How To Plot A Graph Using Rgraphviz

Jeftf Gentry, Robert Gentleman, Wolfgang Huber
October 30, 2025

Contents
I Overviewl

2 Different layout methods|
2.1 Reciprocated edges| oL,

3.1 A note about edge names| L Lo

4.4 Using edge weights for labels|
4.5 Adding color|o
4.6 Nodeshapes|. o

[Tayout, rendering and the function agopen]

|6 Customized node plots|

|7 Special types of graphs|

[r.1 Cluster graphs|
7.2 Bipartite graphs|0 L.

8 NEW Another workflow to plot a graph |

8.1 Convert a graph to Ragraph class|.
82 Get default attributes

E2

Tooltips and hyperlinks on graphs|

13

18

19
20
20

21
22
23
23
23
24
25

25

[10 Sessioninfol 25

1 Overview

This vignette demonstrate how to easily render a graph from R into various
formats using the Rgraphviz package. To do this, let us generate a graph using
the graph package:

> library("Rgraphviz")

> set.seed(123)

> V <- letters[1:10]

> M<-1:4

> g1 <- randomGraph(V, M, 0.2)

2 Different layout methods

It is quite simple to generate a R plot window to display your graph. Once you
have your graph object, simply use the plot method.

> plot(gl)

Figure 1: g1 laid out with dot.

The result is shown in Figure[I] The Rgraphviz package allows you to specify
varying layout engines, such as dot (the default), neato and twopi.

> plot(gl, "neato")
> plot(gl, "twopi™)

The result is shown in Figure

Figure 2: g1 laid out with neato (left) and twopi (right).

2.1 Reciprocated edges

There is an option recipFdges that details how to deal with reciprocated edges
in a graph. The two options are combined (the default) and distinct. This is
mostly useful in directed graphs that have reciprocating edges - the combined
option will display them as a single edge with an arrow on both ends while
distinct shows them as two separate edges.

> rEG <- new("graphNEL", nodes=c("A", "B"), edgemode="directed")
> rEG <- addEdge("A", "B", rEG, 1)
> rEG <- addEdge("B", "A", rEG, 1)

N

B

Figure 3: rEG laid out with recipEdges set to combined (left) and distinct
(right).

> plot(rEG)

> plot(rEG, recipEdges="distinct")

The result is shown in Figure [3]
The function removedEdges can be used to return a numerical vector detail-
ing which edges (if any) would be removed by the combining of edges.

> removedEdges (g1)

[1] 7 12 13 17 18 19 22 23 24 25 27 28 29 30 31 32

3 Subgraphs

A user can request that a subset of the nodes in a graph be kept together.
Graphviz then attempts to find a layout where the specified subgraphs are plot-
ted with all nodes relatively close. This is particularly useful when laying out
graphs that represent some real physical entity (one biological example is path-
ways).

In the code below we construct three subgraphs that we will use to group
the corresponding nodes when g1 is rendered.

> Sgl <- subGraph(c(”a”,”d”,”j”,"i”), gl)
> sgl

A graphNEL graph with undirected edges
Number of Nodes = 4
Number of Edges =1

> sg2 <- subGraph(c("b","e","n"), g1)
> sg3 <- subGraph(c("c","ft","g"), gl)

To plot using the subgraphs, one must use the subGList argument which is
a list of lists, with each sublist having three elements:

e graph : The actual graph object for this subgraph.

o cluster : A logical value noting if this is a cluster or a subgraph. A value
of TRUE (the default, if this element is not used) indicates a cluster.
In Graphviz, subgraphs are used as an organizational mechanism but are
not necessarily laid out in such a way that they are visually together.
Clusters are laid out as a separate graph, and thus Graphviz will tend to
keep nodes of a cluster together. Typically for Rgraphviz users, a cluster
is what one wants to use.

e attrs : A named vector of attributes, where the names are the attribute
and the elements are the value. For more information about attributes,
see Section E] below.

Please note that only the graph element is required. If the cluster element
is not specified, the subgraph is assumed to be a cluster and if there are no
attributes to specify for this subgraph then attrs is unnecessary.

> subGList <- vector(mode="list", length=3)

> subGList[[1]] <- list(graph=sgl)

> subGList[[2]] <- list(graph=sg2, cluster=FALSE)
> subGList[[3]] <- list(graph=sg3)

> plot(gl, subGList=subGList)

Figure 4: g1 laid out with two different settings for the parameter subGList.

