RSVSim
an R/Bioconductor package for the simulation of structural

variations
Christoph Bartenhagen
October 31, 2025

Contents
I Infroduction| 1
1.1 Loading the package| e 2
55 [variation simulati 2
RIDeEllons - - - o« v v o e 3
R2I0SErfions] . - -« o o o e 4
D3TIOVEISIONS] . -« o v v o oo e e e e e e 5
2.4 Tandem duplications| L 5
5 Transocationsl - v o v e e e 5
[3 Simulation of biases towards SV formation mechanisms and repeat regions| 6
|4 Simulation of additional breakpoint mutations| 8
[S Simulation within a genome subset| 8
[5.1 Insertingasetof SVs| e 9
[6 Comparing two sets of SVs| 11
{7 Setting structural variation sizes| 13
[/.1 Estimating size distribution fromrealdatal 14
8 __Runtime) 15
1on_Information 18

1 Introduction

The simulation of structural variations (SV) is an important measure to assess the performance of algorithms
dealing with SVs and their detection and can help with the design of sequencing experiments. A simulation
generates a base exact ground truth, which can be used to test the sensitivity and precision of SV callers.

A FASTA-file with the simulated, rearranged genome can be used by common, published read simulators (like
[Huang et al., 2011])), [Hu ef al., 2012]) to generate NGS datasets from various platforms that can then be used
to asses an SV algorithm . A typical workflow consists of

SV simulation = (Paired-End) Read simulation = SV algorithm = Evaluation

Varying parameters of the SV simulation like SV type, size or location and of the read simulator like number of
reads (coverage), insert-size (for paired-end) or read length can give helpful information for future sequencing
experiment designs.

This package addresses the very first step of SV simulation and provides the following features:

» Simulation of deletions, insertions, inversions, tandem duplications and translocations (balanced and un-
balanced) of various sizes

* Rearrangement of the human genome (hg19) by default or any other kind of genome available as FASTA
file or BSgenome package

* Non-overlapping positioning of SV breakpoints within the whole genome or only a subset (e.g. coding,
non-coding or low-complexity regions)

* Implementation of, e.g. previously detected or known, SVs at user-supplied coordinates

* Uniform distribution of SV breakpoints or simulation of biases towards repeat regions and regions of high
homology according to different SV formation mechanisms (for hg19 only)

» Simulation of smaller mutations (SNPs and indels) close to the SV breakpoint
¢ Estimation of SV size distribution from real datasets

» Comparison of SV simulation with results from SV detection algorithms

1.1 Loading the package
After installation, the package can be loaded into R by typing
> library (RSVSim)

into the R console.

RSVSim requires the R-packages Biostrings, IRanges, GenomicRanges and ShortRead. Mainly for efficient and
convenient storing and access of sequences and genomic coordinates. The packages BSgenome.Hsapiens.UCSC.hgl19,
GenomicFeatures, rtracklayer and MASS are suggested for certain functionalities.

2 Structural variation simulation

The main function for simulation is called simulateSV. The simulation works pretty similar for every different SV
type by specifying number and size of the variation(s) and (optionally) the regions, where to place the variation
(randomly or not). The size can be either one value for every SV type or a vector of values for every single SV.
The following sections give a short example for every SV type using a simple toy example with two chromosomes
of 40bp each:

> genome = DNAStringSet (
C ("AAAAAAAAAAAAAAAAAAAATTTITITITITTITTTTTTTIT",
"GGGGGGGGGGGGGGGGGGGGLCccecceceecececeeeceeeeeec”))
> names (genome) = c("chrl", "chr2")
> genome

DNAStringSet object of length 2:

width seq names
[1] 40 AAAAAAAAAAAAAAAAAAAATTTTITTITTITTITTITITTITTITIT chrl
(2] 40 GGGGGGGGGGGGGGGGGGGGCLCCLLeeeeeeeeecccececece chr2

The genome has to be a named DNAStringSet or a filename that points to a FASTA-file saved somewhere
on disk. By default, when omitting the genome parameter, simulateSV will load the human genome (hg19)
automatically. This requires an installation of the R-package BSgenome.Hsapiens.UCSC.hgl9.

When using other BSgenome packages, it is recommended to extract the desired sequences first and combine
them into a named DNAStringSet. For example, the preparation of the genome of an Ecoli strain (str. 536)
would look like:

> library (BSgenome.Ecoli.NCBI.20080805)
> genome = DNAStringSet (Ecoli[["NC_008253"]])
> names (genome) = "NC_008253"

Each implemented SV will be reported with its position in the "normal" reference genome, and the breakpoint
sequences. The rearranged genome is returned as DNAStringSet and the SV information is stored in its
metadata slot as a named 1ist of data.frames. All this can also be written to disk by specifying an
output directory (which is the current directory by default). The SV tables are saved as CSV files (called
deletions.csv, insertions.csv etc.) and the genome in FASTA format (genome_rearranged.fasta).

Note, that the seeds for the randomizations in the following examples were set for demonstration purposes
only. The seed parameter can be omitted or used to reproduce the same simulation several times.
The parameter output is set to NA in all examples to avoid wrtiting the output to disc. The parameter verbose
is set to FALSE to suppress progress information about the simulation (which is enabled by default).

