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Abstract

Detecting the binding partners of a drug is one of the biggest challenges in drug research.
Thermal Proteome Profiling (TPP) addresses this question by combining the cellular thermal
shift assay concept [1] with mass spectrometry based proteome-wide protein quantitation [2].
Thereby, drug-target interactions can be inferred from changes in the thermal stability of a
protein upon drug binding, or upon downstream cellular regulatory events, in an unbiased
manner.

The analysis of TPP experiments requires several data analytic and statistical modeling steps
[3]- The package TPP facilitates this process by providing exectuable workflows that conduct
all necessary steps. This vignette explains the use of the package. For details about the
statistical methods, please refer to the papers [2, 3].
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Installation

1.1

1.2

To install the package, type the following commands into the R console

if (!requireNamespace("BiocManager", quietly=TRUE)){

}

install.packages("BiocManager")

BiocManager::install("TPP")

The installed package can be loaded by

library("TPP")

Special note for Windows users

The TPP package uses the openxisx package to produce Excel output [4]. openxlsx requires
a zip application to be installed on your system and to be included in the path. On Windows,
such a zip application ist not installed by default, but is available, for example, via Rtools.
Without the zip application, you can still use the "TPP' package and access its results via
the dataframes produced by the main functions.

TPP-TR and TPP-CCR analysis

The TPP package performs two analysis workflows:

1. Analysis of temperature range (TR) experiments: TPP-TR experiments combine
the cellular thermal shift assay (CETSA) approach with high-throughput mass spec-
trometry (MS). They provide protein abundance measurements at increasing tempera-
tures for different treatment conditions. The data analysis comprises cross-experiment
normalization, melting curve fitting, and the statistical evaluation of the estimated
melting points in order to detect shifts induced by drug binding.


http://cran.r-project.org/bin/windows/Rtools/
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2. Analysis of compound concentration range (CCR) experiments: TPP-CCR exper-
iments combine the isothermal dose-response (ITDR) approach with high-throughput
MS. The CCR workflow of the package performs median normalization, fits dose re-
sponse curves, and determines the pEC50 values for proteins showing dose dependent
changes in thermal stability upon drug treatment.

The following sections describe both functionalities in detail.

Analyzing TPP-TR experiments

Overview

The function analyzeTPPTR executes the whole workflow from data import through normal-
ization and curve fitting to statistical analysis. Nevertheless, all of these steps can be invoked
separately by the user. The corresponding functions can be recognized by their suffix tpptr.
Here, we first show how to start the whole analysis using analyzeTPPTR. Afterwards, we
demonstrate how to carry out single steps individually.

Before you can start your analysis, you need to specify information about your experiments:

= The mandatory information comprises a unique experiment name, as well as the isobaric
labels and corresponding temperature values for each experiment.

= Optionally, you can also specify a condition for each experiment (treatment or vehicle),
as well as an arbitrary number of comparisons. Comparisons are pairs of experiments
whose melting points will be compared in order to detect significant shifts.

The package retrieves this information from a configuration table that you need to specify
before starting the analysis. This table can either be a data frame that you define in your
R session, or a spreadsheet in .xlsx or .csv format. In a similar manner, the measurements
themselves can either be provided as a list of data frames, or imported directly from files
during runtime.

We demonstrate the functionality of the package using the dataset hdacTR_smallExample. It
contains an illustrative subset of a larger dataset which was obtained by TPP-TR experiments
on K562 cells treated with the histone deacetylase (HDAC) inhibitor panobinostat in the
treatment groups and with vehicle in the control groups. The experiments were performed
for two conditions (vehicle and treatment), with two biological replicates each. The raw
MS data were processed with the Python package isobarQuant, which provides protein fold
changes relative to the protein abundance at the lowest temperature as input for the TPP
package [3].

Each text file produced by isobarQuant contains, among others, the following information:
= The gene symbol per protein (column ‘gene_name’)

= The relative concentrations per protein, already normalized to the lowest temperature
(indicated by prefix ‘rel_fc_" and followed by the respective isobaric label)

= Quality control columns ‘qupm’ (quantified unique peptide matches), which describe
the number of unique peptide sequences in a protein group with reporter ions used
in protein quantification, and ‘gssm’ (quantified spectrum-sequence matches), which
are the number of spectrum to sequence matches [peptides] in a protein group with
reporter ions used in protein quantification.
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More details about the isobarQuant output format can be found in the supplementary manual
of the software (starting on page 7 of the document located at the provided link).