The result is shown in the left panel of Figure [d and for comparison, another
example:

> Sgl <- subGraph(c(”a", ”C”, "d”, "e","j”), gl)
> sg2 <- subGraph(c(”f", ”h”, "ill)’ gl)
> plot(gl, subGList=list(list(graph=sgl), list(graph=sg2)))

3.1 A note about edge names

While internal node naming is quite straight forward (it is simply taken from the
graph object), Rgraphviz needs to be able to uniquely identify edges by name.
End users as well will need to be able to do this to correctly assign attributes.
The name of an edge between tail node x and head node y is x~y. The method
edgeNames can be used to obtain a vector of all edge names, and it takes the
argument recipFEdges so that the output correctly matches which edges will be
used by Rgraphviz.

> edgeNames (g1)

[1] Ila"'bll Ila“’dll lla~ell Ila"‘fll Ila"‘hll Ilb“’fll ll'b“'dll Ilb"‘ell Ilb“’hll IIC“’hII lld“'ell Ild"‘fll
[13] Ild“'h" Ile“'fll lle"'hll Ilf"‘hll

> edgeNames (g1, recipEdges="distinct")

[1] Ila"‘bll |Ia"'d|l lla"'ell lla""fll Ila"‘hll |Ib"’f|| llb"'all Ilb"‘dll Ilb"‘ell llb"'hll I|C~hll Ild"‘all
[13] Ild""bll Ild“’ell lld“'fll Ild"'hll Ile"‘all Ile“’bll lle“'dll Ile"‘fll Ile“’hll llf“’bll llf“'all Ilf""dll
[25] Ilf“'e" Ilf“'hll llh"'cll Ilh"‘all Ilh“'bll I|h~dll llh"'eﬂ Ilh"‘fll

4 Attributes

4.1 Global attributes

There are many visualization options in Graphviz that can be set beyond those
which are given explicit options using Rgraphviz - such as colors of nodes and
edges, which node to center on for twopi plots, node labels, edge labels, edge
weights, arrow heads and tails, etc. A list of all available attributes is accessible
online at: http://www.graphviz.org/pub/scm/graphviz2/doc/info/attrs.
htmll Note that there are some differences between default values and also
some attributes will not have an effect in Rgraphviz. Please see the man page
for graphvizAttributes for more details.

Attributes can be set both globally (for the entire graph, for all edges, all
nodes, etc) as well as on a per-node and per-edge basis. Global attributes are
set via a list and passed in as the attrs argument to plot. A default set of
global attributes are used for global values which are not specified (by using the
getDefaultAttrs function). The getDefaultAttrs function will take a partial
global attribute list (see below for a description) and/or the layout type to be
used (dot, neato, or twopi) and will generate an attribute list to be used with
defaults for values that the user did not specify.

The list has four elements: 'graph’, ’cluster’, ’edge’ and 'node’. Within each
element is another list, where the names correspond to attributes and the values
correspond to the value to use globally on that attribute. An example of this
structure can be seen with the default list provided by getDefaultAttrs:

> defAttrs <- getDefaultAttrs()
$graph

$graph$bgcolor
[1] "transparent"

$graph$fontcolor
[1] "black"

$graph$ratio
[1] "f4i1lv

$graph$overlap
[1] nn

http://www.graphviz.org/pub/scm/graphviz2/doc/info/attrs.html
http://www.graphviz.org/pub/scm/graphviz2/doc/info/attrs.html

$graph$splines
[1] "TRUE"

$graph$rank
[1] "Sanle"

$graph$size
[1] "6.99,6.99"

$graph$rankdir
[1] IITB“

$cluster
$cluster$bgcolor
[1] "transparent"

$cluster$color
[1] "black"

$cluster$rank
[1] "Sa.me"

$node
$node$shape
[1] "circle"

$node$fixedsize
[1] TRUE

$node$fillcolor
[1] "transparent"

$node$label
[1] ll\\Nll

$node$color
[1] "black"

$node$fontcolor
[1] "black"

$node$fontsize
[1] n 14"

$node$height
[1] IIO.SII

$node$width
[1] "o0.75"

$edge
$edge$color
[1] "black"

$edgeddir
[1] "none"