2.1 Deletions

A segment is cut out from the genome. The following example generates three deletions of 10bp each:

> sim = simulateSV (output=NA, genome=genome, dels=3, sizeDels=10,
bpSeqSize=6, seed=456, verbose=FALSE)
> sim

DNAStringSet object of length 2:

width seq names
[1] 20 AAAAAAAAAAAAAAAAAATT chrl
[2] 30 GGGGGGGGGGGGGGGGGGGGCCCCCeeecee chr?2

> metadata (sim)

$deletions

Name Chr Start End Size BpSeq
1 deletionl chrl 21 30 10 ATT
2 deletion2 chr2 31 40 10 Cccc
3 deletion3 chrl 19 28 10 AAATT

Chromosome 2, which harbours two deletions, is now 10bp shorter than chromosome 1. The breakpoint sequence
of 6bp shows the 3bp up- and downstream of the deletion breakpoint in the rearranged genome.

2.2 Insertions

A segment is cut or copied from one chromosome A and inserted into another chromosome B. The following
example generates three insertions of Sbp each:

> sim = simulateSV (output=NA, genome=genome, ins=3, sizelIns=5, bpSeqSize=6,
seed=246, verbose=FALSE)
> sim

DNAStringSet object of length 2:

width seq names
[1] 35 AAAAAAAAAAAAAAATTTTTTTITITTITTTITITTITTT chrl
(2] 45 GAAAAAGGGGGGGCCCCCGGGGGGGGGGGGLCCeeeeeccececececece chr?2

> metadata (sim)

Sinsertions

Name ChrA StartA EndA ChrB StartB EndB Size Copied BpSegA BpSegB_b5prime
insertion_1 chrl 13 17 chr2 2 6 5 FALSE AAAAAA GAAA
insertion_2 chrl 33 37 chril 25 29 5 FALSE TTTTTT TTTTTT
insertion_3 chr2 34 38 chr2 9 13 5 FALSE CCCCC GGGCCC
BpSegB_3prime
1 AAAGGG
2 TTTTTT
3 CCCGGG

w N -

Regarding insertion_1, for example, the Sbp segment AAAAA has been removed from chrl:14-18 and inserted
into chr2:19-23. There are three breakpoint sequences reported for each insertion: the sequence at the deletion
on chrA and at the 5’ and 3’ end of its insertion on chrB.

Setting the parameter percCopiedIns (range: 0-1, i.e. 0%-100%) can change the amount of "copy-and-
paste-like" insertions.
The same example as before, with the difference that two of the three inserted sequences are copied:

> sim = simulateSV (output=NA, genome=genome, ins=3, sizelns=5, percCopiedIns=0.66,
bpSeqSize=6, seed=246, verbose=FALSE)
> sim

DNAStringSet object of length 2:

width seq names
[1] 45 AAAAAAAAAAAAAAAAAAAATTTTTTITTTTITITTITTTTTITITTITITT chrl
[2] 45 GAAAAAGGGGGGGCCCCCGGGGGGGGGGGGELLeeeeceeceececee chr2

> metadata (sim)

Sinsertions
Name ChrA StartA EndA ChrB StartB EndB Size Copied BpSegA BpSegB_b5prime
1 insertion_1 chrl 13 17 chr2 2 6 5 TRUE GAAA
insertion_2 chrl 33 37 chrl 25 29 5 TRUE TTTTTT
3 insertion_3 chr2 34 38 chr2 9 13 5 FALSE CCCCC GGGCCC
BpSegB_3prime
1 AAAGGG
2 TTTTTT
3 CCCGGG

N

The same sequence AAAAA from insertion_1 is now duplicated before insertion into chr2:19-23. Here, no break-
point sequence is reported for the region on chrl, since this chromosome is not altered.

2.3 Inversions

A segment is cut from one chromosome and its reverse complement is inserted at the same place without loss or
a shift of sequence. The example below assigns a different size for each inversion:

> sim = simulateSV (output=NA, genome=genome, invs=3, sizelnvs=c(2,4,6),
bpSeqSize=6, seed=456, verbose=FALSE)
> sim

DNAStringSet object of length 2:

width seqg names
[1] 40 AAAAAAAAAAAAAAAAAAAAAATTTTTTITTTITTITITITITTT chrl
(2] 40 GGGGGGGGGGGGGGGGGGGGGGCLCLCCCLLLGGGGLeeeee chr?2

> metadata (sim)

$inversions

Name Chr Start End Size BpSeq 3prime BpSeqg_bSbprime
1 inversionl chrl 21 22 2 AAATTT AAAAAT
2 inversion2 chr?2 31 34 4 GGGCCC CCCGGG
3 inversion3 chr?2 19 24 6 GCCCcCC GGGGGG

Inversions have two breakpoint sequences, one for the 5° end and one for the 3’ end of the inverted segment.

2.4 Tandem duplications

A segment is duplicated one after the other. The number of duplications is determined randomly. The parameter
maxDups sets the maximum. The following example generates an, at most, tenfold tandem duplication of a 6bp
sequence:

> sim = simulateSV (output=NA, genome=genome, dups=1, sizeDups=6, maxDups=3,
bpSeqSize=6, seed=3456, verbose=FALSE)
> sim

DNAStringSet object of length 2:

width seqg names
[1] 40 AAAAAAAAAAAAAAAAAAAATTTTTTITTITTTITTITITITITTIT chrl
[2] 58 GGGGGGGGGGGGGGGGGGGGGGGEGGGGGGGGGEGGGGGGLCCceecceeeeeecceceeee chr2

> metadata (sim)

StandemDuplications
Name Chr Start End Size Duplications BpSeq
1 tandemDuplicationl chr2 12 17 6 3 GGGGGG

Here, the breakpoint sequence is the sequence at the end of one duplicated segment and the start of the following
one. In this example the duplicated sequence is AAATTT and it has been repeated another two times.