First, we load the data:

data("hdacTR_smallExample")
1s()

## [1] "hdacTR_config" "hdacTR_data"

This command loads two objects:
1. hdacTR data: a list of data frames that contain the measurements to be analyzed,

2. hdacTR_config: a configuration table with details about each experiment.

The configuration table

hdacTR_config is an example of a configuration table in data frame format. We also provide
a .xIsx version of this table. It is stored in the folder example_data/TR _example_data in your
package installation path. You can locate the example_data folder on your system by typing

system.file('example_data', package = 'TPP')

## [1] "/tmp/RtmpQW2nvv/Rinst226dd4fa74ed/TPP/example_data"

You can use both versions as a template for your own analysis

Let's take a closer look at the content of the configuration table we just loaded:

print(hdacTR_config)

## Experiment Condition ComparisonVT1l ComparisonVT2 126 127L 127H 128L
## 1 Vehicle_.1 Vehicle X 67 63 59 56
## 2 Vehicle 2 Vehicle X 67 63 59 56
## 3 Panobinostat_1 Treatment X 67 63 59 56
## 4 Panobinostat_2 Treatment X 67 63 59 56

##  128H 129L 129H 130L 130H 131L

# 1 53 50 47 44 41 37
## 2 53 50 47 44 41 37
# 3 53 50 47 44 41 37
## 4 53 50 47 44 41 37

It contains the following columns:
= Experiment: name of each experiment.
= Condition: experimental conditions (Vehicle or Treatment).
= Comparisons: comparisons to be performed.

= Label columns: each isobaric label names a column that contains the temperature the
label corresponds to in the individual experiments.

An additional Path column must be added to the table if the data should be imported from
files instead of data frames.


https://www.nature.com/article-assets/npg/nprot/journal/v10/n10/extref/nprot.2015.101-S1.pdf
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2.3 The data tables

hdacTR_data is a list of data frames containing the measurements for each experimental
condition and replicate

summary(hdacTR_data)

#i# Length Class Mode
## Vehicle_1 13 data.frame list
## Vehicle_ 2 13 data.frame list
## Panobinostat_1 13 data.frame list
## Panobinostat 2 13 data.frame list

They contain between 508 and 509 proteins each:

data.frame(Proteins = sapply(hdacTR_data, nrow))

## Proteins
## Vehicle_1 508
## Vehicle 2 509
## Panobinostat_ 1 508
## Panobinostat_2 509

Each of the four data frames in hdacTR_data stores protein measurements in a row wise
manner. For illustration, let's look at some example rows of the first vehicle group.

hdacVehiclel <- hdacTR_data[["Vehicle_1"]]

head (hdacVehiclel)

## gene_name gssm qupm rel_fc_126 rel_fc_127L rel_fc_127H rel_fc_128L

## 3286 HDAC1 5 4 0.00510359 0.0207088 0.0512665 0.0840443

## 3584 HDAC10 2 1 0.00000000 0.0180900 0.2511430 0.4034580

## 3000 HDAC2 7 5 0.02006570 0.0589077 0.0718648 0.1011260

## 2089 HDAC3 2 2 0.08706000 0.0891621 0.2103700  0.3226950

## 1602 HDAC4 4 4 0.04371190 0.1069160 0.1630480 0.2411050

## 607 HDAC6 5 4 0.00176507 0.0260307 0.0449839 0.0759111

H## rel_fc_128H rel_fc_129L rel_fc_129H rel_fc_130L rel _fc_130H rel_fc_131L
## 3286 0.158568 0.410777 0.622789 0.750158 0.866156 1
## 3584 0.582994 0.631114 0.769128 1.013330 1.093940 1
## 3000 0.556456 0.850373 0.842952 0.885415 0.972225 1
## 2089 0.459124 0.651561 0.626848 0.785872 0.740518 1
## 1602 0.382980 0.596979 0.831169 0.936279 0.955209 1
## 607 0.202110 0.366981 0.638239 0.891903 0.932266 1

The columns can be grouped into three categories:
= a column with a protein identifier. Called gene_name in the current dataset,

= the ten fold change columns all start with the prefix rel_fc_, followed by the isobaric
labels 126 to 131L,

= other columns that contain additional information. In the given example, the columns
gssm and qupm were produced by the python package isobarQuant when analyzing
the raw MS data. This metadata will be included in the package's output table.
Additionally, it can be filtered according to pre-specified quality criteria for construction
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of the normalization set. The original results of the isobarQuant package contain more
columns of this type. They are omitted here to keep the size of the example data within
reasonable limits.