$edgefweight
[1] .o

$edge$label
[1] nn

$edge$fontcolor
[1] "black"

$edge$arrowhead
[1] "none"

$edgeSarrowtail
[1] "none"

$edge$fontsize
[1] nygn

$edge$labelfontsize
[1] nyqn

$edgeSarrowsize
[1] ||1||

$edge$headport
[1] "center"

$edge$layer
[1] nn

$edgesstyle
[1] "solid"

$edge$minlen
[1] n 1 n

To manually set some attributes, but not others, pass in a list with the
specific attributes that you desire. In the following example (see Figure [5| we
set two attributes (label and fillcolor for nodes, one for edges (color) and one
for the graph itself (rankdir). We could also have called getDefaultAttrs with
the same list that we are passing as the attrs argument, but there is no need
here.

> plot(gl, attrs=list(node=list(label="foo", fillcolor="1lightgreen"),
+ edge=list(color="cyan"),
+ graph=list(rankdir="LR")))

C
@E/O®

® e

® @0 ©

Figure 5: g1 laid out with user-defined attrs.

4.2 Per node attributes

Users can also set attributes per-node and per-edge. In this case, if an attribute
is defined for a particular node then that node uses the specified attribute and
the rest of the nodes use the global default. Note that any attribute that is set
on a per-node or per-edge basis must have a default set globally, due to the way
that Graphviz sets attributes. Both the per-node and per-edge attributes are
set in the same basic manner - the attributes are set using a list where the names
of the elements are the attributes, and each element contains a named vector.
The names of this vector correspond to either node names or edge names, and
the values of the vector are the values to set the attribute to for that node or
edge. The following sections will demonstrate how to set per-node and per-edge
attributes for commonly desired tasks. For these we will use two lists nAtirs
and eAttrs.

>
>

nAttrs <- list()
eAttrs <- list()

4.3 Node labels

By default, nodes use the node name as their label and edges do not have a
label. However, both can have custom labels supplied via attributes.

>
>
>
>

v

z <- strsplit(packageDescription("Rgraphviz")$Description, " ")[[1]]
z <- z[1:numNodes(g1)]

names(z) = nodes(gl)

nAttrs$label <- z

eAttrs$label <- c("a"h"="Label 1", "c“h"="Label 2")

attrs <- list(node=list(shape="ellipse", fixedsize=FALSE))

plot(gl, nodeAttrs=nAttrs, edgeAttrs=eAttrs, attrs=attrs)

Figure 6: g1 laid out with user-defined node and edge labels.

The result is shown in Figure [6]

4.4 Using edge weights for labels

A common desire for edge weights is to use the edge weights for the edge labels.
This can be done with just a couple of extra steps. First we will get the edge

10

weights, and unlist them, to provide them in vector format. Then, first we will
determine which of those to remove (this step is only necessary if recipEdges is
set to TRUFE, which is default behavior for both undirected and directed graphs)
and remove those positions from our vector. Finally, we will get the set of edge
names which will be used for plotting and bundle that into the appropriate
structure for plotting.

Please note to take care with edge names. If recipFdges is set to combined,
then only one of any pair of reciprocal edges will actually be used. Users should
utilize the edgeNames method to be sure that they are setting attributes for the
right edge names.

ew <- as.character(unlist(edgeWeights(gl)))

ew <- ew[setdiff (seq(along=ew), removedEdges(gl))]
names (ew) <- edgeNames(g1)

eAttrs$label <- ew

attrs$edge$fontsize <- 27

vV V.V Vv VvV

\%

plot(gl, nodeAttrs=nAttrs, edgeAttrs=eAttrs, attrs=attrs)

fetacey (1) @by (o)

Figure 7: g1 laid out with edge weights as edge labels.

The result is shown in Figure [7]

4.5 Adding color

There are many areas where color can be specified to the plotted graph. Edges
can be drawn in a non-default color, as can nodes. Nodes can also have a specific

11

fillcolor defined, detailing what color the interior of the node should be. The
color used for the labels can also be specified with the fontcolor attribute.

