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Abstract

PREDA (Position RElated Data Analysis) tool is a novel R package
for integrative analyses of functional genomics data. PREDA implements
a procedure to analyze the relationships between data and physical ge-
nomic coordinates along chromosomes with the final aim of identifying
chromosomal regions with likely relevant functional role. The procedure
for position related data analysis is highly flexible and can be applied
on data obtained with different technologies. In principle, it can analyze
different types of quantitative functional genomics data, e.g., gene ex-
pression, copy number, methylation levels. In particular, the underlying
algorithm so far has been successfully adopted for the analysis of gene
expression and copy number data obtained with various microarray plat-
forms on different organisms. This tool can also integrate analysis results
from different types of functional genomics data (e.g. integrated analysis
of copy number and gene expression).

1



Contents
1 PREDA overview 3

2 PREDA step by step 4
2.1 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Wrapper functions for input data with one step . . . . . . . . . . 6

2.2.1 Genomic data . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Genomic annotations . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 DataForPREDA objects . . . . . . . . . . . . . . . . . . . 10

2.3 Core of positional analysis . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Significant genomic regions . . . . . . . . . . . . . . . . . . . . . 11
2.5 Plot the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Predefined workflows 15
3.1 Combined analysis of gene expression and copy number data:

SODEGIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.1 Gene expression data analysis . . . . . . . . . . . . . . . . 17
3.1.2 Copy number data analysis . . . . . . . . . . . . . . . . . 19
3.1.3 SODEGIR procedure . . . . . . . . . . . . . . . . . . . . . 21
3.1.4 Dataset signature . . . . . . . . . . . . . . . . . . . . . . . 23

4 General remarks 25

References 26

2



1 PREDA overview
The relationships between gene expression and genomics coordinates can be ad-
dressed as a regression problem as firstly proposed by Toedling et al. [1]. A
further refinement of this concept was proposed by Callegaro et Al. [2] adopting
a method based on non linear kernel regression with adaptive bandwidth, so as
to affectively take into account the extreme variability in data density along the
genome: LAP (Locally Adaptive Procedure). This method was subsequently
further extended in order to address different biological problems, considering
different organisms, and different types of data and high throughput technologies
[3, 4, 5, 6, 7]. PREDA implements these methodologies in a flexible framework
thus allowing its adoption in a broad spectrum of genomics studies. The poten-
tial utilizations cover the study of physiological mechanisms affecting genome
utilization, such as cellular differentiation, as well as the study of pathologi-
cal processes involving genome structure modifications, such as chromosomal
translocations in cancer. See also the supplementary material about PREDA
method for more details about the analysis algorithm.

Core of the underlying algorithm. The core of the underlying algorithm
is an improved version of the LAP procedure [2] which consists of three main
steps:

1. computation of a statistic on each gene (or other genomic features);

2. non linear regression for smoothing the statistic along genomic coordi-
nates;

3. permutations of gene related statistics followed by smoothing to empiri-
cally estimate the local significance of observed smoothed statistics along
the genome.

Key features. The method characteristics allow the adoption of the method
for position related analysis in a broad variety of applications. In principle,
PREDA can be adopted for the analysis of high throughput genomic data ob-
tained with different technologies. Moreover, it can analyze different types
of quantitative functional genomics data, e.g., gene expression, copy number,
methylation levels. Some of its key features improving the method flexibility
are:

• Smoothing method accounting for variable density in genomics data

• No assumptions on the distribution of genes (or other genomic features)

• No assumptions on the distribution of statistics computed on genes (or
other genomic features)

• Different scores can be adopted for different applications

• Data from different technologies can be adopted
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Modular framework. The basic computational framework can be easily fur-
ther extended if custom analytical pipelines are required for more complex or
specialized purposes. Custom S4-classes have been defined to manage data and
genomic information required for the analyses thus facilitating further imple-
mentation of custom analytical workflows. See also the vignette about PREDA
S4-classes.

Parallel computing. Since the analytical procedure is time consuming, a
parallelized version of the algorithm has been also implemented, based on Rmpi,
to speed up the analyses. The parallel implementation allows to take advan-
tage both of High Performance Computing systems and of modern multi-core
processors that are currently available in common desktop computers.

2 PREDA step by step
The first part of PREDA tutorial is focused on a sample analysis aiming at iden-
tifying differentially expressed genomic regions. The PREDA analysis workflow
is described taking into account every individual step of the analysis. In subse-
quent sections some wrapper functions performing the whole analyis with one
single command will be describe as well. The adoption of wrapper functions
certainly constitute a simpler and more user friendly solution for PREDA anal-
ysis. Nevertheless it’s worth describing more in details what’s going on in the
background of each PREDA step.

Sample gene expression dataset. Gene expression microarray data from a
previously described dataset [5, 8] concerning clear renal cell carcinoma (RCC)
and normal kidney cell samples are used in the following analysis. In particular
this dataset is constituted by a subset of samples derived from ArrayExpress
dataset E-TABM-282: the same subset used for the analyses described in [5].
The sample gene expression dataset includes 12 samples of clear cell renal carci-
noma and 11 samples from normal kidney tissue. The table 1 reports the com-
plete list of selected samples including sample classes, sample names adopted
in the following analyses and original raw data files names (.CEL files) that are
freely available for download from ArrayExpress repository. The same table
is reported in the tab delimited TXT file (sampleinfoGE_PREDA.txt) used to
collect samples information.

First of all we have to load the required libraries: PREDAsampledata, pro-
viding the sample dataset and the PREDA package.