Starting the whole workflow by analyzeTPPTR

The default settings of the TPP package are configured to work with the output of the python
package isobarQuant, but you can adjust it for your own data, if desired. When analyzing
data from isobarQuant, all you need to provide is:

= the configuration table,
= the experimental data, either as a list of data frames, or as tab-delimited .txt files,

= a desired output location, for example

resultPath = file.path(getwd(), 'Panobinostat_Vignette_ Example')

If you want to use data from other sources than isobarQuant, see section 2.6 for instructions.

If you import the data directly from tab-delimited .txt files, please make sure that the
entries are not encapsulated by quotes (for example, "entryl" or 'entry2’). All quotes will
be ignored during data import in order to robustly handle entries containing single quotes
(for example protein annotation by 5’ or 3").

By default, plots for the fitted melting curves are produced and stored in pdf format for each
protein during runtime and we highly recommend that you do this when you analyze your
data. However, producing plots for all 510 proteins in our dataset can be time consuming
and would slow down the execution of the current example. Thus, we first disable plotting
by setting the argument plotCurves=FALSE. Afterwards, we will produce plots for individual
proteins of interest. Note that, in practice, you will only be able to examine the results in an
unbiased manner if you allow the production of all plots.

We start the workflow by typing

TRresults <- analyzeTPPTR(configTable = hdacTR config,
methods = "meltcurvefit",
data = hdacTR_data,
nCores = 2,
resultPath = resultPath,
plotCurves FALSE)

## Warning: ‘aes_string()‘ was deprecated in ggplot2 3.0.0.

## i Please use tidy evaluation idioms with ‘aes()‘.

## i See also ‘vignette("ggplot2-in-packages")‘ for more information.

## 1 The deprecated feature was likely used in the TPP package.

##  Please report the issue to the authors.

## This warning is displayed once every 8 hours.

## Call ‘lifecycle::last _lifecycle warnings()‘ to see where this warning was
## generated.

## Warning: Using ‘size‘ aesthetic for lines was deprecated in ggplot2 3.4.0.
## 1 Please use ‘linewidth‘ instead.

## 1 The deprecated feature was likely used in the TPP package.

##  Please report the issue to the authors.
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## This warning is displayed once every 8 hours.
## Call ‘lifecycle::last _lifecycle warnings()‘ to see where this warning was
## generated.

This performs the melting curve fitting procedure in parallel on a maximum of two CPUs
(requirement for package vignettes). Without specifying the nCores argument, fitting is
performed by default on the maximum number of CPUs on your device.

analyzeTPPTR produces a table that summarizes the results for each protein. It is returned
as a data frame and exported to an Excel spreadsheet at the specified output location. It
contains the following information for each experiment:

= normalized fold changes,

= melting curve parameters,

= statistical test results,

= quality checks on the curve parameters and p-values,
= additional columns from the original input data.

The quality of the result for each protein is determined by four filters. Currently, these criteria
are checked only when the experimental setup includes exactly two replicates:

Filter Column name in result table
1. Is the minimum slope in each of the control vs. treatment exper- | minSlopes_less_than_0.06
iments < —0.067
2. Are both the melting point differences in the control vs treatment | meltP_diffs T vs V_greater V1 vs V2
experiments greater than the melting point difference between the
two untreated controls?

3. Is one of the p values for the two replicate experiments < 0.05 | min_pVals_less_0.05_and_max_pVals_less_0.1
and the other one < 0.17
4. Do the melting point shifts in the two control vs treatment ex- | meltP_diffs_have same_sign
periments have the same sign (i.e. protein was either stabilized or
destabilized in both cases)?

The current example revealed 7 out of 510 proteins that fulfilled all four requirements:

tr_targets <- subset(TRresults, fulfills_all_4_requirements)$Protein_ID
print(tr_targets)

## [1] "BAG2" "DDB2" "HDAC10" "HDAC6" "HDAC8" "IQSEC2" "STX4"

3 of the detected proteins belong to the HDAC family. Because Panobinostat is known to
act as an HDAC inhibitor, we select them for further investigation.

hdac_targets <- grep("HDAC", tr_targets, value=TRUE)
print(hdac_targets)

## [1] "HDAC10" "HDAC6" "HDAC8"

We next investigate these proteins by estimating their melting curves for the different treat-
ment conditions. However, we can only reproduce the same curves as before if the data is
normalized by the same normalization procedure. Although we only want to fit and plot melt-
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ing curves for a few proteins, the normalization therefore needs to incorporate all proteins in
order to obtain the same normalizaton coefficients as before. The following section explains
how to invoke these and other steps of the workflow independently of each other.