> ## Specify node drawing color
> nAttrs$color <- c(a="red", b="red", g="green", d="blue")
> ## Specify edge drawing color
> eAttrs$color <- c("a"d"="blue", "c~h"="purple")
> ## Specify node fill color
> nAttrs$fillcolor <- c(j="yellow")
> ## label color
> nAttrs$fontcolor <- c(e="green", f="red")
> eAttrs$fontcolor <- c("a"h"="green", "a"b"="red")
> nAttrs
$label
a b c d e £
IlInterfacesll llRII "With" llthe n IIATII Ilandll
g h i]
"T" "graphviz" "library" "for\n"
$color
a b g d
||redll Ilredll ||greenl| |Ib1ue||
$fillcolor
J
"yellow"
$fontcolor
e f
Ilgreenﬂ Ilredll
> eAttrs
$label

a™b a”d a”e a”f a™h b"f b"d b"e b™h ¢"h d7e d"f d"h e"f e"h f°h
LU U U R U T, LU U U U U U U U R U UL RUSSIE T

$color
a~d c”h
llbluell llpurplell

$fontcolor
a"h a"b
Ilgreenll Ilredll

> plot(gl, nodeAttrs=nAttrs, attrs=attrs)

The result is shown in Figure

12

Figure 8: g1 laid out with colors.

4.6 Node shapes

The Rgraphviz package allows you to specify different shapes for your nodes.
Currently, the supported shapes are circle (the default), ellipse, plaintext and
box. plaintext is simply a box that is not displayed for purposes of layout. As
with previous attributes, the shape can be set globally or for specific nodes.
Figure [9] shows the graph of the previous example, with the default shape as
ellipse and with two nodes specified as being boz, one as a circle and one as a
plaintext node:

> attrs$node$shape <- "ellipse"
> nAttrs$shape <- c(g="box", f="circle", j="box", a="plaintext")

> plot(gl, attrs=attrs, nodeAttrs=nAttrs)

5 Layout, rendering and the function agopen

The calls to the plot that we have made above amount to two different pro-
cessing steps, layout and rendering. In the layout step, Graphviz lays out the
nodes and edges on a (virtual) 2D plotting surface. In the rendering step, a plot
consisting of lines, shapes, and letters with particular line styles, colors, fonts,
font size etc. is created.

By dissecting these steps and manually interfering, we can achieve finer
control over the appearance of the rendered graph.

13

Interfaces T for

Figure 9: g1 laid out with user defined node shapes.

The functions buildNodeList and buildEdgeList generate a list of pNode
and pFEdge objects respectively. These are used to provide the information for
the Graphviz layout, and by default they are generated automatically during
the call to the plot function. By generating these manually before the layout,
one can edit these objects and perform the layout with these edited lists. For
example:

> nodes <- buildNodeList(gl1)
> edges <- buildEdgeList(gl)

You can now see the contents of the first pNode and first pEdge objects in their
respective lists.

> nodes[[1]]

An object of class "pNode"
Slot '"name":
[1] llall

Slot "attrs":

$label
[1] ngn

Slot "subG":
[11 o

14

> edges[[1]]

An object of class "pEdge"
Slot "from":
[1] llall

Slot "to":
[1] llbll

Slot "attrs":
$arrowhead
[1] "none"

$weight
[1] nqn

$dir
[1] "none"

Slot "subG":
[11 o

The functions buildNodeList and buildEdgeList can also use the attribute
lists constructed above.

> nodes <- buildNodeList(gl, nodeAttrs=nAttrs, defAttrs=defAttrs$node)
> edges <- buildEdgeList(gl, edgeAttrs=eAttrs, defAttrs=defAttrs$edge)
> nodes[[1]]

An object of class "pNode"
Slot "name":
[1] llall

Slot "attrs":
$label

[1] "Interfaces"

$color
[1] llredll

$fillcolor
[1] "transparent"

$fontcolor
[1] "black"

15

$shape
[1] "plaintext"

Slot "subG":
[11 0

> edges[[1]]

An object of class "pEdge"
Slot "from":
[1] llall

Slot "to":
[1] llbll

Slot "attrs":
$arrowhead
[1] "none"

$weight
[1] nn

$dir
[1] "none"

$label
[1] ||1||

$color
[1] "black"

$fontcolor
[1] "red"

Slot "subG":
[11 o

Note the difference between the objects in the second example as compared with
the first.
We can add arrowheads to the a e and a h edges
> for(j in c("a"e", "a"h"))
+ edges[[jl]@attrs$arrowhead <- "open"

While visually indicating direction, these will have no bearing on the layout
itself as Graphviz views these edges as undirected.