> require("PREDAsampledata")
> require("PREDA")

Then the variables defining the path to the directory containing the raw
CEL files is defined, as well as the path to the sampleinfo file containing in a tab
delimited TXT file the same information reported in table 1. The information
from the infofile are loaded into R with a read.table() command. The use
of an “infofile” to hold information abut samples (raw data file, samplename
and sample classes) is a very common solution for microarray data analysis,
therefore the same convention is adopted here.
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Arrayname Samplename Class
27CG_03i16741_K K Two Cycle IVT 06mar06.CEL 27CG RCC
28RA_04i3579_K K Two Cycle IVT 06mar06.CEL 28RA RCC
33K_04i13776 K Two Cycle IVT 27oct05.CEL 33BV RCC
36K_04i18916K Two Cycle IVT 27oct05.CEL 36MML RCC
37K 04i19473 K Two Cycle IVT 12.10.05.CEL 37BA RCC
40K_04i20257 K Two Cycle IVT 27oct05.CEL 40RR RCC
45DM_05i5902_K K Two Cycle IVT 25gen06.CEL 45DM RCC
46SA_05i6348_K K Two Cycle IVT 26gen06.CEL 46SA RCC
47CA_04i3579_K K Two Cycle IVT 06mar06.CEL 47CA RCC
49CA_05i6348_K K Two Cycle IVT 25gen06.CEL 49CA RCC
50PC_05i9837_K K Two Cycle IVT 06mar06.CEL 50PC RCC
51MI_05i10081_K K Two Cycle IVT 26gen06.CEL 51MI RCC
28RA_04i3579_C K Two Cycle IVT 06mar06.CEL Norm1 normal
32GM_04i12879_C K Two Cycle IVT 25gen06.CEL Norm2 normal
33N_04i13776 K Two Cycle IVT 27oct05.CEL Norm3 normal
35PA_04i18143_C K Two Cycle IVT 25gen06.CEL Norm4 normal
36N_04i18916K Two Cycle IVT 27oct05.CEL Norm5 normal
37N 04i19473 K Two Cycle IVT 12.10.05.CEL Norm6 normal
40N_04i20257 K Two Cycle IVT 27oct05.CEL Norm7 normal
41SG_04i20655_C K Two Cycle IVT 26gen06.CEL Norm8 normal
44DE_05i3989_C K Two Cycle IVT 25gen06.CEL Norm9 normal
50PC_05i9837_C K Two Cycle IVT 26gen06.CEL Norm10 normal
51MI_05i10081_C K Two Cycle IVT 26gen06.CEL Norm11 normal

Table 1: Sample gene expression dataset: samples derived from ArrayExpress
dataset E-TABM-282.

> # sample info file for the gene expression dataset
> infofile <- system.file("sampledata", "GeneExpression", "sampleinfoGE_PREDA.txt", package = "PREDAsampledata")
> sampleinfo<-read.table(infofile, sep="\t", header=TRUE)
> head(sampleinfo)

Arrayname Samplename
1 27CG_03i16741_K_Two_Cycle_IVT_06mar06.CEL 27CG
2 28RA_04i3579_K_Two_Cycle_IVT_06mar06.CEL 28RA
3 33K_04i13776_Two_Cycle_IVT_27oct05.CEL 33BV
4 36K_04i18916Two_Cycle_IVT_27oct05.CEL 36MML
5 37K_04i19473_Two_Cycle_IVT_12.10.05.CEL 37BA
6 40K_04i20257_Two_Cycle_IVT_27oct05.CEL 40RR

Class
1 RCC
2 RCC
3 RCC
4 RCC
5 RCC
6 RCC

The current version of PREDAsampledata doesn’t contain all of the CEL
files, due to package size constraints. The PREDAsampledata package contains
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instead the raw CEL files loaded into an AffyBatch object. This AffyBatch
object can be loaded with the following command:

> data(AffybatchRCC)

The origial CEL files can be downloaded from ArrayExpress (accession num-
ber E-TABM-282). After decompressing the CEL files archive in a local direc-
tory they can be used with the sampleinfo file table provided in the PREDAsam-
pledata package.

> CELfilesPath <- "/path/to/local/CEL/files/directory"

2.1 Input data
This sample analysis aims at identifying differentially expressed genomic regions
in a group of tumor samples (clear cell renal carcinoma - RCC) when compared
with a group of normal kidney cell samples. The input data is constituted by
the raw gene expression data from Affymetrix GeneChip described above. Raw
Affymetrix GeneChips data files (.CEL files) can be preprocessed in R using
Bioconductor libraries: see also the Bioconductor documentation for further
details, and in particular the documentation for package affy. In this sample
analysis the preprocessing steps are taken into account as well beacuse wrapper
functions of PREDA package allow performing also raw data preprocessing with
a user friendly procedure. Please note that PREDA package can manage gene
expression data obtained with every type of microarray or other high throughput
technologies, including next generation sequencing. Functions in the PREDA
package can import gene expression data (and other types of genomics data)
from txt files, for R data.frame objects and from R ExpressionSet objects.

Similarly, for what concerns genomic annotations, i.e. basically the genomic
position of each gene, these data can be easily retrieved from Bioconductor
libraries or from user provided txt files or data.frame objects. Both cases will
be taken into account in the examples of this tutorial.

2.2 Wrapper functions for input data with one step
Since PREDA is a flexible procedure that can actually be adopted for the anal-
ysis of different types of genomic data, addressing a variety of biological prob-
lems, wrapper functions performing multiple steps of PREDA analysis can be
implemented and adoptd to facilitate end user work, especially for non-expert
R users.

Differentially expressed genomic regions. In the following example we
obtain all of the data required as input for PREDA analysis of differentially
expressed genomic regions with one single function. The raw gene expression
data are preprocessed, normalized and statistics for differential gene expression
are computed to be used as PREDA input statistics.