2.5 Translocations

A segment from the 5° or 3’ end of one chromosome A is exchanged with the 5’ or 3’ end of another chromosome
B. If it is not balanced, the segment from chromosome B will be lost, what results in a duplicated sequence from
chromosome A. The parameter percBalancedTrans sets the amount of balanced translocation (0-1, i.e. 0%-
100%); by default, all translocations will be balanced. Segments which are translocated between two different
ends (5’«+°3’ of 3°«+5’) are always inverted. After random generation of the breakpoint, the translocation spans
the chromosome until the closest of both ends (which may include the centromere in the human genome).

> sim = simulateSV (output=NA, genome=genome,trans=1, bpSeqSize=6, seed=123, verbose=FALSE
> sim

DNAStringSet object of length 2:

width seq names
[1] 39 AAAAAAAAAAAAAAAAAAAATTTTTTTTITTITTITTTTCCC chrl
(2] 41 AAAAGGGGGGGGGGGGGGGGGCCCLCLeeeeeeeecccecececece chr?2

> metadata (sim)

Stranslocations
Name ChrA StartA EndA SizeA ChrB StartB EndB SizeB Balanced BpSegA BpSedgB
1 translocation_1 chr2 1 3 3 chrl 37 40 4 TRUE AAAGGG TTTCCC

This example exchanges the last 3bp of chromosome 2 with the first 19bp of chromosome 1. Both sequences
were inverted.
The same example in an unbalanced fashion:

> sim = simulateSV (output=NA, genome=genome,trans=1, percBalancedTrans=0,
bpSeqSize=6, seed=123, verbose=FALSE)
> sim

DNAStringSet object of length 2:

width seqg names
[11] 39 AAAAAAAAAAAAAAAAAAAATTTTTTITTTITTTTTTTICCC chrl
[2] 40 GGGGGGGGGGGGGGGGGGGGCLCCCeeeeeccceeeeecececece chr2

> metadata (sim)

Stranslocations
Name ChrA StartA EndA SizeA ChrB StartB EndB SizeB Balanced BpSegA BpSegB
1 translocation_1 chr2 1 3 3 chrl 37 40 4 FALSE TTTCCC

The sequence from chrl:1-19 is lost, while there are now two copies of the translocated (inverted) segment
from chr2:38-40. The breakpoint sequence for chr2 (denoted by chrA in general) is not reported, since this
chromosome is not altered.

3 Simulation of biases towards SV formation mechanisms and repeat
regions

By default, the SV breakpoints are placed uniformly across the genome. Several studies have shown, that struc-
tural variation formation in the human genome is not a random process but rather the result of mechanisms such
as nonallelic homologous recombination (NAHR), nonhomologous recombination (NHR), variable number of
tandem repeats (VNTRs) and transposable element insertions (TEIs) ([Mills ef al., 2011]], [Pang et al., 2013])).
These mechanisms can be further associated with repeat elements and regions of high homology such as LINE:s,
SINEs, Micro-/Minisatellites and segmental duplications ([Lam et al., 2010]).

Using the default genome hg19 and setting repeatBias to TRUE, RSVSim simulates a bias of breakpoint
positioning towards repeat regions. This is done in two steps:

1. Weighting SV formation mechanisms (here: NAHR, NHR, VNTR, TEI, Other) for each SV type. The
type "Other" can be used for any individual weighting of repeats; by default, "Other" is associated with a
random breakpoint.

2. Weighting each SV formation mechanism for each kind of repeat. The following types of repeat regions
are supported: LINE/L1, LINE/L2, SINE/Alu, SINE/MIR, segmental duplications (SD), tandem repeats
(TR; mainly micro-/minisatellites) and Random. The latter, "Random", means any region on the genome.

For the mechanism NAHR, both breakpoints will lie within a repeat region (with at least 50bp distance to the
repeat margins), while for NHR, VNTR, TEI and Other, the repeat must make up for at least 75% of the SV
region.

This feature is turned off automatically, when the user specifies his own genome (i.e. any genome other than
hg19).

The default weights for SV mechanisms for deletions, insertions an duplications are based on figure 4b in
[Mills et al., 2011]]. The weights for inversions refer to figure 3c in [Pang et al., 2013|]. The mechanisms and
breakpoint sequences of translocations have not been studied as extensively as for other kinds of SVs. The
default weights for translocations were chosen according to some exemplary publications ([Ou et al., 2011]],
[Chen et al., 2008])), so that NAHR, NHR and random breakpoint positioning contribute equally. In all cases, the
results for SVs >1.000bp were used. The exact weights are:

dels 1ins invs dups trans

NAHR 0.23 0.10 0.65 0.10 0.33
NHR 0.69 0.03 0.35 0.03 0.33
TEI 0.04 0.82 0.00 0.82 0.00
VNTR 0.04 0.05 0.00 0.05 0.00
Other 0.00 0.00 0.00 0.00 0.34

The default weights for repeat regions for every SV mechanism were based on the enrichment analysis in
[Lam et al., 2010] (see their supplemental table 5). The exact values are:

> data (weightsRepeats, package="RSVSim")
> show (weightsRepeats)

NAHR NHR TEI VNTR Other

Ll 0.59 1.04 1.66 0 0
L2 0.13 0.62 0.25 0 0
Alu 2.72 1.16 0.47 0 0
MIR 0.14 0.74 0.14 0 0
SD 5.95 2.06 0.57 0 0
TR 0.00 0.00 0.00 1 0
Random 1.00 1.00 1.00 0 1

The user may provide other weights by passing his own data . frames, using the function arguments weight sMechanisms
and weightsRepeats. The structure of the data.frames has to be identical to the default ones shown

above (i.e. same dimensions, column and row names). The effect of the weights is comparable to the prob

argument in the R function sample.