Starting individual steps of the workflow

Data import

Currently, the TPP package stores the data in ExpressionSets, and so we convert the data
that we have into the needed format. An advantage of the ExpressionSet container is its
consistent and standardized handling of metadata for the rows and columns of the data matrix.
This ability is useful for the given data, because it enables the annotation of each fold change
column by temperature values as well as the corresponding isobaric labels. Furthermore,
each protein can be annotated with several additional properties which can be used for
normalization or processing of the package output.

The function tpptrImport imports the data and converts it into ExpressionSets:
trData <- tpptrImport(configTable = hdacTR _config, data = hdacTR_data)
## Importing data. ..

## Comparisons will be performed between the following experiments:
## Panobinostat_1_vs_Vehicle_1

## Panobinostat_2_vs_Vehicle_2

##

## The following valid label columns were detected:
## 126, 127L, 127H, 128L, 128H, 129L, 129H, 130L, 130H, 131L.

##
## Importing TR dataset: Vehicle_1

## Removing duplicate identifiers using quality column ’qupm’...
## 508 out of 508 rows kept for further analysis.
##  -> Vehicle_1 contains 508 proteins.

## -> 504 out of 508 proteins (99.21%) suitable for curve fit (criterion: > 2
valid fold changes per protein).

#i#
## Importing TR dataset: Vehicle_ 2

## Removing duplicate identifiers using quality column ’qupm’...
## 509 out of 509 rows kept for further analysis.
## -> Vehicle_2 contains 509 proteins.

##  -> 504 out of 509 proteins (99.02%) suitable for curve fit (criterion: > 2
valid fold changes per protein).

##
## Importing TR dataset: Panobinostat_1

## Removing duplicate identifiers using quality column ’qupm’...
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## 508 out of 508 rows kept for further analysis.

## -> Panobinostat_1 contains 508 proteins.

## -> 504 out of 508 proteins (99.21%) suitable for curve fit (criterion: > 2
valid fold changes per protein).

##

## Importing TR dataset: Panobinostat_2

## Removing duplicate identifiers using quality column ’‘qupm’. ..

## 509 out of 509 rows kept for further analysis.

## -> Panobinostat_2 contains 509 proteins.

## -> 499 out of 509 proteins (98.04%) suitable for curve fit (criterion: > 2
valid fold changes per protein).

##

The resulting object trData is a list of ExpressionSets for each experimental condition and
replicate. Going back to the example data shown above (vehicle group 1), the corresponding
object looks as follows:

trData[["Vehicle_1"]]

## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 508 features, 10 samples

## element names: exprs

## protocolData: none

## phenoData

##  sampleNames: rel fc_131L rel fc_130H ... rel _fc_ 126 (10 total)

H#i# varLabels:

label temperature normCoeff

##  varMetadata: labelDescription

## featureData

##  featureNames: AAK1 AAMDC ... ZFYVE20 (508 total)
##  fvarLabels: gssm qupm ... plot (12 total)

##  fvarMetadata: labelDescription

## experimentData: use 'experimentData(object)'

## Annotation:

Vehicle_1 Vehicle Panobinostat_1_vs_Vehicle_1 Panobinostat_2_vs_Vehicle_2

Each ExpressionSet S; contains the fold change measurements (accessible by exprs(S;)),
column annotation for isobaric labels and temperatures (accessible by phenobata(S;)), ad-
ditional measurements obtained for each protein (accessible by featurebata(S;)), and the
protein names (accessible by featureNames(S;)).

Data normalization

Whether normalization needs to be performed and what method is best suited depends on
the experiment. Currently, the TPP package offers the normalization procedure described by
Savitski (2014)[2]. It comprises the following steps:

1. In each experiment, filter proteins according to predefined quality criteria.

2. Among the remaining proteins, identify those that were quantified in all experiments

(jointP).



3. In each experiment, extract the proteins belonging to jointP. Subselect those proteins
that pass the predefined fold change filters.