> GEDataForPREDA<-preprocessingGE(SampleInfoFile=infofile,
+ CELfiles_dir=CELfilesPath,
+ custom_cdfname="hgu133plus2",
+ arrayNameColumn=1,
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+ sampleNameColumn=2,
+ classColumn="Class",
+ referenceGroupLabel="normal",
+ statisticType="tstatistic",
+ optionalAnnotations=c("SYMBOL", "ENTREZID"),
+ retain.chrs=1:22
+ )

Alternatively we can run the preprocessing steps using the raw data preloaded
in the AffyBatch object from PREDAsampledata package.

> GEDataForPREDA<-preprocessingGE(
+ AffyBatchInput=AffybatchRCC,
+ custom_cdfname="hgu133plus2",
+ classColumn="Class",
+ referenceGroupLabel="normal",
+ statisticType="tstatistic",
+ optionalAnnotations=c("SYMBOL", "ENTREZID"),
+ retain.chrs=1:22
+ )

The GEDataForPREDA object contains all of the information and data re-
quired for PREDA analysis. In the following sections we can see more in details
the individual steps for input data preprocessing and the available options. The
preprocessing of genomic data (gene expression data in this case) and genomic
annotations are described in distinct sections.

2.2.1 Genomic data

Statistics for PREDA from CEL files. In this sample analysis, we will
generate a statisticsForPREDA object, that is the S4-class used in PREDA
for managing genomic data, directly from raw Affymetrix .CEL files. Since the
analysis aim at identifying differentially expressed genomic regions, in the follow-
ing example the statisticsForPREDA object will contain statistics accounting
for differential expression of each individual gene.

Raw gene expression data can be preprocessed and normalized using stan-
dard procedures from affy package, such as RMA, to obtain an ExpressionSet
object: the common data structure used in Bioconductor to manage gene ex-
pression data. Here we show just an example generating an ExpressionSet object
from raw Affymetrix CEL files. The same object can be obtained from expres-
sion data coming other platforms (see also Bioconductor documentation).

The adoption of reliable annotations expression data is a crucial issue for po-
sition related analysis, because proper association of expression level to genomic
postions is required. In particular, for Affymetrix GeneChips, the adoption of up
do date probes annotations, and possibly custom probesets definitions, proved
to improve the gene expression analysis results in a number of publications
[9, 10, 11, 12]. For this reason we most strongly suggest to adopt custom probe-
sets definition (custom CDF) for data preprocessing with justRMA function:
the “cdfname” parameter can be used to specify that a custom CDF [9, 10]
must be use instead of standard Affymetrix CDF (i.e. probeset definitions).
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As of April 2017 release of Bioconductor, there will be no more any custom
CDF package available within Bioconductor repository. For this reason in the
working examples provided in this tutorial we are going to use the standard
probeset definitions. Custom gene-level centered probeset definitions are still
available here http://www.xlab.unimo.it/GA_CDF/ for GeneAnnot based defi-
nitions [10] or here http://brainarray.mbni.med.umich.edu/Brainarray/Database/customcdf/genomic_curated_CDF.asp
for a broader set of options based on different databases [9].

> # generate ExpressionSet from raw CEL files
> ExpressionSetRCC <-justRMA(filenames=sampleinfo[,"Arrayname"], celfile.path=CELfilesPath, sampleNames=sampleinfo[,"Samplename"], cdfname="hgu133plus2")

Again, as alternative to the raw CEL files, for the sample dataset used here
we can generate the EpressionSet object starting from the raw data preloaded
in the AffyBatch object.

> AffybatchRCC@cdfName<-"hgu133plus2"
> annotation(AffybatchRCC)<-"hgu133plus2"
> ExpressionSetRCC <- rma(AffybatchRCC)

Then the function statisticsForPREDAfromEset can be used to compute
statistics for differential expression on ExpressionSet object data to generate
a statisticForPREDA object. In this example a t-statistic is computed com-
paring each group of samples with the specified reference group: in this case
the reference group is identified by samples with Class label “normal” ans the
only alternative value for Class label is “RCC”. Therefore in this example only
one comparison is taken into account, i.e. the comparison of RCC samples VS
normal samples, because the classVector parameter has just two distinct values.
In case multiple classes of samples are available, the selected statistic (in this
case the “t-statistic”) is repeatedly computed taking into account each group VS
reference group comparison.

> GEstatisticsForPREDA<-statisticsForPREDAfromEset(ExpressionSetRCC, statisticType="tstatistic", referenceGroupLabel="normal", classVector=sampleinfo[,"Class"])

Users can verify the available statistics (just one in our example) using the
analysesNames() function.

> analysesNames(GEstatisticsForPREDA)

[1] "RCC_VS_normal"

statistics for PREDA from ExpressionSet. The ExpressionSet S4-class
is the generic class used in Bioconductor for managing gene expression data.
This data structure can actually be obtained from every gene expression analy-
sis platform. Therefore the procedure above described can actually be adopted
to generate statisticsForPREDA objects from every ExpressionSet object, con-
taining expression data from any source.

2.2.2 Genomic annotations

The genomic annotations required for PREDA analysis are managed using
GEnomicAnnotations and GEnomicAnnotationsForPREDA S4-Classes. Easy to
use functions are provided to generate these data structures from Bioconductor
libraries. Alternative functions for generating as well GenomicAnnotations data
structure from R dataframe objects or from txt files are available as well.
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GenomicAnnotations from ExpressionSet. The microarray platform used
for the expression profiles of the sample gene expression dataset (ArrayExpress
dataset E-TABM-282; table 1) is Affymetrix GeneChip HG-U133Plus2.0. The
genomic annotations for the probe IDs associated to this platform can be re-
trieved from the corresponding Bioconductor libraries: see also the Bioconduc-
tor documentation for further details, and in particular the documentation for
packages affy, annotationDBI and annotate. The information concerning the
microarray platform and the associated Bioconductor annotation library are
included into a specific slot of the ExpressionSet object as well.

