
TEQC: Target Enrichment Quality Control

Manuela Hummel Sarah Bonnin Ernesto Lowy
Guglielmo Roma

October 31, 2025

Contents
1 Introduction 1

2 Automated html Reports 2

3 Load Reads and Targets Data 3

4 Specificity and Enrichment 7

5 Coverage 9

6 Read Duplicates 16

7 Reproducibility 19

8 Acknowledgement 21

9 Session Information 21

10 References 22

1 Introduction
With whole genome sequencing it is still rather expensive to achieve sufficient
read coverage for example for the detection of genomic variants. Further, in
some cases one might be interested only in some fraction rather than the whole
genome, for example linkage regions or the complete exome. Target capture
(target enrichment, targeted sequencing) experiments are a suitable strategy
in these situations. The genomic regions of interest are selected and enriched
previous to next-generation sequencing. A frequently used application for the
enrichment of the target sequences is based on hybridization with pre-designed
probes, either on microarrays or in solution. The hybridized molecules are
then captured (eluted from the microarrays or pulled-down from the solution,
respectively), amplified and sequenced.

Besides quality control of the sequencing data, it is also crucial to assess
whether the capture had been successful, i.e. if most of the sequenced reads
actually fall on the target, if the targeted bases reach sufficient coverage, and so

1

on. This package provides functionalities to address this issue. Quality measures
comprise specificity and sensitivity of the capture, enrichment, per-target read
coverage, coverage uniformity and reproducibility, and read duplicate analysis.
The coverage can further be examined for its relation to target region length
and GC content of the hybridization probes. The analyses can be based on
either single reads or read pairs in case of paired-end sequence data. Results are
given as values (e.g. enrichment), tables (e.g. per-target coverage), and several
diagnostic plots. The package makes use of data structures and methods from
the IRanges package, which makes dealing with large sequence data feasible.

TEQC does not include general sequencing data quality control (e.g. Phred
quality plots), neither tools for sequence alignment. It also does not provide
functionalities for follow-up analysis like SNP detection.

2 Automated html Reports
The fastest way to run TEQC quality analysis is to launch the html report gen-
eration. The main arguments for TEQCreport are tables containing positions of
sequenced reads and of genomic targets, or information about how to read the
respective data files. There are several other options for customization of the
report. In especially, you can choose whether or not to produce certain figures or
coverage wiggle files and whether the data should be treated as single- or paired-
end data. Calculation-intensive R objects can also be saved as workspace, for
further usage. With option destDir you can specify the output folder, where all
results will go and where you will find the index.html page of the html report.
The parameters sampleName, targetsName and referenceName simply allow to
include information about the sample and experiment in the report.

> library(TEQC)

> exptPath <- system.file("extdata", package = "TEQC")
> readsfile <- file.path(exptPath, "ExampleSet_Reads.bed")
> targetsfile <- file.path(exptPath, "ExampleSet_Targets.bed")

> TEQCreport(sampleName = "Test Sample",
+ targetsName = "Human Exome",
+ referenceName = "Human Genome",
+ destDir = "report",
+ reads = get.reads(readsfile, skip = 0, idcol = 4),
+ targets = get.targets(targetsfile, skip = 0),
+ genome = "hg19")

The function TEQCreport provides a quality report for only one sample at a
time. Usually research projects include several samples, and it might be of inter-
est to compare enrichment quality among all of them. Since it is cumbersome to
check the TEQC reports one by one, we provide the function multiTEQCreport,
which collects results from previously created single-sample reports and summa-
rizes them in a new html report. While the creation of single-sample reports is
time and memory intensive, multiTEQCreport finishes quickly, since no heavy
calculations have to be done anymore. The main input to this function are the

2

paths to the respective TEQCreport output folders and the sample names that
shall be used in tables and plots. The results can be browsed via the index.html
file in a new destDir output directory.
As an example, let’s assume that we have already present TEQC reports for two
samples in folders report and report2, respectively. Then the multiple sample
report can be created by

> multiTEQCreport(singleReportDirs = c("report", "report2"),
+ samplenames = c("Sample A","Sample B"),
+ projectName = "Test Project",
+ targetsName = "Human Exome",
+ referenceName = "Human Genome",
+ destDir = "multiTEQCreport")

For details about the different steps, options and results of a TEQC analysis,
it is recommended to read also the following sections of this documentation.

3 Load Reads and Targets Data
The (minimum) input needed for the quality control analysis are two files

• A bed file containing the genomic positions (chromosome, start, end) of
the targeted regions, one genomic range per line. The targets might be
custom designed or commercial solutions, e.g. for the capture of the whole
human exome. The file does not have to be sorted with respect to genomic
position.

• A bed or BAM file containing the genomic positions (chromosome, start,
end) of sequenced reads aligned to a reference genome, one genomic range
per line. In case of paired-end data an additional column with the read
pair ID is suggested. The bed file format is very general and hence the
QC analysis is not limited to any sequencing platform or alignment tool.
The file does not have to be sorted with respect to genomic position. The
BAM file format is now quite standard in NGS analysis. The usage of
bam files has the advantage that reading the data is much faster (using
functionality of the ShortRead package) than with bed files.

