Advanced analysis using baySeq; generic
distribution definitions

Thomas J. Hardcastle

October 31, 2025

1 Generic Prior Distributions

baySeq now offers complete user-specification of underlying distributions. This vignette de-
scribes using baySeq under this protocol. Familiarity with standard (negative-binomial) bay-
Seq is assumed; please consult the other vignettes for a description of this approach.

Analysis is carried out through specification of a densityFunction class. The primary value
in a densityFunction object is the @density slot, a user-defined function that should take
variables x, observables and parameters. x corresponds to a row of data in a countData
object. observables is a list object of observed values that may influence the model. By de-
fault, the @libsizes and @seglens values of the countData object will be internally appended
to this list, unless objects with these names are otherwise specified by the user. parameters
is a list object of parameters to be empirically estimated from the data with the getPriors
function and used to estimate likelihoods with the getLikelihoods function. The @dist
function should return a vector of log-likelihood values (or NA for invalid parameter choices)
of the same length as the input variable x.

Other required slots of the densityFunction object are initiatingValues, a vector of initi-
ating values to be used in optimisation of the parameters to be used in the @dist slot (and
thus defining the length of the parameter object) and equalOverReplicates, a specification
of which parameters are fixed for every replicate group and which may vary for different
experimental conditions. If only one parameter is variable over experimental conditions, the
Nelder-Mead optimisation used may be unstable, and one-dimensional optimisation with user
defined functionally specified lower and upper bounds may (optionally) be provided; other-
wise, Nelder-Mead will be attempted.

Optionally a function may be provided in @stratifyFunction to stratify the data and improve
prior estimation in the tails where the samplesize argument in the getPriors function is less
than the row dimension of the countData object. If this is provided, the @stratifyBreaks
slot should give the number of strata to be used.

Below a model is constructed based on the normal distribution. The standard deviation is
assumed to be constant for a given row of data across all experimental conditions, while
the means (normalised by library scaling factor) are allowed to vary across experimental
conditions.

If parallelisation is available, it is useful to use it.
> if(require("parallel")) cl <- makeCluster(4) else cl <- NULL

> library(baySeq)
> normDensityFunction <- function(x, observables, parameters) {

+ if(any(sapply(parameters, function(x) any(x < 0)))) return(rep(NA, length(x)))

+ dnorm(x, mean = parameters[[2]] * observables$libsizes, sd = parameters[[1]], log = TRUE)

+ }

> normDensity <- new("densityFunction", density = normDensityFunction, initiatingValues = c(0.1, 1),
+ equalOverReplicates = c(TRUE, FALSE),

+ lower = function(x) 0, upper = function(x) 1 + max(x) * 2,

+ stratifyFunction = rowMeans, stratifyBreaks = 10)

We construct the countData object as before.

> data(simData)
> (D <- new("countData", data = simData,
+ replicates = c("simA", "simA", "simA", "simA", "simA",

+ "simB", "simB", "simB", "simB", "simB"),
+ groups = list(NDE = ¢(1,1,1,1,1,1,1,1,1,1),
+ DE = ¢(1,1,1,1,1,2,2,2,2,2))
+)

> libsizes(CD) <- getlLibsizes(CD)
> densityFunction(CD) <- normDensity

We can then fit priors and calculate posterior likelihoods based on our specified distribu-
tional model. The distributional model is specified in the 'getPriors’ function and will be
automatically used in the ‘getLikelihoods’ function

> normCD <- getPriors(CD, cl = cl)
> normCD <- getLikelihoods(normCD, cl = cl)

Similarly, we can construct a generic version of the negative-binomial model.

nbinomDensityFunction <- function(x, observables, parameters) {
if(any(sapply(parameters, function(x) any(x < 0)))) return(NA)
dnbinom(x, mu = parameters[[1]] * observables$libsizes * observables$seglens, size = 1 / parameters[[2]

densityFunction(CD) <- new("densityFunction", density = nbinomDensityFunction, initiatingValues = c(0.1,
equalOverReplicates = c(FALSE, TRUE),

lower = function(x) 0, upper = function(x) 1 + max(x) * 2,

+ stratifyFunction = rowMeans, stratifyBreaks = 10)

> nbCD <- getPriors(CD, cl = cl)

> nbCD <- getlLikelihoods(nbCD, cl = cl)

>
+
+
+ }
>
+
+

We can compare this to the standard analysis of these data.