4. Select the biggest remaining set among all experiments (normP).

5. For each experiment, compute median fold changes over the proteins in normP and fit
a sigmoidal melting curves through the medians.

6. Use the melting curve with the best R? value to normalize all proteins in each experi-
ment.

The function tpptrNormalize performs all described steps. It requires a list of filtering criteria
for construction of the normalization set. We distinguish between conditions on fold changes
and on additional data columns. The function tpptrDefaultNormReqs offers an example
object with default criteria for both categories:

print(tpptrDefaultNormReqgs())

## $fcRequirements
##  fcColumn thresholdLower thresholdUpper

## 1 7 0.4 0.6
## 2 9 0.0 0.3
## 3 10 0.0 0.2
#i#

## $otherRequirements
##  colName thresholdLower thresholdUpper
## 1 gssm 4 Inf

By default, tpptrNormalize applies the filtering criteria in tpptrDefaultNormRegs. If you
want to normalize a dataset in which the column indicating measurement quality has a
different name than 'gssm’, you have to change the column name and threshold accordingly.
Because our example data was produced by isobarQuant, we can use the default settings
here.

We normalize the imported data as follows:

normResults <- tpptrNormalize(data=trData)

## Creating normalization set:

## 1. Filtering by non fold change columns:

## Filtering by annotation column(s) ’qssm’ in treatment group: Vehicle_1
##  Column qgssm between 4 and Inf-> 312 out of 508 proteins passed.

## 312 out of 508 proteins passed in total.

## Filtering by annotation column(s) ’'qssm’ in treatment group: Vehicle_2
##  Column gssm between 4 and Inf-> 362 out of 509 proteins passed.

## 362 out of 509 proteins passed in total.

## Filtering by annotation column(s) ’‘qssm’ in treatment group: Panobinostat_1
##  Column gssm between 4 and Inf-> 333 out of 508 proteins passed.

## 333 out of 508 proteins passed in total.

## Filtering by annotation column(s) ’qssm’ in treatment group: Panobinostat_2

10
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Column gssm between 4 and Inf-> 364 out of 509 proteins passed.

364 out of 509 proteins passed in total.

2. Find jointP:

Detecting intersect between treatment groups (jointP).

-> JointP contains 261 proteins.

3. Filtering fold changes:

Filtering fold changes in treatment group: Vehicle_1
Column 7 between 0.4 and 0.6 -> 30 out of 261 proteins passed
Column 9 between 0 and 0.3 -> 223 out of 261 proteins passed
Column 10 between 0 and 0.2 -> 233 out of 261 proteins passed

22 out of 261 proteins passed in total.

Filtering fold changes in treatment group: Vehicle_2
Column 7 between 0.4 and 0.6 -> 21 out of 261 proteins passed
Column 9 between 0 and 0.3 -> 215 out of 261 proteins passed
Column 10 between 0 and 0.2 -> 227 out of 261 proteins passed

14 out of 261 proteins passed in total.

Filtering fold changes in treatment group: Panobinostat_1
Column 7 between 0.4 and 0.6 -> 34 out of 261 proteins passed
Column 9 between 0 and 0.3 -> 217 out of 261 proteins passed
Column 10 between 0 and 0.2 -> 224 out of 261 proteins passed

21 out of 261 proteins passed in total.

Filtering fold changes in treatment group: Panobinostat_2
Column 7 between 0.4 and 0.6 -> 15 out of 261 proteins passed
Column 9 between 0 and 0.3 -> 221 out of 261 proteins passed
Column 10 between 0 and 0.2 -> 225 out of 261 proteins passed

10 out of 261 proteins passed in total.

Experiment with most remaining proteins after filtering: Vehicle_1

-> NormP contains 22 proteins.

Computing normalization coefficients:

1. Computing fold change medians for proteins in normP.

2. Fitting melting curves to medians.

-> Experiment with best model fit: Vehicle_1 (R2: 0.9919)

3. Computing normalization coefficients

11
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## Creating QC plots to illustrate median curve fits.