16

Now we can plot this graph (see Figure :

> vv <- agopen(name="foo", nodes=nodes, edges=edges, attrs=attrs,
+ edgeMode="undirected")
> plot(vv)

Figure 10: ¢! laid out via nodes and edge lists.

Next we use a different graph, one of the graphs in the graphFzamples dataset
in the graph package and provide another demonstration of working with at-
tributes to customize your plot.

data(graphExamples)

z <- graphExamples[[8]]

nNodes <- length(nodes(z))

nA <- 1list()

nA$fixedSize<-rep(FALSE, nNodes)
nA$height <- nA$width <- rep("1", nNodes)
nA$label <- rep("z", nNodes)

nA$color <- rep("green", nNodes)
nA$fillcolor <- rep("orange", nNodes)
nA$shape <- rep("circle", nNodes)
nA$fontcolor <- rep("blue", nNodes)
nA$fontsize <- rep(10, nNodes)

nA <- lapply(nA, function(x) { names(x) <- nodes(z); x})

VVVVVVVVVVYVVYV

\%

plot(z, nodeAttrs=nA)

17

Figure 11: Customized layout of graph z.

6 Customized node plots

The Rgraphviz package provides for customized drawing of nodes. Customized
nodes must have one of the standard node shapes, but are able to provide for
richer information inside.

To do this, lay out the graph using the shape desired, then, when plotting
the laid out graph, use the drawNode argument to plot to define how the nodes
are drawn. This argument can be either of length one (in which case all nodes
are drawn with that same function) or a list of length equal to the number of
nodes in the graph (in which case the first element of the list is used to draw
the first node, etc). To work correctly, the function will take four arguments:

node is an object of class AgNode describing the node’s location and other
information

ur is of class XYPoint and describes the upper right hand point of the bounding
box (the lower left is 0,0)

attrs is a node attribute list as discussed in Section @l It can be used for
post-layout attribute changes to override values that were used for the
layout.

radConv is used by Rgraphviz to convert Graphviz units to R plotting units.
This argument will probably not need to be used a custom drawing func-
tion, but does need to exist.

18

A custom drawing function is free to ignore these arguments, but the argument
must exist in the function signature.

The default function for node drawing on all nodes is drawAgNode, and users
who want to supply their own node drawing function are encouraged to inspect
this function as a template.

If one wants to use a custom function for some nodes but the standard
function for others, the list passed in to drawNode can have the custom functions
in the elements corresponding to those nodes desired to have special display and
drawAgNode in the elements corresponding to the nodes where standard display
is desired.

One function included with the Rgraphviz package that can be used for such
alternate node drawing is pieGlyph. This allows users to put arbitrary pie
charts in as circular nodes.

> set.seed(123)
> counts = matrix(rexp(numNodes(gl)+*4), ncol=4)
> gllayout <- agopen(gl, name="foo")
> makeNodeDrawFunction <- function(x) {
force(x)
function(node, ur, attrs, radConv) {
nc <- getNodeCenter (node)
pieGlyph(x,
xpos=getX(nc),
ypos=getY(nc),
radius=getNodeRW(node) ,
col=rainbow(4))
text (getX(nc), getY(nc), paste(signif (sum(x), 2)),
cex=0.5, col="white", font=2)
}

Vot o+t F o+ o+ o+ o+

}
drawFuns <- apply(counts, 1, makeNodeDrawFunction)

> plot(gllayout, drawNode=drawFuns, main="Example Pie Chart Plot")

The result is shown in Figure

7 Special types of graphs

Up to this point, we have only been working with objects of class graphNEL,
but the other subclasses of the virtual class graph (such as distGraph and clus-
terGraph) will work as well, provided that they support the nodes and edgeL
methods.

In this section, we demonstrate a few examples. Users should not notice a
difference in the interface, but this will provide some visual examples as to how
these types of graphs will appear.

19

Example Pie Chart Plot

Figure 12: g1 with pie charts as nodes.

7.1 Cluster graphs

For our first set of examples, we create an object of class clusterGraph and then
plot it using all three layout methods:

> ¢G <- new("clusterGraph", clusters=list(a=c(1:10), b=c(11:13),
+ c=c(14:20), d=c(21, 22)))

A graph with wundirected edges
Number of Nodes = 22
Number of Edges = 70

In Figure [I3] we show ¢G laid out using three different algorithms.