> (D <- getPriors.NB(CD, cl = cl)
> (D <- getlLikelihoods(CD, cl = cl)

1.0

o] Q
& g+ °
€]
: &
E 8 %%
o
g g — 8%)
N
N
o
S
I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Generic (NB-distribution) baySeq

Figure 1: Likelihoods of DE estimated by standard/generic baySeq"

The generic negative-binomial data performs almost identically to standard baySeq. The
methods differ in that the standard baySeq uses quasi-maximum-likelihood to estimate the
priors, while generic baySeq uses maximum-likelihood (since no generic method exists for
quasi-maximum-likelihood on arbitrary distributions).

o
S — —
—
o _|
[ee]
o _|
(o]
7]
a
|_
o _|
<
o _|
N
—— standard baySeq
o —— Generic (NB-distribution) baySeq
| | | | |
0 200 400 600 800
FPs

Figure 2: ROC curves estimated by standard/generic baySeq"

Paired Data Analysis

We illustrate the possibilities of ‘null’ data, in which two separate models are applied to
data equivalently expressed across all samples. The process for analysing paired data follows
approximately the same steps as for analysing unpaired data, however, two different types of
differential expression can exist within paired data. Firstly, we can find differential expression
between replicate groups, as before. However, we can also find (consistent) differential
expression between pairs; this would occur when for a single row of data, the first member of
each pair differs from the second member of each pair. baySeq can identify both these types
of differential expression simultaneously, and we implement this proceedure below.

We begin by loading a simulated dataset containing counts for four paired datasets.
> data(pairData)
The first four columns in these data are paired with the second four columns. We construct

a count data containing paired data in a similar fashion to the countData object. Note that
the data are now three dimensional; for each row and each sample there are two observations.

> pairCD <- new("countData", data = array(c(pairData[,1:4], pairData[,5:8]), dim

+ replicates = ¢(1,1,2,2),
+ groups = list(NDE = ¢(1,1,1,1), DE = ¢(1,1,2,2)),
+ densityFunction = bbDensity)

We can find the library sizes for the data with the getLibsizes function.

> libsizes(pairCD) <- getlLibsizes(pairCD)

We estimate an empirical distribution on the parameters of a beta-binomial distribution by
bootstrapping from the data, taking individual counts and finding the maximum likelihood
parameters for a beta-binomial distribution. By taking a sufficiently large sample, an empirical
distribution on the parameters is estimated. A sample size of around 10000 iterations is
suggested, depending on the data being used), but 1000 is used here to rapidly generate the
plots and tables.

> pairCD <- getPriors(pairCD, samplesize = 1000, cl = cl)
We then acquire posterior likelihoods as before. The use of 'nullData = TRUE’ in this context

allows us to identify pairs which show no differential expression between replicate groups, but
does show deviation from a one-to-one ratio of data between pairs.

> pairCD <- getlLikelihoods(pairCD, pET = 'BIC', nullData = TRUE, cl = cl)

We can ask for the top candidates for differential expression between replicate groups using
the topCounts function as before.

> topCounts(pairCD, group = 2)

X1.1 X1.2 X2.1 X2.2 likes DE FDR.DE FWER.DE
NA 159:73 44:24 0:49 0:68 0.9978810 1>2 0.002118967 0.002118967
NA.1 53:12 19:7 0:77 0:6 0.9949700 1>2 0.003574459 0.007138260
NA.2 709:0 895:0 373:191 124:60 0.9934377 1>2 0.004570396 0.013653686
NA.3 25:0 73:0 8:3 36:13 0.9907158 1>2 0.005748848 0.022811128
NA.4 80:0 48:0 36:50 12:3 0.9877493 1>2 0.007049215 0.034782360
NA.5 63:0 21:0 47:80 6:13 0.9850684 1>2 0.008362950 0.049194626
NA.6 268:0 39:0 74:107 98:36 0.9808504 1>2 0.009903899 0.067402163
NA.7 123:63 38:36 1198:179 350:18 0.9661297 2>1 0.012899703 0.098989559
NA.8 8:0 15:0 21:16 2:1 0.9655804 1>2 0.015290807 0.130002012
NA.9 43:19 44:46 106:6 133:5 0.9649350 2>1 0.017268230 0.160508525

However, we can also look for consistent differential expression between the pairs.

