REBET (subREgion-based BurdEn Test)

October 30, 2025

Contents

1 Installation
1.1 Imstall from Bioconductor
1.2 Install the developmental version from Github

2 Loading the package

3 Example
3.1 Phenotypedata L oo
3.2 Sub-regions
3.3 Genotype subject ids
34 Genotypedata Lo
3.5 Reading the genotypedata
3.6 Input arguments torebeto
3.7 Calling rebet and summarizing results

4 Session Information

Introduction

There is an increasing focus to investigate the association between rare variants
and common complex diseases in the hope of explaining the missing heritabil-
ity that remains unexplained from genome-wide association studies (GWAS) of
common variants. Recent studies have reported that rare variants contribute to
the genetic susceptibility for a number of complex traits or diseases, including
human adult height, lipid levels, autism, ischemic stroke, prostate cancer and
breast cancer. Detecting rare variant associations is statistically challenging,
stemming from two characteristics of rare variants: low frequency and hetero-
geneous risk effects. The power of detecting a single rare variant would be very
low unless the sample size and /or effect size is extremely large. Thus it has been
proposed to aggregating rare variants in a gene or genomic region to boost the
power, but this can also negatively affect power due to the problem of hetero-
geneous effects. To take these heterogeneous effects into account, burden tests
have been considered which reweight the effects of rare variants based on their
frequencies. While these tests have robust power for detecting a susceptibility
region containing clusters of causal variants, they do not readily identify which
variants, or class of them, in a gene contribute most to the association.

The subREgion-based BurdEn Test (REBET) simultaneously detects the
rare variant association of a gene and identifies the most susceptible sub-regions
that drive the gene-level significant association. In order to apply REBET,
biologically meaningful sub-regions within a gene need to be specified. The rare
variants within each sub-region may share common biologic characteristics, such
as functional domain or functional impact. REBET then searches all possible
combinations of sub-regions, identifies the one with the strongest association
signal through linear burden test, and assesses its statistical significance while
adjusting for multiple tests involved in the sub-region search. For detecting
overall association for a gene, REBET has robust power when risk effects are
relatively homogeneous within sub-regions, but potentially heterogeneous across
sub-regions.

1 Installation

Installing the REBET package from Bioconductor or Github.

1.1 Install from Bioconductor

if (IrequireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("REBET")

1.2 Install the developmental version from Github

devtools::install _github("wheelerb/REBET™")

2 Loading the package

Before using the REBET package, it must be loaded into an R session.
> library(REBET)

3 Example

The REBET package requires the user to have the genotype data in memory
in the form of a matrix. However, much imputed genotype data exists in large
compressed files. In this example, we will have all of the data in external files
and create the data objects we need for the rebet function. The genotype data is
stored in an output file created from the IMPUTE2 software, and the phenotype
data is stored is a tab delimted text file. Get the paths to the data files.

> genofile <- system.file("sampleData", "geno_impute.txt.gz", package="REBET")
> subfile <- system.file("sampleData", "subjects.txt.gz", package="REBET")
> phenofile <- system.file("sampleData", "pheno.txt.gz", package="REBET")

3.1 Phenotype data

The phenotype data file contains the response, covariates, and subject ids that
we need for the analysis. In this file, the outcome variable is a column called
"Response", the subject id variable is called "Subject", and we will adjust for
variables "Age" and "Gender". First, we will read in the data and look at the
first five rows.

> data <- read.table(phenofile, header=1, sep="\t")
> datal1:5,]

Subject Response Age Gender
1 11.911188 66 FEMALE
2 9.540571 59 FEMALE
3 9.346940 50 FEMALE
4 12.164063 71 FEMALE
5 10.495913 51 MALE

O W N

Notice that the gender variable "Gender" is a character variable, so we need
to create a dummy variable for gender.

> datal[, "MALE"] <- as.numeric(datal[, "Gender"] Jinj), "MALE")

3.2 Sub-regions

For our analysis, we will only consider the four sub-regions of chromosome 7
defined below. These regions of interest are protein binding regions, and we will
name them "SR1", "SR2", "SR3", and "SR4".

> subRegions <- rbind(c (87654800, 87661050),

+ c (87661051, 87668870),
+ c(87668871, 87671945),
+ c(87671946, 87673200))

> rownames (subRegions) <- paste("SR", 1:4, sep="")
> subRegions

[,1] [,2]
SR1 87654800 87661050
SR2 87661051 87668870
SR3 87668871 87671945
SR4 87671946 87673200

Since we are only looking at these four sub regions, we will use the minimum
and maximum positions of these sub regions when the genotype data is read.

> min.loc <- min(subRegions)
> max.loc <- max(subRegions)

3.3 Genotype subject ids

The genotype data does not contain subject ids - the subject ids are stored in a
separate file that gives the order of the subjects in the genotype data. We will
read in this file of genotype subject ids so that we can match the genotype data
with the phenotype data.

> geno.subs <- scan(subfile, what="character")

The set and order of subjects may not be the same in the phenotype and
genotype data. We need the common set of subjects and the correct order.