## Normalizing all proteins in all experiments.
## Normalization successfully completed!

trDataNormalized <- normResults[["normData"]]

Melting curve fitting

Next we fit and plot melting curves for the detected HDAC targets. We first select the corre-
sponding rows from the imported data. The data are stored as expressionSet objects from
the Biobase package. It provides a range of functions to access and manipulate textttexpres-
sionSet objects. Examples are the functions featureNames, pData, or featureData. In order
to use them outside of the TPP package namespace, we first import the Biobase package:

trDataHDAC <- lapply(trDataNormalized, function(d)
d[Biobase::featureNames(d) %in% hdac_targets,])

We fit melting curves for these proteins using the function tpptrCurveFit:

trDataHDAC <- tpptrCurveFit(data = trDataHDAC, resultPath = resultPath, nCores =
## Fitting melting curves to 3 proteins.

## Runtime (1 CPUs used): 1.55 secs

## Melting curves fitted sucessfully!

## 12 out of 12 models with sufficient data points converged (100 %).

The melting curve parameters are now stored within the featureData of the Expression-
Sets. For example, the melting curves estimated for the Vehicle group have the following
parameters:

Biobase: :pData(Biobase:: featureData(trDataHDAC[["Vehicle 1"11))[,1:5]

## gssm qupm a b meltPoint
## HDAC10 2 1 757.5238 14.17157 53.45376
## HDAC6 5 4 1049.4633 21.56724 48.75631
## HDAC8 2 1 779.6680 16.77087 46.48942

The melting curve plots were stored in subdirectory Melting_Curves in resultPath. You can
browse this directory and inspect the melting curves and their parameters. In the following,
you can see the plots that were placed in this directory for the 3 detected targets:

1)

12
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2.5.4 Significance assessment of melting point shifts

Similar to the normalization explained earlier, significance assessment of melting point shifts
has to be performed on the whole dataset due to the binning procedure used for p-value
computation. For the given dataset, we have already analyzed all curve parameters by the
function analyzeTPPTR. Here we show how you can start this procedure independently of the
other steps. This can be useful when you only need to re-compute the p-values (for example
with a different binning parameter) without the runtime intense curve fitting before.

Melting curve parameter analysis is performed by the function tpptrAnalyzeMeltingCurves.
It requires a list of ExpressionSets with melting curve parameters stored in the featureData.
To avoid runtime intensive repetitions of the curve fitting procedure, analyzeTPPTR saved
these objects as an intermediate result after curve fitting in the subdirectory /dataObj. We
can access them by the command:

load(file.path(resultPath, "dataObj", "fittedData.RData"), verbose=TRUE)

## Loading objects:
##  trDataFitted

This loaded the object trDataFitted, which is a list of ExpressionSets in which the melting
curve parameters have already been stored in the featureData by tpptrCurveFit.

Now we start the curve parameter evaluation, this time applying less rigorous filters on the
quality of the fitted curves (defined by the minimum R?), and their long-term melting behavior
(constrained by the maximum plateu paramter):

minR2New <- 0.5 # instead of 0.8
maxPlateauNew <- 0.7 # instead of 0.3
newFilters <- list(minR2 = minR2New,
maxPlateau = maxPlateauNew)
TRresultsNew <- tpptrAnalyzeMeltingCurves(data = trDataFitted,
pValFilter = newFilters)

## Starting melting curve analysis.

## Computing p-values for comparison Panobinostat_1_vs Vehicle_1 ...

## Performing quality check on the melting curves of both experiments.

## 1. R2 > 0.5 (both Experiment): 469 out of 510 models passed.

## 2. Pl < 0.7 (Vehicle group only): 481 out of 510 models passed.

## => 466 out of 510 models passed in total and will be used for p-value computation.
## Computing p-values for comparison Panobinostat 2 vs Vehicle_ 2 ...

## Performing quality check on the melting curves of both experiments.

## 1. R2 > 0.5 (both Experiment): 477 out of 510 models passed.

## 2. Pl < 0.7 (Vehicle group only): 487 out of 510 models passed.

## => 475 out of 510 models passed in total and will be used for p-value computation.

## Results table created successfully.

We can then compare the outcome to the results that we previously obtained with minR2 =
0.8 and maxPlateau = 0.3:
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2.5.5

2.6

2.6.1

2.6.2

tr_targetsNew <- subset(TRresultsNew, fulfills_all_4_requirements)$Protein_ID
targetsGained <- setdiff(tr_targetsNew, tr_targets)

targetsLost <- setdiff(tr_targets, tr_targetsNew)

print(targetsGained)