For example would exclude tandem repeats, segmental duplications and random regions from the simulation

(except for VNTRSs) by setting their weights to zero for all mechanisms. NAHRs, would be related to SINEs

only. For weight sMechanisms, the default values will be used, because the argument is missing here. Note,

that repeatBias=TRUE has to be set to use this feature.

This feature requires the coordinates of repeat regions for hg19. This can be handled in two ways:

* RSVSim downloads the coordinates once automatically from the UCSC Browser’s RepeatMasker track
(which may take up to 45 Minutes!).

* The user may specify the filename of a RepeatMasker output file downloaded from their homepage ([Smit ez al., 1996-2010]):
http://www.repeatmasker.org/species/homSap.html (e.g. hg19.fa.out.gz). Loading this file takes only a few
minutes.

In both cases, RSVSim saves the coordinates as RData object repeats_hgl9.RData to the RSVSim instal-
lation directory for a faster access in the future (if write privileges allow to do so). After that, one of the two steps
mentioned above is not necessary anymore and next time, RSVSim is going to load the coordinates automatically
from the RDat a file.

When loading the repeats, neighboured ones with a distance up to 50bp will be merged, to obtain larger repeat
regions and to allow SVs to span more than one repeat. But, breakpoints will only be placed within repeats of
the same type (e.g. LINE/L1-LINE/L1, or SINE/MIR-SINE/MIR etc.).

4 Simulation of additional breakpoint mutations

SV breakpoints are usually not clean but tend to co-occur with other, usually smaller mutations, such as indels or
SNPs. RSVSim allows to randomly generate additional SNPs and indels within the flanking regions of each break-
point. Their generation can be configured by the four arguments bpFlankSize, percSNPs, indelProb and
maxIndelSize, which specify the size of the flanking regions in bp (i.e. proximity of the mutations to the
breakpoint), the fraction on SNPs (in %), the probability of an indel (insertions and deletions are equally likely)
and the maximum size of an indel (size is selected randomly between 1 and maxIndelSize). Each flanking
region may only contain one indel. SNPs can affect 0-100% of the region. By default, this feature is turned off.
The following example creates one deletion with 10% SNPs and 100% indel probability within 10bp up-/downstream
of the breakpoint:

> sim = simulateSV (output=NA, genome=genome, dels=1, sizeDels=5, bpFlankSize=10,
percSNPs=0.25, indelProb=1, maxIndelSize=3, bpSeqSize=10, seed=123, verbose=FALSE)
> sim

DNAStringSet object of length 2:

width seq names
[1] 40 AAAAAAAAAAAAAAAAAAAATTTTTITITITTITTITITITITITTIT chrl
[2] 34 GGGGGGTGGGGGGGCCCCCeeeeeecceceeccecece chr2

> metadata (sim)

Sdeletions
Name Chr Start End Size BpSeq
1 deletionl chr2 3 7 5 GGGGGGT

In addition to the 5bp deletion of the sequence CCCCC, two SNPs C— >T and C— >A, and a deletion of two
more Cs were added up- and downstream of the breakpoint.

5 Simulation within a genome subset

It is possible to run the simulation to certain chromosomes only by specifying the chromosome names in the
parameter chrs. It has to be taken care that these chromosome names match the names in the DNAStringSet
containing the genome sequences (e.g. "chrl"”, "chr2", ..., "chrY" for the default genome hg19 from the package
BSgenome.Hsapiens.UCSC.hgl9).

Furthermore, every SV has it’s own parameter to restrict the simulation to a desired set of genomic regions:
regionsDels, regionsIns, regionsInvs, regionsDups and regionsTrans. Each one being a
GRanges object with a chromosome name, start- and end-position.

The following example places randomly four inversions into the second half of chrl and the first half of chr2:

> regions = GRanges (IRanges(c(21,1),c(40,20)), segnames=c("chrl","chr2"))
> regions

GRanges object with 2 ranges and 0 metadata columns:

segnames ranges strand
<Rle> <IRanges> <Rle>

[1] chrl 21-40 *
[2] chr2 1-20 *

seginfo: 2 sequences from an unspecified genome; no seglengths

> sim = simulateSV (output=NA, genome=genome, invs=4, sizelInvs=5,
regionsInvs=regions, bpSeqSize=6, seed=2345, verbose=FALSE)
> sim

DNAStringSet object of length 2:

width seq names
[1] 40 AAAAAAAAAAAAAAAAAAAATAAAAATAAAAATTTTITTT chrl
[2] 40 CCCCCCCCCCGGGGGGGGGGLeeeeeeeceeeecceececece chr2

> metadata (sim)

Sinversions

Name Chr Start End Size BpSeqg 3prime BpSeq_bSprime
1 inversionl chrl 22 26 5 AAATAA AATAAA
2 inversion2 chrl 28 32 5 AAATTT AATAAA
3 inversion3 chr2 6 10 5 CCCGGG CCccccce
4 inversion4 chr?2 1 5 5 Cccccece

For translocations, the regions only say where to place the breakpoint, since the translocated region spans the
chromosome until the closest of both ends.