> topCounts(pairCD, group = 1)

X1.1 X1.2 X2.1 X2.2 likes FDR.NDE FWER .NDE
NA 17:70 1:40 9:117 3:45 0.9924370 0.007563041 0.007563041
NA.1 1027:27 835:8 1155:29 138:0 0.9900925 0.008735279 0.017395626
NA 1:38 0:68 0:28 0:26 0.9860246 0.010481969 0.031127867

1:2 1:16 2:41 0:2 0.9787194 0.013998455 0.068118378

0 0

.1 0 0

. 0 0
NA.3 1:4 1:11 0:5 1:14 0.9827342 0.012177921 0.047856196

.4 0 0
.5 69:1 10:1 119:17 53:5 0.9781863 0.015300994 0.088446157

c(nrow(pairData), 4, 2))

NA.6 0:12 0:4 0:4 0:13 0.9659482 0.017979683 0.119486223
NA.7 0:30 0:5 0:60 0:24 0.9657384 0.020014926 0.149654051
NA.8 0:4 0:21 0:2 0:12 0.9656937 0.021602858 0.178826286
NA.9 0:3 0:12 0:15 0:4 0.9656224 0.022880330 0.207056253

Different Model Priors

It is now possible to use different model priors for different subsets of the countData object.
If we expect a certain class of genes (for example) to have a different prior likelihood towards
differential expression than another such class, we can separate the two sets and estimate (or
set) the model priors independently.

Let us suppose that we have reason to believe that the first hundred genes in the ‘CD’ object
are likely to behave differently to the remaining genes. Then

> # FAILS Bioc 3.17
> (Dv <- getLikelihoods(nbCD, modelPriorSets = list(A = 1:100, B = 101:1000), cl

The model priors used are recorded in the @priorModels slot.

> (Dv@priorModels

We can see the difference in performance by computing the ROC curves as before. Using
different model priors can substantially improve performance, although obviously we have
cheated here by splitting exactly those data simulated as DE and those as none-DE. It should
also be recognised that this approach may bias downstream analyses; e.g. GO enrichment
analysis.

Figure 3: ROC curves estimated by standard/generic/variable model priors baySeq"

Several pre-existing distributions are built into baySeq. Here we use a pre-developed zero-
inflated negative binomial distribution to analyse zero-inflated data.

> data(zimData)

> (D <- new("countData", data = zimData,

+ replicates = c("simA", "simA", "simA", "simA", "simA",
+ "simB", "simB", "simB", "simB", "simB"),
+ groups = list(NDE = ¢(1,1,1,1,1,1,1,1,1,1),
+ DE = ¢(1,1,1,1,1,2,2,2,2,2))
+)

> libsizes(CD) <- getlLibsizes((CD)

> densityFunction(CD) <- nbinomDensity

> (D <- getPriors(CD, cl = cl)

> (D <- getLikelihoods(CD, cl = cl)

> (Dz <- CD

> densityFunction(CDz) <- ZINBDensity
> (Dz <- getPriors(CDz, cl = cl)

> (Dz <- getlLikelihoods(CDz, cl = cl)

cl)

Finally, we shut down the cluster (assuming it was started to begin with).

> if(!is.null(cl)) stopCluster(cl)

Session Info

> sessionInfo()

R Under development (unstable) (2025-10-20 r88955)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.23-bioc/R/1lib/1ibRblas.so

LAPACK: /usr/1ib/x86_64-1inux-gnu/lapack/liblapack.so0.3.12.

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:

0 LAPACK version 3.12.0

LC_TIME=en_GB
LC_MESSAGES=en_US.UTF-8
LC_ADDRESS=C
LC_IDENTIFICATION=C

[1] parallel stats graphics grDevices utils datasets methods base

other attached packages:
[1] baySeq_2.45.0

loaded via a namespace (and not attached):

[1] cli_3.6.5 knitr_1.50 rlang_1.1.6 xfun_0.54

[5] generics_0.1.4 S4Vectors_0.49.0 statmod_1.5.1 BiocStyle 2.39.0
[9] htmltools_0.5.8.1 stats4_4.6.0 locfit_1.5-9.12 rmarkdown_2.30

[13] grid_4.6.0 Seqinfo_1.1.0 evaluate_1.0.5 abind_1.4-8

[17] fastmap_1.2.0 yaml_2.3.10 IRanges_2.45.0 BiocManager_1.30.26
[21] compiler_4.6.0 limma_3.67.0 edgeR_4.9.0 lattice_0.22-7

[25] digest_0.6.37 GenomicRanges_1.63.0 tools_4.6.0

BiocGenerics_0.57.0

	1 Generic Prior Distributions
	2 Paired Data Analysis
	3 Different Model Priors