The package includes a small example data set. First we load the target
positions. The input targetsfile does not need to have a fixed format. Just three
columns containing chromosome (as string, e.g. chr1), start and end position
of each target are required. The options chrcol , startcol and endcol specify
in which columns of the file the respective information is found. The output
of get.targets is of class GRanges from the GenomicRanges package. Note
that overlapping or adjacent targets are merged, such that the returned target
regions are not-overlapping. Therefore, also a bed file containing information
about the hybridization probes, which might be highly overlapping due to tiling,
can be used as targetsfile.

> library(TEQC)
> exptPath <- system.file("extdata", package = "TEQC")

3

> targets <- get.targets(targetsfile=paste(exptPath, "ExampleSet_Targets.bed",
+ sep="/"), chrcol = 1, startcol = 2, endcol = 3, skip = 0)

[1] "read 50 (non-overlapping) target regions"

> targets

GRanges object with 50 ranges and 0 metadata columns:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] chr1 11158025-11158264 *
[2] chr1 25870174-25870293 *
[3] chr1 65656333-65656572 *
[4] chr1 68611504-68611743 *
[5] chr1 70225862-70226101 *
...

[46] chr21 33641314-33641433 *
[47] chr22 30738144-30738263 *
[48] chr22 32630850-32631089 *
[49] chrX 47086386-47086505 *
[50] chrX 150891046-150891285 *

seqinfo: 21 sequences from an unspecified genome; no seqlengths

NOTE: We assume that genomic positions in bed files follow the 0-based
start / 1-based end coordinate system as defined by UCSC (http://genome.
ucsc.edu/FAQ/FAQformat). In TEQC we need 1-based coordinates, so by de-
fault get.targets and get.reads (see later) shift all start positions forward
by 1. If the coordinates in your files are already 1-based, set the parameter
zerobased to FALSE in order to avoid the shifting.

We might ask what fraction of the genome is targeted. In the function
fraction.target the corresponding genome can be specified by the option
genome. At the moment only hg18 , hg19 and hg38 are available. The corre-
sponding genome sizes are taken from http://genomewiki.ucsc.edu/index.
php/Genome_size_statistics. For any other case, you can specify the genome
size manually with the option genomesize. In our little example the total tar-
geted region and hence the fraction within the genome is very small.

> ft <- fraction.target(targets, genome = "hg38")
> ft

[1] 4.06539e-06

Next, we load the genomic positions of the aligned reads. Depending on the
number of reads, this can be quite time and memory consuming with real data.
The function get.reads is quite similar to get.targets. However, overlapping
or identical reads are not merged. Furthermore, a column containing read iden-
tifiers can be specified with option idcol . This is essential in case of paired-end
data, when you want quality statistics to be done (also) on read pairs rather
than on single reads. In this case the ID has to be the identifier of the read
pair (i.e. the same unique ID for both reads of the pair). Our example data

4

http://genome.ucsc.edu/FAQ/FAQformat
http://genome.ucsc.edu/FAQ/FAQformat
http://genomewiki.ucsc.edu/index.php/Genome_size_statistics
http://genomewiki.ucsc.edu/index.php/Genome_size_statistics

was derived by paired-end sequencing, so we keep the pair IDs in the resulting
GRanges object. The genomic positions in our bedfile containing the reads are
1-based, so we avoid coordinate shifting by setting zerobased to FALSE .

> reads <- get.reads(paste(exptPath, "ExampleSet_Reads.bed", sep="/"),
+ chrcol = 1, startcol = 2, endcol = 3, idcol = 4, zerobased = F, skip = 0)

[1] "read 19546 sequenced reads"

> reads

GRanges object with 19546 ranges and 0 metadata columns:
seqnames ranges strand

<Rle> <IRanges> <Rle>
1_16_7090_2464 chr1 13328-13381 *
1_16_7090_2464 chr1 13467-13520 *
1_99_1631_6326 chr1 1420325-1420378 *
1_99_1631_6326 chr1 1420402-1420455 *

1_5_14614_17275 chr1 2321365-2321418 *
...

1_87_3763_6007 chrY 3551666-3551719 *
1_63_1439_10606 chrY 10028334-10028387 *
1_63_1439_10606 chrY 10028434-10028487 *

1_105_17963_15521 chrY 28425424-28425477 *
1_105_17963_15521 chrY 28425590-28425643 *

seqinfo: 24 sequences from an unspecified genome; no seqlengths

Whenever BAM files are available, it is recommended to use those instead
of bed files as input for get.reads, while setting parameter filetype to "bam" .
In this case, get.reads makes use of the ShortRead function scanBam, with
flag options isUnmappedQuery = FALSE and RfunargisSecondaryAlignment =
FALSE. Note that multiple matches per read on the genome are not supported.
Only primary alignments are read from the BAM file. All other previously
described options of get.reads are ignored, since genomic positions and read
identifiers are taken automatically from the BAM file.