> GEGenomicAnnotations<-eset2GenomicAnnotations(ExpressionSetRCC, retain.chrs=1:22)

We suggest not to run Position RElated Analysis on sex chromosomes be-
cause usually a dataset composition in term of male and female subjects could
be unbalanced. That’s why the “retain.chrs” parameter is set to retain only
autosomal chromosomes, i.e. from 1 to 22 in Human.

GenomicAnnotations from generic annotation library. Alternatively
the same information can be obtained directly from a Bioconductor annotation
package. The following example creates a GEnomicAnnotations object from the
Bioconducor library containing the data of EntrezGene database for human.

> GEGenomicAnnotations<-GenomicAnnotationsFromLibrary(annotLibrary="org.Hs.eg.db", retain.chrs=1:22)

GenomicAnnotations with optional annotations columns. Finally the
above described functions can be used to collect as well additional (optional)
annotation columns from the Bioconductor annotation libraries. These op-
tional annotation columns are not required for PREDA analysis but they can
be useful for final results annotation. In the following example “SYMBOL”
and “ENTREZID” annotation fileds are retrieved from the annotation library
for hgu133plus2 GeneChips and included into the output GEnomicAnnotations
object.

> GEGenomicAnnotations<-GenomicAnnotationsFromLibrary(annotLibrary="hgu133plus2.db", retain.chrs=1:22, optionalAnnotations=c("SYMBOL", "ENTREZID"))

GenomicAnnotationsForPREDA. The GenomicAnnotations S4-class pro-
vides an R representation of genomics annotations with a biological meaning:
the start and end positions identify he chromosomal localization of each gene lo-
cus (or other genomic feature) under investigation. Moreover these annotation
are familiar concepts commonly handled by molecular biologists to describe
genomic data annotations. However, smoothing analysis, that is the core of
PREDA analysis procedure, requires a unique position associated to each data
point. For this reason, genomic annotations must be enriched by specifying
which exact reference position will be associated to each gene when performing
the PREDA smoothing analysis. For this purpose the GenomicAnnotationsForPREDA
objects are implemented in the PREDA package: they contain an additional an-
notation field with reference position used for each feature for PREDA analysis.
They can be very easily obtained from GenomicAnnotations objects using the
GenomicAnnotations2GenomicAnnotationsForPREDA function. In the follow-
ing example the “median” position for each gene is used as reference position:
i.e. the median position between start and end coordinates of each gene.
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> GEGenomicAnnotationsForPREDA<-GenomicAnnotations2GenomicAnnotationsForPREDA(GEGenomicAnnotations, reference_position_type="median")

Additional available options for “reference_position_type” parameter are:
“start”, the start coordinate of each gene is used as reference position; “end”,
the end coordinate of each gene is used as reference position; “strand.start”, the
start or end coordinate of each gene is used as reference position if the gene
is mapped respectively on positive or negative strand; “end.start”, the end or
start coordinate of each gene is used as reference position if the gene is mapped
respectively on positive or negative strand. The user can chose the reference
positions according with the data under investigation and analysis purpose.
Nevertheless in most cases the reference postion is not expected to dramatically
change the final results and usually the “median” position is expected to be a
proper choice.

2.2.3 DataForPREDA objects

Before runnning the PREDA analysis, genomic annotations and data are merged
into one single object of class DataForPREDA. One single function is used for this
step performs as well data filtering to remove unmatched data or annotations: a
message reporting the number of unmatched ids is printed. Moreover the “sor-
tAndCleanNA” parameter forces the output data and annotation to be sorted
according to chromosomal coordinates for each chromosome. Please note that in
case “sortAndCleanNA” is set to FALSE (default) the sorting of DataForPREDA
object is performed as initial step of PREDA analysis (see next section).

> GEDataForPREDA<-MergeStatisticAnnotations2DataForPREDA(GEstatisticsForPREDA, GEGenomicAnnotationsForPREDA, sortAndCleanNA=TRUE)

The output object “GEDataForPREDA”, in this example, contains all of
the data and annotations required for performing PREDA analysis, i.e. to
identify differentially expressed genomic regions. This informatic infrastructure
has the clear advantage of taking care of data and annotations consistency, thus
facilitating end user work.

2.3 Core of positional analysis
The core of PREDA analysis is composed by non linear smoothing of observed
input statistic along chromosomal positions, followed by repeated permutations
of input statistic with novel smoothing of permuted data to assess the signif-
icance of observed peaks in smoothed statistics. The core of the analysis is
performed using the PREDA_main() function. The basic input to this function is
just a DataForPREDA object: this data structure contains all of the data and an-
notations required for the analysis. Therefore the simplest way to run PREDA
analysis is just by using PREDA_main() function with default analysis option.

> GEanalysisResults<-PREDA_main(GEDataForPREDA)

The PREDA_main function is actually a complex function with many op-
tions that can be specified by end users. In the following paragraphs some
of the main options are described. Nevertheless, for a deeper knowledge of the
method we strongly we strongly recommend to carefully read the supplementary
material about PREDA method details as well as the PREDA_main() function
documentation.
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Smoothing methods The deafault smoothing metod used in the PREDA_main
function is lokern smoothing with scaled bandwidth, using a scaling factor equal
to 2. This means that bandwidth estimated by lokern function is divided by 2 so
as to reduce the bandwidth. Indeed as discussed in the supplementary method
about PREDA, the down-scaling of lokern estimated bandwidths is expected
to improve sensitivity and reduce false discovery rate. Scaling factor for lokern
bandwidth can be modified with parameter lokern_scaledBandwidthFactor.
Alterantively, the function used for data smoothing can be modified as well with
the parameter smoothMethod. Possible values are “lokern”, for standard lokern
smoothing, “quantsmooth”, “spline” and "runningmean.x", where x is a user
defined value for the number of adjacent data points using for running mean
smoothing.