## [1] "HDAC1" "HDAC2" "KIF22"
print(targetsLost)

## [1] "BAG2"

We observe that relaxing the filters before p-value calculation leads to the detection of 3 new
target proteins, while 1 of the previous targets is now omitted. This illustrates the trade-off we
are facing when defining the filters: on the one hand, relaxing the filters enables more proteins,
and hence, more true targets, to be considered for testing. On the other hand, inlcuding poor
fits increases the variability in the data and reduces the power during hypothesis testing.
This observation motivated the implementation of an alternative spline-based approach for
fitting and testing ("non-parametric analysis of response curves", (NPARC)), which was newly
introduced in version 3.0.0 of the TPP package. For more information, please check the
vignette NPARC_analysis_of TPP_TR data:

browseVignettes("TPP")

Output table

Finally, we export the new results to an Excel spreadsheet: Because this process can be time
consuming for a large dataset, we only export the detected potential targets:

tppExport(tab = TRresultsNew,
file = file.path(resultPath, "targets_newFilters.xlsx"))

Analyzing data not produced by the accompanying isobar-
Quant package

Specifying customized column names for data import

By default, analyzeTPPTR looks for a protein ID column named gene_name, and a quality
control column named qupm to assist in the decision between proteins with the same identifier.
If these columns have different names in your own dataset, you have to define the new names
using the arguments idVar and qualColName. Similarly, the argument fcStr has to be set to
the new prefix of the fold change columns.

Specifying customized filtering criteria for normalization

You can set the filtering criteria for normalization set construction by modifying the supplied
default settings. Remember to adjust the fold change column numbers in case you have
more/ less than ten fold changes per experiment.

trNewReqs <- tpptrDefaultNormReqs ()
print(trNewReqs)

## $fcRequirements
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##  fcColumn thresholdLower thresholdUpper

## 1 7 0.4 0.6
## 2 9 0.0 0.3
## 3 10 0.0 0.2
##

## $otherRequirements
##  colName thresholdLower thresholdUpper
## 1 gssm 4 Inf

trNewReqs$otherRequirements[1, "colName"] <- "mycolName"
trNewReqs$fcRequirements[,"fcColumn"] <- c(6,8,9)
print(trNewReqs)

## $fcRequirements
##  fcColumn thresholdLower thresholdUpper

## 1 6 0.4 0.6

## 2 8 0.0 0.3

## 3 9 0.0 0.2

#it

## $otherRequirements

#i# colName thresholdLower thresholdUpper
## 1 mycolName 4 Inf

Specifying the experiments to compare

You can specify an arbitrary number of comparisons in the configuration table. For each
comparison, you add a separate column. The column name needs to start with the prefix
"Comparison’. The column needs to contain exactly two alpha-numerical characters (in our
example, we used 'x).

If conditions are specified in the 'Condition’ column, comparisons between melting points will
always be performed in the direction Tmrrcatment — T My ehicle-

Analyzing TPP-CCR experiments

3.1

First, we load the data:

data("hdacCCR_smallExample")

This command loads two objects: the configuration tables for two replicates (hdacCCR config repl1/2)
and two data frames that contain the measurements of both TPP-CCR experiments to be
analyzed (hdacCCR_data_repl1/2).

Starting the whole workflow by analyzeTPPCCR

We start the workflow for replicate 1 by typing

CCRresults <- analyzeTPPCCR(configTable = hdacCCR_config[1,],
data = hdacCCR_data[[1]],
resultPath = resultPath,
plotCurves = FALSE,
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3.2
3.2.1

nCores = 2)

## Warning: ‘tbl_df()‘ was deprecated in dplyr 1.0.0.

## 1 Please use ‘tibble::as_tibble()‘ instead.

## 1 The deprecated feature was likely used in the biobroom package.

##  Please report the issue at <https://github.com/StoreyLab/biobroom/issues>.
## This warning is displayed once every 8 hours.

## Call ‘lifecycle::last_lifecycle warnings()‘ to see where this warning was
## generated.

The following proteins passed the criteria of displaying a clear response to the treatment, and
enabling curve fitting with R? > 0.8:

ccr_targets <- subset(CCRresults, passed_filter_Panobinostat_1)$Protein_ID
print(ccr_targets)

## [1] "ALKBH1" "CHMP5" "ECH1" "HDAC1" "HDAC10" "HDAC2" "HDAC6" "HSPB11l"
## [9] "TTC38" "ZNF384"

4 of the selected proteins belong to the HDAC family. Because Panobinostat is known to act
as an HDAC inhibitor, we select them for further investigation.

hdac_targets <- grep("HDAC", ccr_targets, value = TRUE)
print(hdac_targets)

## [1] "HDAC1" "HDAC10" "HDAC2" "HDAC6"

The following section explains how to invoke the individual steps of the workflow separately.