> reads <- get.reads("myBAM.bam", filetype = "bam")

Paired-end data
When reads are paired, in order to perform statistics on pairs rather than

on single reads, the read pairs have to be matched together using function
reads2pairs. To run the function can be quite time consuming, depending on
the number of reads. The output is a GRanges object whose ranges start at
the first base of the first read within a read pair and end at the last base of the
respective second read. This is equivalent to the positions of the DNA molecule
that was actually sequenced from both ends. The reads table might also contain
single reads (i.e. whose corresponding partners did not align to the reference).
In this case a list of two GRanges tables will be returned, the first one containing
the original positions of the single reads without partners (table singleReads),

5

and the other one containing the merged pairs positions (table readpairs).
The provided reads data might also contain cases where the two reads of a
pair align to different chromosomes. Since for such read pairs a ’merging’ does
not make sense, they will be returned within the singleReads table. Further,
for some pairs the respective reads might align very far apart within the same
chromosome. If you wish to remove such reads, you can specify a value for
option max.distance. Reads with a larger distance (from start position of first
read to end position of second read) will be added to table singleReads.

> readpairs <- reads2pairs(reads)
> readpairs

GRanges object with 9773 ranges and 0 metadata columns:
seqnames ranges strand

<Rle> <IRanges> <Rle>
1_16_7090_2464 chr1 13328-13520 *
1_99_1631_6326 chr1 1420325-1420455 *

1_5_14614_17275 chr1 2321365-2321532 *
1_15_18642_6232 chr1 2452643-2452828 *
1_20_2015_5490 chr1 2535217-2535407 *

...
1_6_7123_16490 chrX 154014446-154014635 *
1_88_4216_1073 chrX 154261641-154261830 *
1_87_3763_6007 chrY 3551497-3551719 *

1_63_1439_10606 chrY 10028334-10028487 *
1_105_17963_15521 chrY 28425424-28425643 *

seqinfo: 24 sequences from an unspecified genome; no seqlengths

You may decide to use for all further analyses only "valid pairs", i.e. to
exlude those reads that ended up in the singleReads table (in case there were
any). This can be done e.g. in the following way

> reads <- reads[!(names(reads) %in% names(readpairs$singleReads)),
, drop = TRUE]

Again, only for the case of paired-end data, we can visualize the read pair
insert sizes, i.e. the distances from the start of read 1 to the end of read 2,
respectively. For the function insert.size.hist we need the output of the
previous call to reads2pairs. In our example, the alignment was done in a
way that reads were only kept if the two reads aligned at a maximum distance
of 250 bases. Therefore, the resulting histogram is truncated at 250, see figure
1. Note that also average and median insert sizes displayed in the graph are
based on the truncated data, and hence are not statistics for the true read pair
distribution. The insert sizes for all read pairs can also be returned using option
returnInserts = TRUE .

> insert.size.hist(readpairs, breaks = 10)

6

Insert size

F
re

qu
en

cy

50 100 150 200 250

0
50

0
10

00
15

00
20

00
average (189.97)
average +− SD (33.99)
median (192)

Figure 1: Histogram of read pair insert sizes.

4 Specificity and Enrichment
One important component of quality control in target capture experiments is
to check whether most of the sequenced reads actually fall on target regions.
A barplot showing the numbers of reads aligning to each chromosome can give
a first impression on that. When providing the function chrom.barplot only
with the reads table, the resulting barplot will show absolute counts. There is
also the option to give both the reads and the targets table, which will show
fractions of reads and targets, respectively, falling on each chromosome. For
the reads, this is the fraction within the total number of reads (since reads
are usually expected to have all the same length). In contrast, for the targets,
the fraction of targeted bases on each chromosome is calculated. Since targets
might strongly vary in length it is reasonable to account for the actual target
sizes instead of considering merely numbers of targets per chromosome. In this
way you can compare directly if the amount of reads corresponds more or less
to the amount of target on a certain chromosome (see figure 2).

> chrom.barplot(reads, targets)

A measure for the capture specificity is the fraction of aligned reads that over-
lap with any target region. It can be calculated by function fraction.reads.target.
The function has an option mappingReads that can be set to TRUE in order to
retrieve a reduced reads GRanges table containing only those reads overlapping

7

F
ra

ct
io

n

0.
00

0.
05

0.
10

0.
15

ch
r1

ch
r2

ch
r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9

ch
r1

0
ch

r1
1

ch
r1

2
ch

r1
3

ch
r1

4
ch

r1
5

ch
r1

6
ch

r1
7

ch
r1

8
ch

r1
9

ch
r2

0
ch

r2
1

ch
r2

2
ch

rX
ch

rY

reads
targets

Figure 2: Fractions of reads (green) and target (orange) per chromosome.

target regions.