Permutations Data permutations are used to estimate the significance of
extreme values in smoothed statistic. The number of permutations is set with
parameter “nperms”, with default value equal to 10000. The higher number of
permutations is selected, the higher reliability is achieved in estimating statistics
significance. Nevertheless an increased number of permutations will result in
increased computation time.

Parallel computing The overall algorithm adopted for the integrated analy-
sis of gene expression data and genomic positions is computationally intensive.
This is mainly due to the analytical procedure that requires a high number of
data re-sampling to empirically estimate on every sample the statistical signif-
icance of observed values. This can be considered a typical “embarrassingly
parallel” problem, therefore a parallel implementation of the software has been
already developed, so as to allow effectively exploiting the computational re-
sources of either an HPC system or common computer desktops with modern
multi-core processors. To enable parallel computations during PREDA_main
execution, end user has just to set the “parallelComputations” parameters equal
to TRUE. Please note that in order to run PREDA on a parallel computing
environment proper installation and configuration of R packages “Rmpi” and
“rsprng” is required: these packages are among suggested packages for PREDA
but not among PREDA dependencies, as unfortunately their proper configura-
tion might required expert users or system administrators, depending on the
computing system that is used.

2.4 Significant genomic regions
The PREDADataAndResults or PREDAResults can store all of the output data
from PREDA: i.e. the output of PREDA_main() function, that performs the
core of the analysis. Please see the vignette about PREDA classes as well
as the documentation pages about each of these S4-classes for more details.
The output objects of PREDA_main() results actually contain several statis-
tics computed during the PREDA analysis. Genomic regions with significant
variation in the input statistics can be extracted from this objects using the
PREDAResults2GenomicRegions function. Among the most important function
parameter there are the “qval.threshold”, that is used to decide what threshold
must be used on PREDA q-values (adjusted p-values) for filtering results; the
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“smoothStatistic.tail” that is used to decide if we are interested in the upper or
lower tail of the statistic values (i.e., in this case, in the up or down regulated ge-
nomic regions); the “smoothStatistic.threshold”, because in order to reduce the
false discovery rate in PREDA results, we suggest to filter the results also on
smoothed statistic values (using this threshold) and not only using the qvalues.

> genomic_regions_UP<-PREDAResults2GenomicRegions(GEanalysisResults, qval.threshold=0.05, smoothStatistic.tail="upper", smoothStatistic.threshold=0.5)
> genomic_regions_DOWN<-PREDAResults2GenomicRegions(GEanalysisResults, qval.threshold=0.05, smoothStatistic.tail="lower", smoothStatistic.threshold=(-0.5))

Then selected significant genomic regions, that are stored in a GEnomicRegions
object, can be visualized as a dataframe listing chromosomal coordinates of sig-
nificant regions using the GenomicRegions2dataframe function. Since the out-
put of PREDAResults2GenomicRegions function is actually a list of GEnomicRegions
objects, a list subselection is required to visualize data from the first element.
A list of objects is generated because the PREDA output can actually store the
analysis results concerning multiple input statistics (e.g. multiple comparisons).

> dataframe_UPregions<-GenomicRegions2dataframe(genomic_regions_UP[[1]])
> head(dataframe_UPregions)

chr start end
1 1 30717430 30745151
2 1 88760199 92343569
3 1 98711089 103540596
4 1 159936317 160316075
5 1 178545842 199005776
6 1 209430683 218394951

2.5 Plot the results
The most interesting visualization of significant genomic regions (in this example
differentially expressed regions) can be obtained with the genomePlot function.
See fig 1 for the output results.

> checkplot<-genomePlot(GEanalysisResults, genomicRegions=c(genomic_regions_UP, genomic_regions_DOWN), grouping=c(1, 1), scale.positions="Mb", region.colors=c("red","blue"))
> legend(x=140000000, y=22, legend=c("UP", "DOWN"), fill=c("red","blue"))

The basic input parameters of this function is an object of class GenomicAnnotationsForLAP
or any other class extending this one. In this example we are actually using the
GEanalysisResults object, i.e. the output or PREDA analysis, because it con-
tains as well the genomic annotations data. Then a set of user selected signifi-
cant genomic regions must be provided. This second argument can be actually
provided as a list of GEnomicRegions objects, that is the standard output of
PREDAResults2GenomicRegions function. Then the user must specify the set
of colors to be used for representing boxes for each input GEnomicRegions ob-
ject. Finally, the “grouping” parameter is used to plot multiple sets of genomic
regions on a single chromosome: in the example shown above, we have two set
of genomic regions as input (UP and DOWN regulated regions) that are plotted
together on the chromosomes, buth with two distinct colors (red and blue). If
the grouping parameter is not specified the red and blue boxes are plotted on
two parallel copies of the chromosomes (see fig 2).

12



Position (Mb)

C
hr

om
os

om
e

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

0 20 40 60 80 110 140 170 200 230

UP
DOWN

Figure 1: Genome plot: differentially expresssed genomic regions. Blue boxes
represent down-regulated regions and red boxes are up-regulated genomic re-
gions.
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Figure 2: Genome plot: differentially expresssed genomic regions. Blue boxes
represent down-regulated regions and red boxes are up-regulated genomic re-
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> checkplot<-genomePlot(GEanalysisResults, genomicRegions=c(genomic_regions_UP, genomic_regions_DOWN), scale.positions="Mb", region.colors=c("red","blue"))

The genomePlot function is actually a very complex function allowing to
draw also complex plots. We strongly suggest to carefully read the function
documentation.