7.2 Bipartite graphs

We provide a simple example of laying out a bipartite graph. There are two
types of nodes, and edges go only from one type to the other. We first construct
the bipartite graph.

> set.seed(123)

> nodesl <- paste(0:7)

> nodes2 <- letters[1:10]
> ft <- cbind(sample(nodesl, 24, replace=TRUE),

+ sample (nodes2, 24, replace=TRUE))

> ft <- ft[!duplicated(apply(ft, 1, paste, collapse="")),]

20

dot twopi neato

Figure 13: A cluster graph laid out using the three layout algorithms.

> g <- ftM2graphNEL(ft, edgemode='directed')

> 8

A graphNEL graph with directed edges
Number of Nodes = 18

Number of Edges = 20

Next we set up the node attributes and create subgraphs so that we can better
control the layout. We want to have color for the nodes, and we want to lay the
graph out from left to right, rather than vertically.

> twocolors <- c("#D9EF8B'", "#EOF3F8")

> nodeType <- 1 + (nodes(g) /inJ, nodes1)

> nA = makeNodeAttrs(g, fillcolor=twocolors[nodeType])

> sgl = subGraph(nodes1, g)

> sgL = list(list(graph=sgl, cluster = FALSE, attrs = c(rank="sink")))
> att = list(graph = list(rankdir = "LR", rank = ""))

Finally, in Figure [14] we plot the bipartite graph.

> plot(g, attrs = att, nodeAttrs=nA, subGList = sgL)

8 NEW Another workflow to plot a graph

Another workflow in doing layout, rendering is as following: (1) convert a graph
in graph class to Ragraph class, (2) set its default attributes for graph, cluster(s),
nodes and edges, (3) set attributes for individual cluster, node(s) and /or edge(s),
(4) layout it with desired algorithm, (5) render it to desired media.

Repeat steps (3), (4) and/or (5) as needed.

21

Figure 14: A bipartite graph.

8.1 Convert a graph to Ragraph class

We prepare a graph with two subgraphs: graphExample-01.gxl.gz and graphExample-
11.gxl.gz from package graph. We specify the 1st one is NOT a cluster, while
the 2nd one is.

Just as in graphviz, Rgraphviz treats a cluster as a special subgraph, its
nodes are layed out and drawn together and within a bounding rectangel.

> library(graph)

> library(XML)

> gl_gz <- gzfile(system.file("GXL/graphExample-01.gx1.gz",package="graph"))
> g11 gz <- gzfile(system.file("GXL/graphExample-11.gxl.gz",package="graph"))
> g1 <- fromGXL(gl_gz)

> g11 <- fromGXL(gll_gz)

> g1_11 <- join(gl, gi11)

> sgl <- vector(mode="list", length=2)

> sgl[[1]] <- list(graph=gl, cluster=FALSE)

> sgl[[2]] <- list(graph=gll, cluster=TRUE)

> ng <- agopenSimple(gl_11, "tmpsg", subGList=sgl)

> close(gl_gz)

> close(gll_gz)

Note: this instance of Ragraph class from agopenSimple contains less con-
tent than that you obtain from calling agopen: it maintains a pointer for access
to graphviz; after setting various attributes and doing layout, other entries are
filled in for drawing only.

22

The following workflow works well for an instance of Ragraph class obtained
from agopen as well.

8.2 Get default attributes

There are default attributes associated with a graph, a cluster (a subgraph),
nodes and edges. You can find out what they are as follows:

After you explicitly set one or more default attributes, you’ll see the default
attributes.

If you like the notation from package graph better, the following codes ac-
complish the same:

> graphDataDefaults (ng)
[,11 [,2]
> nodeDataDefaults (ng)

attr name attr value
node attr 1 "label" "\\N"

> edgeDataDefaults (ng)

attr name attr value
edge attr 1 "key" "
edge attr 2 "tailport" ""
edge attr 3 "headport" ""

8.3 Set default attributes

If you want to set default attributes yourself, you could call functions like fol-
lowing:

> graphDataDefaults(ng, c("size", "bgcolor")) <- c("1", "yellow")
> nodeDataDefaults(ng, c("fontcolor", "width")) <- c("blue", 0.5)
> edgeDataDefaults(ng, c("color", "style")) <- c("green", "dotted")

As shown in the examples, you can specify multiple attributes and their
corresponding values in one call. R’s circular rule applies.