> fr <- fraction.reads.target(reads, targets)
> fr

[1] 0.3899007

In many of the functions within TEQC you can specify an "offset" that will
enlarge every target on each side by the specified number of bases. Since usually
the captured DNA molecules are longer than what is actually sequenced, it is
expected to have many reads that do not overlap, but are close to the target.
Considering e.g. the actual targets plus 100 bases on each side, we get a higher
on-target fraction:

> fraction.reads.target(reads, targets, Offset=100)

[1] 0.4853679

With the fraction of on-target reads and the fraction of the targeted region
within the reference genome, we can calculate the enrichment

enrichment =
reads on target/# aligned reads

target size/genome size

Since in our artificial example the total target size is unrealistically small,
we achieve a huge enrichment.

> fr / ft

[1] 95907.34

Instead of considering single reads, we could also calculate the fraction of
read pairs that are on-target. A read pair is counted as on-target if at least
one of its reads overlaps with a target region or, in case of small targets, if
the first read lies "left" and the second read "right" of the target and hence
the corresponding sequenced molecule covered the target completely. For the
specificity calculation the same function can be used, just the input changes
from the table containing all reads to the table created above by reads2pairs.

8

> fraction.reads.target(readpairs, targets)

[1] 0.4934002

5 Coverage
Besides high capture specificity, it is of course important to check the read cov-
erage within target regions, since it is crucial for follow-up analyses. The func-
tion coverage.target calculates read coverage for each base that is sequenced
and/or located in a target region. It returns a list with the average (list ele-
ment avgTargetCoverage), standard deviation (targetCoverageSD) and main
quantiles (targetCoverageQuantiles) of the coverage over all targeted bases.
When option perBase is set to TRUE , the returned list additionally has the
two elements coverageAll and coverageTarget. The former one is a Sim-
pleRleList containing coverages for all bases present in the reads table, the
latter one contains coverages for all targeted bases. For some TEQC functions
we need either one or the other. When option perTarget is set to TRUE , the
returned list has the additional element targetCoverages. This is the input
targets GRanges table, now including as ’values’ columns the average coverage
(column avgCoverage) and standard deviation (column coverageSD) per target
region. Coverage calculations might take a while, depending on the numbers of
reads and targets.

> Coverage <- coverage.target(reads, targets, perTarget=T, perBase=T)
> Coverage

$avgTargetCoverage
[1] 27.47927

$targetCoverageSD
[1] 23.68119

$targetCoverageQuantiles
0% 25% 50% 75% 100%
0 8 21 42 117

$targetCoverages
GRanges object with 50 ranges and 2 metadata columns:

seqnames ranges strand | avgCoverage coverageSD
<Rle> <IRanges> <Rle> | <numeric> <numeric>

[1] chr1 11158025-11158264 * | 44.1292 10.08893
[2] chr1 25870174-25870293 * | 0.0000 0.00000
[3] chr1 65656333-65656572 * | 31.7583 6.93122
[4] chr1 68611504-68611743 * | 28.7958 13.48934
[5] chr1 70225862-70226101 * | 24.1667 8.04936
...

[46] chr21 33641314-33641433 * | 4.40000 1.53612
[47] chr22 30738144-30738263 * | 28.28333 4.44421
[48] chr22 32630850-32631089 * | 7.56667 3.27852
[49] chrX 47086386-47086505 * | 14.59167 2.82693

9

[50] chrX 150891046-150891285 * | 10.00833 2.72443

seqinfo: 21 sequences from an unspecified genome; no seqlengths

$coverageAll
RleList of length 24
$chr1
integer-Rle of length 248737162 with 3785 runs

Lengths: 13327 54 85 54 ... 185876 54 130 54
Values : 0 1 0 1 ... 0 1 0 1

$chr2
integer-Rle of length 242418478 with 2596 runs

Lengths: 103676 54 53 54 ... 216014 54 50 54
Values : 0 1 0 1 ... 0 1 0 1

$chr3
integer-Rle of length 197703049 with 1774 runs

Lengths: 439910 54 37 54 ... 84392 54 141 54
Values : 0 1 0 1 ... 0 1 0 1

$chr4
integer-Rle of length 190962876 with 1511 runs

Lengths: 1633781 54 111 54 ... 1532357 54 66 54
Values : 0 1 0 1 ... 0 1 0 1

$chr5
integer-Rle of length 180661803 with 1691 runs

Lengths: 225819 54 92 54 ... 178562 54 13 54
Values : 0 1 0 1 ... 0 1 0 1

...
<19 more elements>

$coverageTarget
RleList of length 21
$chr1
integer-Rle of length 2520 with 1079 runs

Lengths: 1 1 1 1 2 2 1 2 1 1 1 ... 1 1 2 1 1 2 1 1 1 1
Values : 23 22 21 23 24 23 24 21 22 21 22 ... 39 40 38 37 36 35 34 33 34 33

$chr2
integer-Rle of length 960 with 587 runs

Lengths: 1 2 1 2 1 1 1 1 1 1 1 ... 3 2 4 2 1 2 1 1 1 2
Values : 16 15 16 17 16 18 17 18 16 15 14 ... 25 23 22 21 20 19 18 19 18 17