Some applications may focus on certain parts of the hg19 only, like exons, introns or transcripts. The package
GenomicFeatures provides functionalities to export such coordinates from the UCSC Genome Browser to R (see
for example makeTxDbFromUCSC, exonsBy, intronsBy, transcriptsBy). In the following example,
100 deletions would be placed somewhere in the exonic regions on hg19:

> transcriptDB = makeTxDbFromUCSC (genome = "hgl9",tablename = "knownGene")

> exons = exonsBy (transcriptDB)

> exons = unlist (exons)

> exons = GRanges (IRanges (start=start (exons), end=end(exons)), seqgnames=seqnames (exons))
> simulateSV (output=NA, dels=100, regionsDels=exons, sizeDels=1000, bpSeqSize=50)

SVs will not be placed within unknown regions or assembly gaps denoted by the letter N. Such regions are
detected and filtered automatically.

5.1 [Inserting a set of SVs

The simulation allows to turn off the random generation of breakpoints and to insert a set of (for example previ-
ously detected or known) SVs. It works by using the same regions parameters and setting the parameter random
to FALSE. This may also be a vector of five TRUE/FALSE values (in the order: deletions, insertions, inversions,
tandem duplications, translocations) if some SVs shall be generated randomly and others not.

The example below inserts a deletion at chr2:16-25:

> knownDeletion = GRanges (IRanges(16,25), segnames="chr2")
> names (knownDeletion) = "myDeletion"
> knownDeletion

GRanges object with 1 range and 0 metadata columns:

segnames ranges strand
<Rle> <IRanges> <Rle>
myDeletion chr2 16-25 *

seginfo: 1 sequence from an unspecified genome; no seqglengths

> sim = simulateSV (output=NA, genome=genome, regionsDels=knownDeletion,
bpSeqSize=10, random=FALSE, verbose=FALSE)
> sim

DNAStringSet object of length 2:

width seq names
[1] 40 AAAAAAAAAAAAAAAAAAAATTTTITTITTITTITTITTTITTITIT chrl
(2] 30 GGGGGGGGGGGGGGGCCCCCeeeecececececece chr?2

> metadata (sim)

Sdeletions
Name Chr Start End Size BpSeq
myDeletion myDeletion chr2 16 25 10 GGGGGCCCCCe

Note, that the output adopts the names, that were given the GRanges object of the inserted SV(s).

It’s a little different for insertions and translocations, since they involve two genomic regions. Thus, the
GRanges object for regionsIns has to be extended by columns chrB and startB, saying, that the se-
quence within ranges of the GRanges object will be inserted at chrB:startB.

The next example inserts the sequence from chrl:16:25 at chr2:26:

> knownInsertion = GRanges (IRanges(16,25),seqgnames="chrl", chrB="chr2", startB=26)
> names (knownInsertion) = "myInsertion"
> knownInsertion

GRanges object with 1 range and 2 metadata columns:

segnames ranges strand | chrB startB
<Rle> <IRanges> <Rle> | <character> <numeric>
myInsertion chrl 16-25 * | chr2 26

seginfo: 1 sequence from an unspecified genome; no seglengths

> sim = simulateSV (output=NA, genome=genome, regionsIns=knownInsertion,
bpSeqSize=10, random=FALSE, verbose=FALSE)
> sim

DNAStringSet object of length 2:

width seqg names
[1] 30 AAAAAAAAAAAAAAATTTITTTTITTITTITTT chrl
[2] 50 GGGGGGGGGGGGGGGGGGGGCCCCCAAAAATTTTTCCCCCCCCCCCCCee chr2

> metadata (sim)

$Sinsertions

Name ChrA StartA EndA ChrB StartB EndB Size Copied BpSegA

myInsertion myInsertion chrl 16 25 chr2 26 35 10 FALSE AAAAATTTTT
BpSegB_bSprime BpSegB_3prime
myInsertion CCCCCAAAAA TTTTTCCCCC

10

The GRanges object for translocations has to be extended by columns chrB, startB and endB, saying, the
sequence within the ranges of the object will be exchanged with the sequence from chrB:startB-endB. Typically,
one start/end of each region equals the 5’or 3’ end of the chromosome. One may add a column balanced
saying TRUE/FALSE for every single entry.

The next example is a simple simulation of the translocation t(9;22) leading to the BCR-ABL fusion gene. It
uses simple breakpoints within 9q34.1 and 22q11.2 for demonstration:

> trans_BCR_ABL = GRanges (IRanges (133000000,141213431), segnames="chr9",
chrB="chr22", startB=23000000, endB=51304566, balanced=TRUE)

> names (trans_BCR_ABL) = "BCR_ABL"

> trans_BCR_ABL

GRanges object with 1 range and 4 metadata columns:

segnames ranges strand | chrB startB endB Dbalanced
<Rle> <IRanges> <Rle> | <character> <numeric> <numeric> <logical>
BCR_ABL chr9 133000000-141213431 * | chr22 23000000 51304566 TRUE

segqinfo: 1 sequence from an unspecified genome; no seglengths

> sim = simulateSV (output=NA, chrs=c("chr9", "chr22"), regionsTrans=trans_BCR_ABL,
bpSeqSize=50, random=FALSE)

The example is not executed here, because it requires the package BSgenome.Hsapiens.UCSC.hgl19. Setting the
argument t ransInsert=20 adds up to 20 random nucleotides at both breakpoints.

It is strongly recommended to only use a set of non-overlapping SVs.