As of April 2017 release of Bioconductor, there will be no more any custom
CDF package available within Bioconductor repository. As can be observed in
fig 1 and fig 2 the use of standard probeset definitions, incorporating multiple
probeset per gene locus, with variable specificity, yield more noisy position re-
lated data analysis results than what achieved with custom gene-centered probe-
set definitions. For examples of these results the users can refer to PREDA tuto-
rial vignette up to Bioc release 3.4, i.e. the latest release containing custom CDF
definition packages. Custom gene-level centered probeset definitions are still
available here http://www.xlab.unimo.it/GA_CDF/ for GeneAnnot based defi-
nitions [10] or here http://brainarray.mbni.med.umich.edu/Brainarray/Database/customcdf/genomic_curated_CDF.asp
for a broader set of options based on different databases[9].

3 Predefined workflows
The above described steps of PREDA analysis can actually be customized by
end users by defining a set of custom analysis parameters for PREDA functions.
Moreover novel functions, such as different smoothing methods, can be incorpo-
rated in the analysis workflow, even if multiple options are already provided in
the PREDA package (see PREDA functions documentation for more details).
In the following sections the use of PREDA pacakge for performing the specific
workflow of SODEGIR analysis is described.

3.1 Combined analysis of gene expression and copy num-
ber data: SODEGIR

The SODEGIR procedure allows identifying Significant Overlap of Differentially
Expressed and Genomic Imbalanced regions described in the paper by Bicciato
et al [5]. Figure 3 reports the schema of SODEGIR workflow as described in [5].
Basically, the SODEGIR procedure is composed of two distinct steps of position
related data anlysis on gene expression and copy number data: these analysis
is performed on each individual sample on gene expression and copy number
data. Then the overlap between differentially expressed genomic regions and
regions with significant alterations of copy number values is computed to define
SODEGIR regions. Finally, the recurrence of specific SODEGIR regions across
multiple samples is examined to compute a dataset “signature” of recurrent
alterations.

Sample dataset. The sample dataset analyzed with SODEGIR procedure
is contained in the PREDAsampledata package. The gene expression dataset
is the same described above: the dataset of clear cell renal carcinoma (RCC):
ArrayExpress dataset E-TABM-282. The paired copy number data come from
ArrayExpress datasets E-TABM-283/E-TABM-284.
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Figure 3: SODEGIR workflow: workflow for the identification of Significant
Overlap of Differentially Expressed and Genomic Imbalanced Regions, as de-
scribed in [5].
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3.1.1 Gene expression data analysis

The function SODEGIRpreprocessingGE allows performing SODEGIR prepro-
cessing of gene expression data starting from RAW cel files with one single func-
tion. This function actually performs the same steps of function preprocessingGE
but a statistic for each sample is computed: each individual tumor sample is
compared with the group of reference normal cells.

> # preprocess raw data files
> SODEGIRGEDataForPREDA<-SODEGIRpreprocessingGE(
+ SampleInfoFile=infofile,
+ CELfiles_dir=CELfilesPath,
+ custom_cdfname="hgu133plus2",
+ arrayNameColumn=1,
+ sampleNameColumn=2,
+ classColumn="Class",
+ referenceGroupLabel="normal",
+ statisticType="tstatistic",
+ optionalAnnotations=c("SYMBOL", "ENTREZID"),
+ retain.chrs=1:22
+ )

As mentioned in the previous sections, for the sample dataset used in this
tutorial, raw gene expression data are alternatively available as an AffyBatch
object.

> data(AffybatchRCC)
> # preprocess raw data files
> SODEGIRGEDataForPREDA<-SODEGIRpreprocessingGE(
+ AffyBatchInput=AffybatchRCC,
+ custom_cdfname="hgu133plus2",
+ classColumn="Class",
+ referenceGroupLabel="normal",
+ statisticType="tstatistic",
+ optionalAnnotations=c("SYMBOL", "ENTREZID"),
+ retain.chrs=1:22
+ )

The resulting DataForPREDA object can be immediately analyzed with
PREDA_main function.

> # run PREDA analysis on GE data
> SODEGIRGEanalysisResults<-PREDA_main(SODEGIRGEDataForPREDA)

Then from PREDA analysis results, we can extract the list of genomic re-
gions with significant UP or DOWN regulation of gene expression levels.

> SODEGIR_GE_UP<-PREDAResults2GenomicRegions(SODEGIRGEanalysisResults, qval.threshold=0.05, smoothStatistic.tail="upper", smoothStatistic.threshold=0.5)
> SODEGIR_GE_DOWN<-PREDAResults2GenomicRegions(SODEGIRGEanalysisResults, qval.threshold=0.05, smoothStatistic.tail="lower", smoothStatistic.threshold= -0.5)

A list of GenomicRegions objects is obtained: with one GenomicRegions
object for each sample of the dataset. Therefore the significant regions detected
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in each individual sample can be plotted using genomePlot function: see figure
4.

As of April 2017 release of Bioconductor, there will be no more any custom
CDF package available within Bioconductor repository. As can be observed in
fig 4 the use of standard probeset definitions for gene expression microarrays,
incorporating multiple probesets per gene locus, with variable specificity, yield
more noisy position related data analysis results than what achieved with custom
gene-centered probeset definitions. For examples of these results the users can
refer to PREDA tutorial vignette up to Bioc release 3.4, i.e. the latest release
containing custom CDF definition packages. Custom gene-level centered probe-
set definitions are still available here http://www.xlab.unimo.it/GA_CDF/ for
GeneAnnot based definitions [10] or here http://brainarray.mbni.med.umich.edu/Brainarray/Database/customcdf/genomic_curated_CDF.asp
for a broader set of options based on different databases [9].

> # plot all the chromosomes for one sample
> checkplot<-genomePlot(SODEGIRGEanalysisResults, genomicRegions=c(SODEGIR_GE_UP[1], SODEGIR_GE_DOWN[1]), grouping=c(1,1), scale.positions="Mb", region.colors=c("red","blue"))
> title(paste("Sample", names(SODEGIR_GE_UP[1])))
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Figure 4: Genome plot for SODEGIR results on gene expression data from one
sample.