Starting individual steps of the workflow

Data import

The function tppccrImport imports the data and converts it into an ExpressionSet:

ccrData <- tppccrImport(configTable = hdacCCR_config[1l,], data = hdacCCR_data[[1]])
## Importing data. ..

## The following valid label columns were detected:
## 126, 127L, 127H, 128L, 128H, 129L, 129H, 130L, 130H, 131L.

##
## Importing CCR dataset: Panobinostat_1

## Removing duplicate identifiers using quality column ’qupm’...
## 507 out of 507 rows kept for further analysis.
##  -> Panobinostat_1 contains 507 proteins.

## -> 494 out of 507 proteins (97.44%) suitable for curve fit (criterion: > 2
valid fold changes per protein).

##

## Filtering CCR dataset: Panobinostat_1
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3.2.3

3.2.4

##
##

Removed proteins with zero values in column(s)

494 out of 507 proteins remaining.

Data normalization

Currently, the TPP package offers normalization by fold change medians for TPP-CCR ex-

periments. We normalize the imported data by

ccrDataNormalized <- tppccrNormalize(data = ccrData)

##

##

Normalizing dataset: Panobinostat_1

Normalization complete.

Data transformation

We next have to specify the type of response for each protein, and transform the data

accordingly:

ccrDataTransformed <- tppccrTransform(data = ccrDataNormalized)[[1]]

##

##

Transforming dataset: Panobinostat_1

Transformation complete.

Dose response curve fitting

Next we fit and plot dose response curves for the detected HDAC targets. We first select the

corresponding rows from the imported data:

ccrDataHDAC <- ccrDataTransformed[match(hdac_targets, Biobase::featureNames(ccrDataTransformed)), ]

We fit dose response curves for these proteins using the function tppccrCurveFit:
ccrDataFittedHDAC <- tppccrCurveFit(data=list(Panobinostat_1 = ccrDataHDAC), nCores

## Fitting 4 individual dose response curves to 4 proteins.

##
##

## 4 out of 4 models with sufficient data points converged (100 %).

tppccrPlotCurves(ccrDataFittedHDAC,

##

##

##

##
##
##
##
##

Runtime (1 CPUs used): 0.05 secs

Dose response curves fitted sucessfully!

Plotting dose response curves for 4 proteins.
Runtime (1 CPUs used): 1.76 secs
Dose response curves plotted sucessfully!

$Panobinostat_1
ExpressionSet (storageMode: lockedEnvironment)
assayData: 4 features, 10 samples
element names: exprs
protocolData: none

resultPath = resultPath,
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## phenoData

##  sampleNames: rel _fc_131L rel _fc_130H ... rel_fc_126 (10 total)
##  varLabels: label concentration normCoeff

##  varMetadata: labelDescription

## featureData

##  featureNames: HDAC1 HDAC106 HDAC2 HDAC6

##  fvarLabels: gssm qupm ... plot (53 total)

#i# fvarMetadata: labelDescription

## experimentData: use 'experimentData(object)'

## Annotation: Panobinostat_1 NA

This function produces a table that contains the dose response curve parameters and addi-
tional information about each protein:

ccrResultsHDAC <- tppccrResultTable(ccrDataFittedHDAC)
print(ccrResultsHDAC[,c(1, 22:25)1])

## Protein_ID rel_fc_131L_transformed_Panobinostat_1

## 1 HDAC1 0
## 2 HDAC10 0
## 3 HDAC2 0
## 4 HDAC6 0

## rel_fc_130H_transformed_Panobinostat_1

## 1 0.003808506
## 2 0.378751669
## 3 -0.004674148
## 4 0.015491047
## rel_fc_130L_transformed_Panobinostat 1
## 1 -0.02430098
## 2 0.28785273
## 3 0.01692643
## 4 -0.08185915
## rel_fc_129H transformed_Panobinostat 1
## 1 0.04143994
## 2 0.42538135
## 3 0.11541646
## 4 0.04849781

The dose response curve plots were stored in subdirectory DoseResponse_Curves in result
Path. You can browse this directory and inspect the fits and melting curve parameters. In the
following, you can see the plot that were placed in this directory for the 4 detected targets:
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