be performed if efficiencies are used. In this example we do not use
efficiencies.

> #params$efficiencies = c("Gene A"=1.9,"Gene B"=1.8,"HK1"=2,"Gene C"=2,"HK2"=2)
> #params$efficienciesError = c("Gene A"=0.01,"Gene B"=0.1,"HK1"=0.05,"Gene C"=0.01,"HK2"=0.2)

6

4.6 Plot parameter (optional)

The following parameters are used to change the final plot. First you have to specify what you want to
plot. Here you can specify either or both of the following two choices:

• level - For each gene and sample the relative expression to the reference line is plotted

• Ct - the raw, unnormalized but merged Ct values are plotted

> params$plotMode = c("level","Ct")

There may be cases where experiments want to exlcude certain gene and/or sample in the plot. Or
sometimes one merely wants to plot a small fraction of genes and/or samples. One could set options in
the parameter. For example the following example excludes the "NTC" sample in the plot:

> #REMAIN
> params$genesRemainInOutput = NULL
> params$samplesRemainInOutput = NULL
> #NOT
> params$genesNotInOutput = NULL
> params$samplesNotInOutput = NULL

Do you want the final plot to be drawn in a way such that the samples are plotted next to each other
?

> params$groupingBySamples = FALSE

set the variable plotPerObject to FALSE if one does not need one plot for each pair.

> params$plotPerObject = TRUE

This is often useful if you have many genes or samples. Depending on the parameter groupingBySamples
either each gene (groupingBySamples=TRUE) will have its own plot, or each sample (groupingBySamples=FALSE)
will have its own plot.

If you have a single plot for each individual gene, then you may color the sample bars according to
one parameter of your sample annotation file (if you have specified such a file in the beginning of this
script). You may also specify the colors (maybe with the help of RColorBrewer).

> #params$groupingForPlot = NULL
> #params$groupingColor = c("#E41A1C","#377EB8","#4DAF4A","#984EA3","#FF7F00")

You may specify a cutoff for the y axis for all plots. Then all plots have the same scale.

> #params$cutoff = NULL

With the parameter brewerColor you can specify color sets you want to use in order to color
the individual bars. For additional information have a look at the description of the RColorBrewer
package.

> #params$brewerColor = c("Set3","Set1","Accent","Dark2","Spectral","PuOr","BrBG")

Set legende as TRUE in case you want the legend along the plot. Sometimes the plot will be
messed up if the legend is plotted, so please have a try.

> params$legende = TRUE

7

4.7 t-test and Wilcoxon test specification (optional)

You may perform either t–test or Wilcoxon test if you have specified a sample annotation file above.
Attention: The t–test and Wilcoxon test will not work if efficiencies are used for the calculation.

> params$ttestPerform = FALSE

If you want to do a t–test/Wilcoxon test, you have to specify the name of the column of your sample
information file that includes the group information needed for the tests. If there are more than two
groups in this column, tests for each possible pair of groups are performed.

> #params$ttestCol = NULL

If you want to perform a paired t–test/Wilcoxon test, you have to specify a column of your sample
information file that contains information describing the pairing of the samples. A pair of samples must
have the same number/parameter in that column. Please have a look at the example.

> #params$pairsCol = NULL

You can specify whether you want to exclude some samples from the t-test. Here we again want to
exclude the ’NTC’ sample.

> #params$samplesRemainInTTest = NULL
> #params$samplesNotInTTest = NULL

4.8 Housekeeping gene correlation (optional)

If more than one housekeeping gene is used, the correlation (Pearson or Spearman) for each pair is
calculated, together with a correlation plot. You may specify some samples that are not supposed to be
used for the correlation calculation, for example negative control. In the default setting those samples
are excluded that are also excluded from the plot.

> #params$samplesRemainInCor = NULL
> #params$samplesNotInCor = NULL

4.9 Execution

Now all parameters have been set and you can pass them to the ddCtExec function

> ddCtExec(params)

At last all you have to do is to start R, change the directory if you like, and then type the following:

> Sweave("rtPCR-usage.Rnw")

The output is stored in a directory called Result_YOU_INPUT_FILENAMES

8

5 Results

Various files are created during the calculation process. The most important files are the following:

• A tab-delimited text file containing all calculated values for each gene/sample combination, e.g.
Ct+error, dCt+error, ddCt+error, level+error. Name of the file: ’allValues’ followed by the name
of the file containing the individual Ct values and extension.

• A .pdf file including the plots, either of the ’levels’ or the raw Ct values (depending on your
choice) Name of the file: ’Level’ or ’Ct’ followed by ’Result’, the name of the file containing
the individual Ct values and the extension. In this example the name is ’LevelResultTest.pdf’.

• A tab-delimited text file containing the level and the error of the level. This file can be used in
Excel to create own plots with error bars. Name of the file: ’LevelPlusError’ followed by the
name of the file containing the individual Ct values and extension.

• A tab-delimited text file containing the results from the t-test and the Wilcoxon test (if these tests
have been performed). Name of the file: ’ttest’ followed by the name of the groups used in the
test, followed by the name of the file containing the individual Ct values and extension. In this
example we have: ’ttestG1G2Test.txt’.

• An R object containing all calculated values for each gene/sample combination, e.g. Ct+error,
dCt+error, ddCt+error, level+error. Furthermore the object includes additional sample informa-
tion. Name of the file: ’Result’ followed by the name of the file containing the individual Ct
values and extension.

There are additional tab-delimited text files and .html files containing ’Ct’,’dCt’, ’ddCt’ and ’level’
information. All this information is also included in the ’allValues’ file, but in a different format.

9

6 Session Info

The script has been running in the following session:

• R Under development (unstable) (2025-10-20 r88955), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Time zone: America/New_York

• TZcode source: system (glibc)

• Running under: Ubuntu 24.04.3 LTS

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so

• LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: Biobase 2.71.0, BiocGenerics 0.57.0, RColorBrewer 1.1-3, ddCt 1.67.0,
generics 0.1.4, lattice 0.22-7

• Loaded via a namespace (and not attached): compiler 4.6.0, grid 4.6.0, tools 4.6.0, xtable 1.8-4

10

	Introduction
	Prerequisites
	Using ddCt
	Invoke the pipeline
	Parameters

	Setting parameters
	Input and output directories
	Input files
	Change gene names and sample names (optional)
	Housekeeping genes and reference samples
	Efficiencies (optional)
	Plot parameter (optional)
	t-test and Wilcoxon test specification (optional)
	Housekeeping gene correlation (optional)
	Execution

	Results
	Session Info