$chr3
integer-Rle of length 1647 with 516 runs

Lengths: 2 2 1 1 2 2 1 1 1 2 1 ... 2 4 1 4 2 1 1 4 2 2
Values : 31 33 32 31 32 31 30 29 33 31 32 ... 10 8 9 10 11 10 11 12 13 12

10

$chr4
integer-Rle of length 840 with 337 runs

Lengths: 2 1 1 1 5 1 2 1 2 1 1 ... 1 3 2 4 3 1 3 2 1 3
Values : 42 43 42 44 43 41 40 39 38 36 35 ... 22 21 22 25 26 25 26 25 24 23

$chr5
integer-Rle of length 240 with 157 runs

Lengths: 3 1 1 1 3 1 1 2 1 2 1 ... 2 3 1 2 1 3 2 1 1 3
Values : 55 60 59 58 59 60 58 60 63 64 62 ... 41 40 41 42 41 43 42 46 44 45

...
<16 more elements>

> targets2 <- Coverage$targetCoverages

Note that coverage should not be calculated using the output of function
reads2pairs in place of reads, since the genomic ranges in that table span the
whole region from the first to the second read of a pair. However, for the re-
spective read insert there is no actual coverage, because only the ends of the
original fragment were sequenced.

A different measure for the per-target coverage would be to count the num-
bers of reads overlapping with each target. This can be calculated by the func-
tion readsPerTarget. It returns again the input targets table while adding
a ’values’ column that gives the respective numbers of reads per target. If
we provide the table targets2 from above, we will get both the average per-
target coverages and the numbers of target-overlapping reads in the same table.
In order to speed things up, instead of all reads we could also provide the
mappingReads output of function fraction.reads.target, since for counting
the reads per target it is enough to look at the reads from which we already
know they are on-target. Just make sure that the Offset option was set the
same in both fraction.reads.target and readsPerTarget.

> targets2 <- readsPerTarget(reads, targets2)
> targets2

GRanges object with 50 ranges and 3 metadata columns:
seqnames ranges strand | avgCoverage coverageSD nReads

<Rle> <IRanges> <Rle> | <numeric> <numeric> <numeric>
[1] chr1 11158025-11158264 * | 44.1292 10.08893 231
[2] chr1 25870174-25870293 * | 0.0000 0.00000 0
[3] chr1 65656333-65656572 * | 31.7583 6.93122 164
[4] chr1 68611504-68611743 * | 28.7958 13.48934 152
[5] chr1 70225862-70226101 * | 24.1667 8.04936 126
...

[46] chr21 33641314-33641433 * | 4.40000 1.53612 15
[47] chr22 30738144-30738263 * | 28.28333 4.44421 85
[48] chr22 32630850-32631089 * | 7.56667 3.27852 38
[49] chrX 47086386-47086505 * | 14.59167 2.82693 46
[50] chrX 150891046-150891285 * | 10.00833 2.72443 51

11

seqinfo: 21 sequences from an unspecified genome; no seqlengths

The resulting GRanges table can be converted to a data frame, and as such
easily be written to a file, e.g. by

> write.table(as.data.frame(targets2), file="target_coverage.txt",
sep="\t", row.names=F, quote=F)

Talking about coverage, it is interesting to ask which fraction of target bases
reach a coverage of at least k (some value relevant for further analyses, e.g. SNP
calling) or which fraction of target bases is covered at all by any read (sensitivity
of the capture). The function covered.k calculates such fractions based on the
coverageTarget output of coverage.target. Option k specifies the values for
which to calculate the fraction of bases achieving the respective coverage.

> covered.k(Coverage$coverageTarget, k=c(1, 5, 10))

1 5 10
0.9520963 0.8444087 0.7033801

With coverage.hist we can visualize the coverage distribution, see figure
3. A line is added to the histogram that shows the cumulative fraction of tar-
get bases with a coverage of at least the corresponding x-axis value. The line
represents the results of covered.k for all possible values of k. Additionally,
you can highlight with dashed lines the base fraction achieving a coverage of at
least a certain value by defining the option covthreshold .

> coverage.hist(Coverage$coverageTarget, covthreshold=8)

A similar graph is the coverage uniformity plot, see figure 4. It corre-
sponds more or less to the cumulative line in the coverage histogram. However,
coverage.uniformity calculates normalized coverages, i.e. the per-base cover-
ages divided by the average coverage over all target bases. Normalized coverages
are not dependent on the absolute quantity of sequenced reads and are hence
better comparable between different samples or even different experiments. By
default, the x-axis in the figure is truncated at 1, which corresponds to the av-
erage normalized coverage. The steeper the curve is falling, the less uniform is
the coverage.