6 Comparing two sets of SVs

A typical use case of SV simulation with is the evaluation of SV detection algorithms. The function compareSVv
looks for overlaps between the output of the simulation, the ground truth (simSVs), and the output of an SV de-
tection program (querySVs) up to a certain tolerance. It computes the sensitivity, precision and the percentage
overlap between the breakpoint sequences (if available).

An overlap is defined as the overlap between the breakpoints/breakpoint regions in simSVs/querySVs up to
the given tolerance in bp. Overlap does not mean the whole affected region between the start and end of the SV.
Unfortunately, there is currently no common standard format for SVs. Because the main information about
SVs is their position in the genome and, sometimes, the breakpoint sequence (which depends on the SV de-
tection algorithm), compareSV expects the SV detections as tables in a simple BED- or BEDPE format
(http://code.google.com/p/bedtools). Deletions, inversions and tandem duplications, which af-
fect one region on the genome, can be either given in both formats. Translocations and insertions, which affect
to regions on the genome, require the BEDPE-format. Eventually, the output of the SV detection format has to
be converted accordingly (for example in R).

The function only compares one SV type at a time, so querySVs and simSVs may not contain a mixture of
different kinds of SVs.

If the BED-tables for querySVs or the simulation output are saved on disk, compareSV also accepts their
filenames and loads the tables automatically as data . frame in R.

The following example simulates first five Sbp deletions in the small toy genome defined above:

> sim = simulateSV (output=NA, genome=genome, dels=5, sizeDels=5,
bpSeqSize=10, seed=2345, verbose=FALSE)

11

http://code.google.com/p/bedtools

> simSVs = metadata (sim) Sdeletions

> simSVs

Name Chr Start End Size BpSeq
1 deletionl chrl 34 38 5 TTTTTTT
2 deletion2 chrl 2 6 5 AAAAAA
3 deletion3 chr2 22 26 5 GGGGCCcccece
4 deletiond4 chr2 31 35 5 Ccccceecececece
5 deletion5 chrl 12 16 5 AAAAAAAAAT

An SV detection in BED format (the querySVs) may look like this: Four of five deletions were detected, two
with exact and two with an approximate breakpoint. Two additional deletions were detected, which were not part
of the simulation.

> querySVs = data.frame(
chr=c("chrl", "chrl", "chrl", "chr2", "chr2"),
start=c(12,17,32,2,16),
end=c(15,24,36,6,20),
bpSeg=c ("AAAAAAAAAA", "AAAAAAATTT", "TTTTTTTTTT",
"GGGGGGGGGG", "GGGGGGCccce")

)
> querySVs

chr start end bpSeq
1 chrl 12 15 AAAAAAAAAA
2 chrl 17 24 AAAAAAATTT
3 chrl 32 36 TTTTTTTTTT
4 chr2 2 6 GGGGGGGGGG
5 chr2 16 20 GGGGGGCCCC

The column with the breakpoint sequence is optional, the column names not important (BED-files have no
header).
A comparison with Obp tolerance yields only two overlaps:

> compareSV (querySVs, simSVs, tol=0)

Name Chr Start End Size BpSeq Overlap OverlapBpSeqg
1 deletionl chrl 34 38 5 TTTTTTT NA
2 deletion2 chrl 2 6 5 AAAAAA NA
3 deletion3 chr2 22 26 5 GGGGCCCCcCe NA
4 deletion4d chr2 31 35 5 Cccceceecececece NA
5 deletion5 chrl 12 16 5 AAAAAAAAAT NA

A higher breakpoint tolerance of +/- 3bp also includes more imprecise detections:

> compareSV (querySVs, simSVs, tol=3)

Name Chr Start End Size BpSeqg Overlap OverlapBpSeq
1 deletionl chrl 34 38 5 TTTTTTT chrl:32-36 100
2 deletion2 chrl 2 6 5 AAAAAA NA
3 deletion3 chr2 22 26 5 GGGGCCccecece NA
4 deletion4 chr2 31 35 5 Ccccecececececece NA
5 deletion5 chrl 12 16 5 AAAAAAAAAT chrl:12-15 90

12

Note that for deletionl, the breakpoint sequence matched only by 80%.

The second example compares translocations:

> sim = simulateSV (output=NA, genome=genome, trans=2, percBalancedIrans=0.5,
bpSeqSize=10, seed=246, verbose=FALSE)

> simSVs = metadata (sim)Stranslocations
> s5imSVs
Name ChrA StartA EndA SizeA ChrB StartB EndB SizeB Balanced BpSegA
1 translocation_1 chrl 1 13 13 chr2 1 2 2 FALSE
2 translocation_2 chrl 37 40 4 chr2 29 40 12 TRUE TTTTTCCCCC
BpSegB

1 AAAAAGGGGG
2 CCCCCTTTT

Detected translocations have to be given in BEDPE-format (i.e. at least six columns chrl, startl, endl, chr2,
start2, end2 for the breakpoints on both chromosomes). In this example, the breakpoints were approximated up
to 1bp or 2bp, optional breakpoint sequences are missing:

> querySVs = data.frame(
chr=c("chrl", "chrl", "chr2"),
startl=c(15,32,32),
endl=c (18,36, 33),
chr2=c("chr2", "chr2", "chrl"),
start2=c (10,31, 32),
end2=c (12,33, 36)

)
> querySVs

chr startl endl chr2 start2 end2

1 chrl 15 18 chr2 10 12
2 chrl 32 36 chr2 31 33
3 chr2 32 33 chrl 32 36

Here, all detected SVs span the simulated breakpoints:

> compareSV (querySVs, simSVs, tol=0)

Name ChrA StartA EndA SizeA ChrB StartB EndB SizeB Balanced BpSegA
1 translocation_1 chrl 1 13 13 chr2 1 2 2 FALSE
2 translocation_2 chrl 37 40 4 chr2 29 40 12 TRUE TTTTTCCCCC
BpSegB Overlap OverlapBpSeq A OverlapBpSeq B
1 AAAAAGGGGG NA NA
2 CCCCCTTTT NA NA

7 Setting structural variation sizes

One may specify just one size in the parameters sizeDels, sizeIns, sizeInvs or sizeDups that applies
to every SV of each type. But often, it might be more realistic to assign an individual, arbitrary size to every
single SV. In the simplest case, they may be uniformly distributed:

> sizes = sample(2:5, 5, replace=TRUE)
> sizes

13

(1] 4 4 4 2 2

> sim = simulateSV (output=NA, genome=genome, dels=5, sizeDels=sizes,
bpSeqgSize=6, seed=246, verbose=FALSE)
> sim

DNAStringSet object of length 2:

width seq names
[1] 30 AAAAAAAAAAAAAATTTTTTTTITTTTITTT chrl
(2] 34 GGGGGGGGGGGGGGGGCCCCCLceeeeeeeecececce chr?2

> metadata (sim)

Sdeletions

Name Chr Start End Size BpSeqg
1 deletionl chrl 13 16 4 AAAAAA
2 deletion2 chr2 2 5 4 GGGG
3 deletion3 chrl 32 35 4 TTTTTT
4 deletiond chrl 8 9 2 AAAAAA
5 deletion5 chr2 29 30 2 CCcCccc

7.1 Estimating size distribution from real data

According to studies from the 1000 Genomes Project, for deletions, insertions and duplications, the amount of
SVs decreases rather quickly as their size increases ([Mills ef al., 2011]]). The function estimateSVSizes
simulates SV sizes by fitting a beta distribution, which is flexible enough to realistically model the shape of the
size distribution of all four SV types. Its two shape parameters can be derived from a given vector of SV sizes.
This requires the R-package MASS.

The following toy example draws 1.000 SV sizes between 10bp and 1000bp from a beta distribution based on a
vector of 15 SV sizes:

> svSizes = c¢(10,20,30,40,60,80,100,150,200,250,300,400,500,750,1000)

> simSizes = estimateSVSizes (n=1000, svSizes=svSizes, minSize=10, maxSize=1000, hist=TRUE

> head(simSizes, n=20)

[1] 426 343 39 27 275 971 48 21 998 27 143 10 571 16 716 937 865 10 882 11

The minSize and maxSize can be omitted; they are then calculated from the given set of svSizes. It
is recommended to uses a minSize and maxSize that is consistent with the minimum/maximum values in
svSizes.

Setting the parameter hi st=TRUE also plots a histogram of the SV sizes to give an impression of their distribu-
tion (see Fig.1).

For deletions, insertions, inversions and tandem duplications, est imateSVSizes can use default param-
eters for the beta distribution. They were estimated from the Database of Genomic Variants (DGV) release
2012-03-29 ([Iafrate ef al., 2004]). Hence, no set of SV sizes is needed for fitting the distribution. In total,
1.129 deletions, 490 insertions, 202 inversions and 145 tandem duplications between 500bp and 10kb were
used to estimate the shape. The parameter default can be set to either "deletions", "insertions",
"inversions" or "tandemDuplications" to use the according set of shape parameters

> delSizes = estimateSVSizes (n=10000, minSize=500, maxSize=10000,
default="deletions", hist=TRUE)
> head(delSizes, n=15)

[1] 1838 503 2240 1071 853 751 1147 671 629 776 1814 1773 517 502

14

581

> delSizes = estimateSVSizes (n=10000, minSize=500, maxSize=10000,
default="insertions", hist=TRUE)
> head(delSizes, n=15)

[1] 833 1033 3816 1334 1723 2048 2521 2874 1877 509 6090 743 1387 1796 5053

> invSizes = estimateSVSizes (n=10000, minSize=500, maxSize=10000,
default="inversions", hist=TRUE)
> head(invSizes, n=15)

[1] 2976 1769 6532 1991 1083 1678 2841 1886 4044 1037 649 2563 771 3487 1213

> delSizes = estimateSVSizes (n=10000, minSize=500, maxSize=10000,
default="tandemDuplications", hist=TRUE)
> head(delSizes, n=15)

[1] 6742 1260 762 5371 2623 1483 1593 1801 1388 559 1107 3039 649 2442 755

See Fig.2, Fig.3, Fig.4 and Fig.5 to see the estimated distribution based on the SVs in the DGV. When using these
default values, it is recommended to simulate SVs that do not differ too much in size (aroung 500bp-10kb).

8 Runtime

The runtime of RSVSim mainly depends on the number of simulated breakpoints and the size of the genome.
The following test case simulates 50 SVs (10 per SV type) on the complete hg19:

> simulateSV (output=NA, dels=10, ins=10, inv=10, dups=10, trans=10,
sizeDels=10000, sizeIns=10000, sizeInvs=10000, sizeDups=10000,
repeatBias=FALSE, bpFlankSize=50, percSNPs=0.25, indelProb=0.5, maxIndelSize=10)

Ten repetitions of the simulation yield an average time of 6 minutes on a single Intel Xeon CPU with 2.40GHz
an R version 2.15.2 (2012-10-26) including loading of the hg19 and writing of the output to disc.