Alternatively, a plot showing one single chromosome on multiple samples
can be drwan. Figure 5 report a plot for chromsomome 5 across all of the
RCC samples: this chromosome is frequently ampliifed in this type of cancer
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as previuosly discussed [5]. The custom.labels parameter allow modifying the
default chromosomes label on vertical axis.

> # plot chromosome 5 for all of the samples
> checkplot<-genomePlot(SODEGIRGEanalysisResults, genomicRegions=SODEGIR_GE_UP, scale.positions="Mb", region.colors=rep("red", times=length(SODEGIR_GE_UP)), limitChrs=5, custom.labels=names(SODEGIR_GE_UP))
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Figure 5: Genome plot for SODEGIR results on gene expression data for chro-
mosome 5 from all samples.

3.1.2 Copy number data analysis

Copy number data were obtained with Human Mapping 100K SNP Affymetrix
arrays. In particular copy number microarrays data were obtained from a pre-
viously described dataset [5] concerning clear renal cell carcinoma and paired
normal diploid cell samples from blood. The initial input copy number data are
log-ratio copy number values estimated with CNAG 2.0 software [13] compar-
ing each tumor samples with paired normal reference from blood. Copy number
data from paired samples are loaded directly from a text file, as well as cor-
responding annotation, in order to show the general procedure for importing
genomics data into PREDA objects from generic sources. First of all the path
to the Copy Number data file and annotations is obtained from PREDAsam-
pledata package.

> # path to copy number data files
> CNdataPath <- system.file("sampledata", "CopyNumber", package = "PREDAsampledata")
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> CNdataFile <- file.path(CNdataPath , "CNAG_data_PREDA.txt")
> CNannotationFile <- file.path(CNdataPath , "SNPAnnot100k.csv")

Then StatisticsForPREDAFromfile function is used to import genomic
data from a tab delimited text file into a StatisticsForPREDA object.

> # read copy number data from file
> CNStatisticsForPREDA<-StatisticsForPREDAFromfile(file=CNdataFile, ids_column="AffymetrixSNPsID", testedTail="both", sep="\t", header=TRUE)

Similarly the GenomicAnnotationsForPREDAFromfile function is used to
import genomic annotations from a csv file. Please note that different param-
eters for reading text files can be specified in both functions for reading data
from text files, including “header”, “sep”, “quote”, “na.strings”: these are common
parameers used in R function read.table().

> # read genomic annotations
> CNGenomicsAnnotationsForPREDA<-GenomicAnnotationsForPREDAFromfile(
+ file=CNannotationFile,
+ ids_column=1,
+ chr_column="Chromosome",
+ start_column=4,
+ end_column=4,
+ strand_column="Strand",
+ chromosomesLabelsInput=1:22,
+ MinusStrandString="-", PlusStrandString="+", optionalAnnotationsColumns=c("Cytoband", "Entrez_gene"),
+ header=TRUE, sep=",", quote="\"", na.strings = c("NA", "", "---"))

Then genomic data (copy number data) and annotations are merged in to
DataForPREDA object.

> # merge data and annotations
> SODEGIRCNDataForPREDA<-MergeStatisticAnnotations2DataForPREDA(CNStatisticsForPREDA, CNGenomicsAnnotationsForPREDA, sortAndCleanNA=TRUE, quiet=FALSE, MedianCenter=TRUE)

A specific aspect of the SODEGIR procedure, is the integration of copy
number analysis output with output from GeneExpression data based on the
computation of PREDA statistics on the same set of reference positions used for
gene expression data. This integration is achieved in the PREDA package by
simply providing the annotations for gene expression data as “outputGenom-
icAnnotationsForPREDA” parameter. Please note that genomic annotations
for gene expression data are actually included as well into the “SODEGIRGE-
DataForPREDA” object.

> # run preda analysis
> SODEGIRCNanalysisResults<-PREDA_main(SODEGIRCNDataForPREDA, outputGenomicAnnotationsForPREDA=SODEGIRGEDataForPREDA)

Then a list of GenomicRegions objects describing chromosomal regions with
altered copy number (gain or loss) can be extracted using PREDAResults2GenomicRegions()
function.

> SODEGIR_CN_GAIN<-PREDAResults2GenomicRegions(SODEGIRCNanalysisResults, qval.threshold=0.01, smoothStatistic.tail="upper", smoothStatistic.threshold=0.1)
> SODEGIR_CN_LOSS<-PREDAResults2GenomicRegions(SODEGIRCNanalysisResults, qval.threshold=0.01, smoothStatistic.tail="lower", smoothStatistic.threshold= -0.1)
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Figure 6 report the genome plot of regions with copy number gain on chro-
mosome 5 across all of the dataset samples.

> # plot chromosome 5 for all of the samples
> checkplot<-genomePlot(SODEGIRGEanalysisResults, genomicRegions=SODEGIR_CN_GAIN, scale.positions="Mb", region.colors=rep("red", times=length(SODEGIR_CN_GAIN)), limitChrs=5, custom.labels=names(SODEGIR_CN_GAIN))
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Figure 6: Genome plot for SODEGIR results on copy number data for chromo-
some 5 from all samples.

3.1.3 SODEGIR procedure

The final integration between gene expression and copy number position related
data analysis is achieved by computing the overlap between genomic regions
with significant alterations of both types of data. For this purpose it’s crucial
to analyze the GE and CN data using the same order of samples.