Currently, only the 1st call to set default attributes has effects. Subsequent
calls yield no effect.

8.4 Get attributes

You could set attributes for individual elements: graph, cluster(s), node(s) and
edge(s). As R’s circular rule applies, you could get multiple attributes to mul-
tiple elements in one call.

The package graph like notations are:

23

> graphData(ng, "bgcolor")

bgcolor
"yellow"

> nodeData(ng, "a", c("fontcolor", "width"))

a a
"plue" "o.5"

> edgeData(ng, "f", "h", c("color", "arrowhead"))

£f~h £f~h
"green" NA

>

The return value, "default graph, node, cluster, node attr val 1", indicates
that the attribute is NOT defined.

The return value, "default graph, node, cluster, node attr val 2", indicates
that the attribute is NOT set for this object, the software will use default
instead.

8.5 Set attributes

Likewise, you can set attributes for each element: graph, cluster(s), node(s) and
edge(s). R’s circular rule applies to element(s), attribute name(s) and attribute
value(s).

A note on default value(s): default value could be set once and only once at
this time. Only the first call has effect.

> graphData(ng, "bgcolor") <- "orange"

> clusterData(ng, 2, "bgcolor") <- "red"

> nodeData(ng, "a", c("fontcolor", "width")) <- c("red", "0.8")

> edgeData(ng, "f", "h", c("color", "style")) <- c("blue", "solid")

You can set as many attributes as you like.

Not every rendering software honors all the attributes, even for those pro-
vided by graphviz. Different attributes could have different impact in layout:
some affect layout and drawing, such as node shapes, font size; others affect
only drawing, such as fill color, font color.

Some attribute seem only take effect for certain layout, for instance, bgcolor
for cluster shows the effect when layout is "dot", but not for "circo".

24

8.6 Layout and render the graph in various formats

To do the layout and render the results, there are two main output channels:
(1) interactive output, and (2) file output which you could use various viewers
to view the results.

To plot a graph interactively, simply do:

> plot(ng, "neato")
> plot(ng, "circo")

Currently, interactive output only honors a small number of attributes,
mainly those from buildNodelist and buildEdgeList.
To do layout and then output to a file, you can do:

> # toFile(ng, layoutType="dot", filename="test_dot.svg", fileType="svg")
> # toFile(ng, layoutType="circo", filename="test_circo.ps", fileType="ps")
> toFile(ng, layoutType="dot", filename="test_twopi.dot", fileType="dot")

NULL

These examples use various renderer provided by graphviz, which honor a lot
more attributes. You can look into graphviz doc to find out more, for instance,
node shapes, color schemes, line types/sizes, etc.

You need corresponding viewers installed to be able to view the output files.

9 Tooltips and hyperlinks on graphs

Users that want to create a clickable graph renderings with drill-down capability
should see the imageMap function in the biocGraph package.

10 Sessioninfo

e R Under development (unstable) (2025-10-20 r88955),
x86_64-pc-linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

e Time zone: America/New_York
e TZcode source: system (glibc)
e Running under: Ubuntu 24.04.3 LTS

e Matrix products: default

25

BLAS: /home/biocbuild/bbs-3.23-bioc/R/1ib/1ibRblas.so

LAPACK:
/usr/1ib/x86_64-1linux-gnu/lapack/liblapack.s0.3.12.0

Base packages: base, datasets, grDevices, graphics, grid, methods, stats,
utils

Other packages: BiocGenerics 0.57.0, Rgraphviz 2.55.0, XML 3.99-0.19,
generics 0.1.4, graph 1.89.0

Loaded via a namespace (and not attached): compiler 4.6.0, stats4 4.6.0,
tools 4.6.0

26

	Overview
	Different layout methods
	Reciprocated edges

	Subgraphs
	A note about edge names

	Attributes
	Global attributes
	Per node attributes
	Node labels
	Using edge weights for labels
	Adding color
	Node shapes

	Layout, rendering and the function agopen
	Customized node plots
	Special types of graphs
	Cluster graphs
	Bipartite graphs

	NEW Another workflow to plot a graph
	Convert a graph to Ragraph class
	Get default attributes
	Set default attributes
	Get attributes
	Set attributes
	Layout and render the graph in various formats

	Tooltips and hyperlinks on graphs
	Sessioninfo