Enabling biases for repeat regions for the same test case (i.e. repeatBias=TRUE), yield an average 7 minutes.
For other simulations on hg19, the runtime will scale linearly with the number of SV breakpoints.

Note, that the one-time, initial download of the repeat coordinates for hgl9 from the UCSC browser may take
up to 45 minutes. Alternatively, providing a RepeatMasker output file is much quicker (see section 3 for more
details).

References

[Chen et al., 2008] Chen W. et al (2008) Mapping translocation breakpoints by next-generation sequencing,
Genome Res, 18(7), 1143-1149.

[Huang et al., 2011] Huang W. et al (2011) ART: a next-generation sequencing read simulator, Bioinformatics,
28 (4), 593-594.

[Hu et al., 2012] Hu X. et al (2012) pIRS: Profile-based Illumina pair-end reads simulator, Bioinformatics,
28(11), 1533-1535.

[lafrate et al., 2004] Iafrate A.J. et al (2004) Detection of large-scale variation in the human genome, Nat Genet.,
36(9), 949-951.

[Lam et al., 2010] Lam H.Y. et al (2010) Nucleotide-resolution analysis of structural variants using BreakSeq
and a breakpoint library, Nat Biotechnol, 28(1), 47-55.

15

Histogram of simSizes

300
1

Frequency
200
|

T T T T T 1
0 200 400 600 800 1000

simSizes

Figure 1: Distribution of 1.000 SV sizes drawn from a beta distribution using function estimateSvVSizes.

Histogram of simSizes

Frequency
3000 4000 5000

2000
1

1000
1

r T T T 1
2000 4000 6000 8000 10000

simSizes

Figure 2: Distribution of 10.000 deletion sizes based on deletions from the Database of Genomic Variants.

16

Histogram of simSizes

2000

1500

Frequency

1000
1

T T T T 1
2000 4000 6000 8000 10000

simSizes

Figure 3: Distribution of 10.000 insertion sizes based on insertions from the Database of Genomic Variants.

Histogram of simSizes

Frequency
1500 2000
|]

1000
1

500
1

r T T T 1
2000 4000 6000 8000 10000

simSizes

Figure 4: Distribution of 10.000 inversion sizes based on inversions from the Database of Genomic Variants.

17

[Mills et al., 2011] Mills R.E. et al (2011) Mapping copy number variation by population-scale genome se-
quencing, Nature, 470(7332), 59-65.

[Ou et al., 2011] Ou Z. et al (2011) Observation and prediction of recurrent human translocations mediated by
NAHR between nonhomologous chromosomes, Genome Res, 21(1), 33-46.

[Pang ef al., 2013] Pang A.W. et al (2013) Mechanisms of Formation of Structural Variation in a Fully Se-
quenced Human Genome, Hum Mutat, 34(2), 345-354.

[Smit et al., 1996-2010] Smit A. et al (1996-2010) RepeatMasker Open-3.0., <http://www.repeatmasker.org>.

9 Session Information

R Under development (unstable) (2025-10-20 r88955)
Platform: x86_64-pc—linux—gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.23-bioc/R/1ib/1ibRblas.so
LAPACK: /usr/lib/x86_64-1linux—gnu/lapack/liblapack.so0.3.12.0 LAPACK version 3.12.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_GB
[4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods base

other attached packages:
[1] MASS_7.3-65 RSVSim_1.51.0 GenomicRanges_1.63.0 Biostrings_2.79.1
[5] Seginfo_1.1.0 XVector_0.51.0 IRanges_2.45.0 S4Vectors_0.49.0
[9] BiocGenerics_0.57.0 generics_0.1.4

loaded via a namespace (and not attached):

[1] crayon_1.5.3 png_0.1-8 hwriter_1.3.2.1

[4] DelayedArray_0.37.0 SummarizedExperiment_1.41.0 GenomicAlignments_1.47.0
[7] MatrixGenerics_1.23.0 cigarillo_1.1.0 ShortRead_1.69.1
[10] Biobase_2.71.0 grid_4.6.0 abind 1.4-8

[13] bitops_1.0-9 interp_1.1-6 compiler_4.6.0

[16] codetools_0.2-20 RColorBrewer_1.1-3 Rcpp_1.1.0

[19] pwalign_1.7.0 BiocParallel_1.45.0 latticeExtra_0.6-31
[22] lattice_0.22-7 SparseArray_1.11.1 parallel _4.6.0

[25] Matrix_1.7-4 Jjpeg_0.1-11 tools_4.6.0

[28] matrixStats_1.5.0 deldir_2.0-4 Rsamtools_2.27.0
[31] S4Arrays_1.11.0

18

Histogram of simSizes

Frequency
1500 2000 2500
| |

1000
1

500
1

T T T T 1
2000 4000 6000 8000 10000

simSizes

Figure 5: Distribution of 10.000 tandem duplication sizes based on tandem duplications from the Database of
Genomic Variants.

19

	Introduction
	Loading the package

	Structural variation simulation
	Deletions
	Insertions
	Inversions
	Tandem duplications
	Translocations

	Simulation of biases towards SV formation mechanisms and repeat regions
	Simulation of additional breakpoint mutations
	Simulation within a genome subset
	Inserting a set of SVs

	Comparing two sets of SVs
	Setting structural variation sizes
	Estimating size distribution from real data

	Runtime
	Session Information