> coverage.uniformity(Coverage)

There are more graphical functions concerning read coverage. For example
you might be interested in whether large targets are covered by more reads, as
expected, since for larger target regions there should also be more hybridization
capture probes ("baits"). Or you might ask whether quite small targets have
worse coverage, because the bait tiling might not be as good as for larger targets.
Those questions can be addressed by the function coverage.targetlength.plot.
As input a GRanges targets table has to be given that contains the relevant in-
formation in the ’values’ column(s). The graphs are useful for targets of very
different lengths. In our example, where all the targets are rather small, the

12

Coverage Distribution

Coverage

F
ra

ct
io

n
of

 ta
rg

et
 b

as
es

0 20 40 60 80

0 0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

C
um

ul
at

iv
e

fr
ac

tio
n

of
 ta

rg
et

 b
as

es

8X coverage

Figure 3: On-target coverage histogram. The orange line shows the cumulative
fraction of target bases (right y-axis) with a read coverage of at least x. The dashed
lines highlight the fraction of target bases covered by at least 8 reads.

figures are not very informative, see figure 5.

> par(mfrow=c(1,2))
> coverage.targetlength.plot(targets2, plotcolumn="nReads", pch=16,
cex=1.5)
> coverage.targetlength.plot(targets2, plotcolumn="avgCoverage", pch=16,
cex=1.5)

Another thing to check is the dependency between coverage and GC content
of the hybridization capture probes ("baits"). For calculating the GC contents
the bait sequences are needed. A file has to be created beforehand that con-
tains the positions as well as the sequences of all baits. The file is loaded by
function get.baits which is similar to get.targets, with the difference that
overlapping or adjacent baits are not merged, and that a column seqcol has to be
specified that holds the bait sequences. Like get.targets and get.reads, also
get.baits by default converts the bait start positions from 0-based to 1-based
coordinates. If the positions given in your baitsfile are already 1-based, set
option zerobased to FALSE .

> baitsfile <- paste(exptPath, "ExampleSet_Baits.txt", sep="/")
> baits <- get.baits(baitsfile, chrcol=3, startcol=4, endcol=5, seqcol=2)

13

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normalized coverage

F
ra

ct
io

n
of

 ta
rg

et
 b

as
es

Figure 4: Fraction of targeted bases (y-axis) achieving a normalized coverage of at
least x. Dashed lines indicate the fractions of bases achieving at least the average
(= 1) or at least half the average coverage (= 0.5).

200 400 600 800 1000 1200

0
50

0
10

00
15

00

Target length (bp)

nR
ea

ds

200 400 600 800 1000 1200

0
20

40
60

80

Target length (bp)

av
gC

ov
er

ag
e

Figure 5: Scatter plots and smoothing splines of number of reads per target (left
panel) or average coverage per target (right panel) versus respective target length.

[1] "read 108 hybridization probes"

With the baits GRanges table and the coverageAll output of coverage.target
the (normalized) coverage versus GC content plot can be created. This can take
quite some time, since GC content and average (normalized) coverage have to

14

be calculated for every bait. The bait coverages can be returned by setting op-
tion returnBaitValues = TRUE . You would expect the added smoothing spline
to have an inverse U-shape, with a peak in coverage for baits with GC content
around 40-50%. In our small example there are not enough baits with low GC
content to encounter the expected shape, see figure 6.

> coverage.GC(Coverage$coverageAll, baits, pch=16, cex=1.5)

0.3 0.4 0.5 0.6 0.7

0
1

2
3

Bait GC content

N
or

m
al

iz
ed

 c
ov

er
ag

e

Figure 6: Scatter plot and smoothing spline of normalized average coverage per
hybridization probe versus GC content of the respective bait.

There is also a function coverage.plot to visualize per-base coverages along
chromosomal positions. The input has to be the coverageAll output of func-
tion coverage.target, since also coverages of off-target bases are needed. The
positions of target regions, potentially extended on both sides, can be high-
lighted as well by specifying options targets and Offset (see figure 7).

> coverage.plot(Coverage$coverageAll, targets, Offset=100, chr="chr1",
Start=11157524, End=11158764)

Of course, coverages can also be visualized by genome browsers. We provide
the function make.wigfiles to create wiggle files that can then be uploaded e.g.
to the UCSC genome browser. You can make wiggle files for all chromosomes
on which there are reads or just for some selected chromosome(s) by specifying
option chroms. With option filename the name and location where to save

15

11157600 11158000 11158400 11158800

0
10

20
30

40
50

60

Chromosome 1

C
ov

er
ag

e

Figure 7: Per-base coverages along chromosomal positions. Target regions (plus
addition of 100 bases on both sides) are highlighted in orange (yellow).

the files can be manipulated. Base positions are given as 1-based (i.e. the
first base on a chromsome has position 1), as defined for wiggle files by UCSC
(http://genome.ucsc.edu/goldenPath/help/wiggle.html).

> make.wigfiles(Coverage$coverageAll)

6 Read Duplicates
A crucial issue in target capture experiments is read duplication. Usually, read
duplicates, i.e. reads that have exact same start and end positions, are re-
moved before follow-up analysis of sequencing data, since they are supposed to
be PCR artifacts. However, here we expect a probably substantial amount of
"real" read duplication due to the enrichment process. "Real" read duplicates
would be derived from actually separate input DNA molecules that by chance
were fragmented at the same position. The duplicates.barplot shows which
fraction of reads / read pairs is present in the data in what number of copies.
Read multiplicity proportions are calculated and shown separately for on- and
off-target reads / read pairs. Therefore, the plot gives an impression about the
amount of "real" duplication (expected mostly in the target regions) versus arti-
factual duplication (expected both on- and off-target). With option returnDups
= TRUE the absolute numbers (given on top of the bars, in millions) and per-
centages (bar heights) can be returned.