> tmp <- datal[, "Subject"] Jinj, geno.subs
> data <- datal[tmp,]
> order <- match(datal[, "Subject"], geno.subs)

3.4 Genotype data

The genotype data is in a file created from the IMPUTE2 software. Each row
of this file has the form: Snpid RSid Position A1 A2 P1,P1,P13P2,P2,P23...
where Al, A2 are the alleles and Pj; = P(al/al), Pj, = P(al/a2),Pjz =
P(a2/a2) for the jth subject. We do not know how many variants are in the file
and do not know how many variants are in the sub-regions defined above, but
we know it should not be more than 100. So we will read in the file row by row
instead of attempting to read in the entire file at once. We will initialize some
objects to store the necessary information we need from the genotype file. The
matrix G will store the expected dosages for the variants we want. The vectors
snps and locs will store the variant names and positions.

> upper.n <- 100

> G <- matrix(data=NA, nrow=nrow(data), ncol=upper.n)
> snps <- rep("", upper.n)

> locs <- rep(NA, upper.n)

Before the genotype file is read we need some vectors that will pick off the
probability of each genotype for each subject.

> id1 <- seq(from=1, to=3*length(geno.subs), by=3)
> id2 <- idl1 + 1
> id3 <- idl + 2

3.5 Reading the genotype data

Now we are ready to open the genotype file and read it row by row. In the code
below, we are only going to store the variants that are between the min.loc and
max.loc defined above. For such variants, we compute the expected dosage for
each subject as Pjs 4+ 2 x Pj3, which make allele a2 the effect allele. Note that
we must check for missing genotypes - if all three probabilities are 0, then the
expected dosage is NA (not 0!).

> index <- 0
> fid <- gzfile(genofile, "r")
> while(1) {
+ vec <- scan(fid, what="character", sep=" ", quiet=TRUE, nlines=1)
if (!length(vec)) break
snp <- vec[2]
loc <- as.numeric(vec[3])
if ((loc >= min.loc) & (loc <= max.loc)) {
geno.probs <- as.numeric(vec[-(1:5)])
probs1 <- geno.probs[id1]
probs2 <- geno.probs[id2]
probs3 <- geno.probs[id3]
dosage <- probs2 + 2*probs3

+
+
+
+
+
+
+
+
+
+
+ # Check for missing genotypes

+ tmp <- (probsl == 0) & (probs2 == 0) & (probs3 == 0)
+ tmp[is.na(tmp)] <- TRUE

+ if (any(tmp)) dosage[tmp] <- NA

+

+

+

+

+

+

+

>

index <- index + 1
G[, index] <- dosagel[order]
snps[index] <- snp
locs[index] <- loc
}
}
close(fid)

Subset the objects G, snps, and locs by the number of variants we stored,
which is the number index.

> G <- G[, 1:index, drop=FALSE]
> snps <- snps[1:index]

> locs <- locs[1:index]

> colnames(G) <- snps

3.6 Input arguments to rebet

The rebet function requires a vector for the response, a matrix of genotypes, a
vector of sub-region names for the variants, and optionally a matrix of adjusted
covariates. The matrix of genotypes is G, which was created above. Create the
response vector Y and matrix of covariates X.

> Y <- as.numeric(data[, "Response"])
> X <- as.matrix(datal[, c("Age", "MALE")])

Now create the vector E of sub-region names for each variant in the genotype
matrix G. Recall that each row of the matrix subRegions created above defins
a sub-region, and that the rownames of this matrix give the sub-region name.

> E <- rep("", index)

> for (i in 1:nrow(subRegions)) {
tmp <- (locs >= subRegions[i, 1]) & (locs <= subRegions[i, 2])
tmp[is.na(tmp)] <- FALSE
if (any(tmp)) E[tmp] <- rownames (subRegions) [i]

}

+
+
+
+

3.7 Calling rebet and summarizing results
With all of the input arguments being defined, the rebet function can be called.
> ret <- rebet(Y, G, E, covariates=X)

The returned object from rebet is summarized using the h.summary function
in the ASSET package. The resulting summary shows that sub-region SR3 is
highly significant.

> print (h.summary (ret))

$Meta
SNP Pvalue OR CI.low CI.high
1 Gene 0.0001554158 43.915 6.186 311.755

$Subset.1sided
SNP Pvalue OR CI.low CI.high Pheno
1 Gene 5.434698e-08 532447.2 4590.188 61762179 Region_SR3

$Subset.2sided
SNP Pvalue Pvalue.1 Pvalue.2 OR.1 CI.low.1 CI.high.1 OR.2
1 Gene 4.336478e-07 4.224093e-08 0.5527489 532447.2 4771.827 59411208 0.401
CI.low.2 CI.high.2 Pheno.1 Pheno.2
1 0.02 8.199 Region_SR3 Region_SR2

4 Session Information
> sessionInfo()

R Under development (unstable) (2025-10-20 r88955)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.23-bioc/R/1ib/1ibRblas.so
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.s0.3.12.0 LAPACK version 3.12.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats graphics grDevices utils datasets

other attached packages:
[1] REBET_1.29.0 ASSET_2.29.0

loaded via a namespace (and not attached):
[1] Matrix_1.7-4 lattice_0.22-7 magrittr_2.0.4

[5] glue_1.8.0 tibble_3.3.0 pkgconfig 2.0.3
[9] lifecycle_1.0.4 mvtnorm_1.3-3 cli_3.6.5

[13] grid_4.6.0 compiler_4.6.0 tools_4.6.0
[17] pillar_1.11.1 survival_3.8-3 rlang 1.1.6
[21] msm_1.8.2 MASS_7.3-65

methods base

splines_4.6.0
generics_0.1.4
vctrs_0.6.5
rmeta_3.0
expm_1.0-0