> analysesNames(SODEGIRCNanalysisResults)

[1] "X27CG" "X28RA" "X33BV" "X36MML" "X37BA" "X40RR"
[7] "X45DM" "X46SA" "X47CA" "X49CA" "X50PC" "X51MI"

> analysesNames(SODEGIRGEanalysisResults)

[1] "X27CG" "X28RA" "X33BV" "X36MML" "X37BA" "X40RR"
[7] "X45DM" "X46SA" "X47CA" "X49CA" "X50PC" "X51MI"
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> all(analysesNames(SODEGIRCNanalysisResults) == analysesNames(SODEGIRGEanalysisResults))

[1] TRUE

Then the overlap between up (or down) regulated regions and regions with
copy number gain (or loss) is computed for each sample using GenomicRegionsFindOverlap()
function.

> SODEGIR_AMPLIFIED<-GenomicRegionsFindOverlap(SODEGIR_GE_UP, SODEGIR_CN_GAIN)
> SODEGIR_DELETED<-GenomicRegionsFindOverlap(SODEGIR_GE_DOWN, SODEGIR_CN_LOSS)
> names(SODEGIR_AMPLIFIED)<-names(SODEGIR_GE_UP)
> names(SODEGIR_DELETED)<-names(SODEGIR_GE_DOWN)

Figure 7 reports a plot of chromosome 5 SODEGIR for all of the samples.

> # plot chromosome 5 for all of the samples
> checkplot<-genomePlot(SODEGIRGEanalysisResults, genomicRegions=SODEGIR_AMPLIFIED, scale.positions="Mb", region.colors=rep("red", times=length(SODEGIR_AMPLIFIED)), limitChrs=5, custom.labels=names(SODEGIR_AMPLIFIED))
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Figure 7: Genome plot for SODEGIR results on chromosome 5 for all samples.

Alterantively we can plot the significant also the regions with significant
alterations of gene expression, copy number or SODEGIR from one individual
sample: see Figure 8. First of all the selected set of regions is selected from lists
containing GenomiRegions objects.

> # plot all regions from one sample
> regions_forPlot<-c(

22



+ SODEGIR_GE_UP[[1]],SODEGIR_CN_GAIN[[1]],SODEGIR_AMPLIFIED[[1]],
+ SODEGIR_GE_DOWN[[1]],SODEGIR_CN_LOSS[[1]],SODEGIR_DELETED[[1]]
+ )

Then a plot with three copies of each chromosome is drawn (fig.8): each
chromosome contains genomic regions of distinct data types as decribed in figure
legend.

> checkplot<-genomePlot(SODEGIRGEanalysisResults, genomicRegions=regions_forPlot, grouping=c(1:3, 1:3), scale.positions="Mb", region.colors=c("red","red2","red4","blue","blue2","blue4"))
> legend(x=140000000, y=22*3, legend=c("GeneExpression UP","CopyNumber gain","SODEGIR amplified","GeneExpression DOWN","CopyNumber loss","SODEGIR deleted"), fill=c("red","red2","red4","blue","blue2","blue4"))
> title(paste("Sample",names(SODEGIR_GE_UP[[1]])))
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Figure 8: Genome plot for SODEGIR results on one sample, including copy
number and gene expression results on distinct lines.

3.1.4 Dataset signature

The final step of SODEGIR analysis is the evaluation of a dataset level signature
for recurrent SODEGIRs across multiple samples. This step is performed using
function computeDatasetSignature() that requires as input a set of reference
genomic annotations (derived from “GEDataForPREDA” object) and the list of
SODEGIRs from all of hte dataset samples.

> SDGsignature_amplified<-computeDatasetSignature(SODEGIRGEDataForPREDA, genomicRegionsList=SODEGIR_AMPLIFIED)
> SDGsignature_deleted<-computeDatasetSignature(SODEGIRGEDataForPREDA, genomicRegionsList=SODEGIR_DELETED)
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The significance of recurrent amplified and deleted regions is computed in-
dependently as above shown. The significantly recurrent SODEGIR (i.e. the
dataset SDG signature) can be plotted on the genome as well.

> # dataset signature
> checkplot<-genomePlot(SODEGIRGEanalysisResults, genomicRegions=c(SDGsignature_amplified, SDGsignature_deleted), grouping=c(1,1), scale.positions="Mb", region.colors=c("red","blue"))
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Figure 9: Genome plot for SODEGIR signature over the entire dataset.

Alternatively the significant regions can be visualized as a dataframe using
the function GenomicRegions2dataframe().

> GenomicRegions2dataframe(SDGsignature_amplified[[1]])

chr start end
1 5 35868238 37565965
2 5 57660824 63961169
3 5 65315327 71720105
4 5 73023251 73574558
5 5 83065149 84162730
6 5 108728042 119632690
7 5 122927330 160037322
8 5 163441293 164506630
9 5 171310708 180590795
10 7 16870697 18027319
11 7 21722391 26535972
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12 7 32542083 40497871
13 7 75121186 75413556
14 7 90409643 95590054
15 7 97987402 100881871
16 7 147089273 147089273
17 7 148988475 149291296
18 7 152285464 152807563

> GenomicRegions2dataframe(SDGsignature_deleted[[1]])

chr start end
1 3 12156209 15581277
2 3 21586160 24305987
3 3 36464246 58895999
4 3 71297805 71297805
5 3 119189365 121646172
6 3 122333565 122705832
7 3 138457257 140960881
8 6 98836746 101734533
9 6 129199852 129643659
10 6 131692322 133097328
11 6 158585935 159220752

4 General remarks
The PREDA package implements an informatic infrastructure to perform po-
sition related analysis of genomics data. The sample analyses reported in this
tutorial just considered few samples possible applications of this procedure. The
availability of multiple parameters for data smoothing and for all of the other
steps of the procedure allows the adoption of PREDA to address several distinct
biological problems. The SODEGIR procedure itself could be actually used to
integrate analyses of different combinations of genomics data. PREDA package
is therefore built to constitute a generalized approach for position related data
analysis for functional genomics applications.
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