16

http://genome.ucsc.edu/goldenPath/help/wiggle.html

> duplicates.barplot(reads, targets)

1 2 3 4 5 6 7 8 10

Read multiplicity

F
ra

ct
io

n
of

 r
ea

ds

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

on target
off target

0

0.01

0

0

0

0
0

0 0 0 0 0 0 0 0 0 0 0

Figure 8: Duplicates barplot treating data as single-end. It shows fractions of on-
and off-target reads, respectively, that are unique, that are there in two copies, three
copies, etc. (x-axis). The numbers on top of the bars are absolute counts in millions.

In figure 8 we see, firstly, that for some reads there are quite a lot of identical
copies (x-axis up to 10). Secondly, the percentage of reads with multiple copies
is much higher within on-target reads than within off-target reads (red bars are
much higher than blue ones for x > 1). This suggest, as mentioned before, that
there might be substantial amount of "real" read duplication.

In the case of paired-end data, the position information of both reads of a
pair can be used. Reads only have to be considered duplicated if the positions of
both reads are found again in another pair. We can use duplicates.barplot
with the table readpairs we created before to make the graph for read pairs
instead of single reads. For read pairs the extent of duplication is by far not as
high as for single reads, see figure 9.

> duplicates.barplot(readpairs, targets, ylab="Fraction of read pairs")

Unfortunately, it is not possible to distinguish the artefactual duplicates from
the naturally occurring ones. For that reason it might still be recommendable
to remove duplication before further analysis by keeping each duplicated read
position only once. (Since here we just deal with genomic positions and not with

17

1 2 3 4

Read multiplicity

F
ra

ct
io

n
of

 r
ea

d
pa

irs

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 on target

off target0

0

0

0 0 0 0 0

Figure 9: Duplicates barplot for read pairs.

the actual reads that might differ in sequence and quality, it does not matter
which copy of a duplicated read to keep.) You might also decide to do all the
QC analysis on the "collapsed" data. Either a bed file is provided that includes
only unique read positions, or the tables are collapsed within R, e.g. by the
following code.

> reads.collapsed <- unique(reads)

In the case of paired-end data, as said before, reads only have to be con-
sidered duplicated if the positions of both reads are found again in another
pair. Removing duplicates can be done like follows, selecting non-duplicated
reads from the readpairs table (and in case of duplication just keep one of the
respective reads) and extracting those from the original read table.

> ID.nondups <- names(unique(readpairs))
> reads.collapsed.pairs <- reads[names(reads) %in% ID.nondups,,drop=T]

In single-end data it is probable to lose a large number of reads by removing
duplicates. When treating our example data like single-end sequences, we are
left with only 16417 out of originally 19546 reads. Hence, the actual coverage
could decrease dramatically.

> coverage.target(reads.collapsed, targets, perBase=F, perTarget=F)

18

$avgTargetCoverage
[1] 17.43535

$targetCoverageSD
[1] 11.7878

$targetCoverageQuantiles
0% 25% 50% 75% 100%
0 7 16 27 46

Before removing duplicates we calculated a coverage of 27.5.
When using position information of both reads per pair, much less reads are

lost, e.g. in the example we can keep 18714 reads. Therefore, the coverage will
not decrease that much.

> coverage.target(reads.collapsed.pairs, targets, perBase=F, perTarget=F)

$avgTargetCoverage
[1] 25.09604

$targetCoverageSD
[1] 21.22714

$targetCoverageQuantiles
0% 25% 50% 75% 100%
0 7 20 38 110

7 Reproducibility
For any new technology, reproducibility is an important issue. Here we base
the reproducibility check on per-target-base coverages. Especially for technical
replicates we should yield similar results. But the following graphs might also
be useful to ensure homogeneity across biological replicates.

To give an example, we create an artificial new sample by removing randomly
10% of the reads from our data.

> r <- sample(length(reads), 0.1 * length(reads))
> reads2 <- reads[-r,,drop=T]
> Coverage2 <- coverage.target(reads2, targets, perBase=T)

With function coverage.density the coverage densities of several samples
can be compared. With option normalized you can choose whether to plot orig-
inal or normalized coverages. When plotting original values in the example, it is
obvious that the second sample does not reach as high coverage for many bases
as the first one, see figure 10, right panel. In contrast, normalized coverages
are not dependent on the total amount of reads, and we observe a very similar
coverage distribution for both samples (left panel), as expected since we just
removed some reads randomly.

> covlist <- list(Coverage, Coverage2)
> par(mfrow=c(1,2))

19

> coverage.density(covlist)
> coverage.density(covlist, normalized=F)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

Normalized coverage

D
en

si
ty

sample 1
sample 2

0 20 40 60 80 100 120
0.

00
0

0.
01

0
0.

02
0

0.
03

0

Coverage

D
en

si
ty

sample 1
sample 2

Figure 10: Target coverage densities of two samples, using normalized (left) or
original (right) coverages.

Also the coverage uniformity and coverage along chromosome plots shown
above (figures 4 and 7) can be produced for several samples within the same
graph. The functions can be called repeatedly, while specifying option add=TRUE
(see figures 11 and 12). As for the densities, the uniformity is almost identical
for the two samples since normalized coverage values are used for this plot.

> coverage.uniformity(Coverage, addlines=F)
> coverage.uniformity(Coverage2, addlines=F, add=T, col="blue", lty=2)

> coverage.plot(Coverage$coverageAll, targets, Offset=100, chr="chr1",
Start=11157524, End=11158764)
> coverage.plot(Coverage2$coverageAll, add=T, col.line=2, chr="chr1",
Start=11157524, End=11158764)

With function coverage.correlation we can produce scatterplots between
coverage values of pairs of replicate samples. Since a scatterplot for all per-
target-base coverages would be huge (e.g. as pdf graph), and moreover the
difference between one million or ten million points in the graphic might not
be visible at all, just some fraction of randomly selected values is displayed.
The amount of points to plot can be controlled by option plotfrac. By default,
0.1% of all targeted bases are taken into account. In the example we set the
fraction to 10%, see figure 13. Scatterplots are shown in the style of a pairs
plot. In the lower panels the corresponding Pearson correlation coefficients are
shown. Correlation calculations are always based on all coverage values, even if
plotfrac < 1 is chosen. Like in coverage.density, by option normalized it can
be chosen whether to plot normalized or original coverage values.

20

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normalized coverage

F
ra

ct
io

n
of

 ta
rg

et
 b

as
es

Figure 11: Target coverage uniformity of two samples.

> coverage.correlation(covlist, plotfrac=0.1, cex.pch=4)

8 Acknowledgement
The example data used in this manual was taken from an exome sequencing
data set of Raquel Rabionet and Xavier Estivill.

9 Session Information
> toLatex(sessionInfo())

• R Under development (unstable) (2025-10-20 r88955),
x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Time zone: America/New_York

• TZcode source: system (glibc)

• Running under: Ubuntu 24.04.3 LTS

21

11157600 11158000 11158400 11158800

0
10

20
30

40
50

60

Chromosome 1

C
ov

er
ag

e

Figure 12: Coverage along chromosome plot for two samples.

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so

• LAPACK:
/usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

• Base packages: base, datasets, grDevices, graphics, methods, stats,
stats4, utils

• Other packages: BiocGenerics 0.57.0, Biostrings 2.79.1,
GenomicRanges 1.63.0, IRanges 2.45.0, Rsamtools 2.27.0,
S4Vectors 0.49.0, Seqinfo 1.1.0, TEQC 4.33.0, XVector 0.51.0,
generics 0.1.4, hwriter 1.3.2.1

• Loaded via a namespace (and not attached): Biobase 2.71.0,
BiocParallel 1.45.0, bitops 1.0-9, codetools 0.2-20, compiler 4.6.0,
crayon 1.5.3, parallel 4.6.0, tools 4.6.0

10 References
Hummel M, Bonnin S, Lowy E, Roma G. TEQC: an R-package for quality con-
trol in target capture experiments. Bioinformatics 2011; 27(9): 1316-1317.

22

sample 1

0 1 2 3 4

0
1

2
3

4

1 sample 2

Figure 13: Correlation plots of normalized target coverage values of two samples.

Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, Mor-
gan MT, Carey VJ. Software for Computing and Annotating Genomic Ranges.
PLoS Comput Biol 2013; 9(8): e1003118.

Bainbridge MN, Wang M, Burgess DL, Kovar C, Rodesch MJ, D’Ascenzo M,
Kitzman J, Wu Y-Q, Newsham I, Richmond TA, Jeddeloh JA, Muzny D, Albert
TJ, Gibbs RA. Whole exome capture in solution with 3 Gbp of data. Genome
Biology 2010; 11:R62.

Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell
T, Giannoukos G, Fisher S, Russ C, Gabriel S, Jaffe DB, Lander ES, Nusbaum
C. Solution hybrid selection with ultra-long oligonucleotides for massively par-
allel targeted sequencing. Nat Biotechnol. 2009; 27(2): 182-9.

Tewhey R, Nakano M, Wang X, Pabon-Pena C, Novak B, Giuffre A, Lin E,
Happe S, Roberts DN, LeProust EM, Topol EJ, Harismendy O, Frazer KA. En-
richment of sequencing targets from the human genome by solution hybridiza-
tion. Genome Biol. 2009; 10(10): R116.

23

	Introduction
	Automated html Reports
	Load Reads and Targets Data
	Specificity and Enrichment
	Coverage
	Read Duplicates
	Reproducibility
	Acknowledgement
	Session Information
	References

