
HMMcopy: A package for bias-free copy number estimation and
robust CNA detection in tumour samples from WGS HTS data

Daniel Lai and Gavin Ha

October 30, 2025

Contents
1 Introduction 1

2 Generating Copy Number Profiles 2
2.1 Obtaining HTS copy number data . 2
2.2 Loading HTS copy number data . 2
2.3 Correcting HTS copy number data . 3
2.4 Visualizing the effects of correction . 4
2.5 Visualizing corrected copy number profiles . 5
2.6 Correcting and visualizing tumour copy number profiles . 6

3 Segmentation and Classification of Copy Number Profiles 7
3.1 Visualizing segments and classified states . 7
3.2 Improving segmentation performance . 8
3.3 Reducing the number of segments . 8
3.4 Adjusting copy number state ranges . 9

3.4.1 Understanding parameter convergence . 11
3.4.2 Overriding parameter convergence . 11

4 Matched Tumour-Normal Sample Correction 12
4.1 Normalizing tumour by normal copy number profiles . 12

5 Session Information 13

1 Introduction
High-throughput whole genome DNA sequencing results in millions of reads which after short-read mapping,
can be used to infer the original sequence of the sample. An additional piece of information we gain from
mapping is the coverage or number of reads overlapping each position, which can be used as a rough estimate
of copy number. In practice, it is often easier to work at a lower resolution, and so we divide the genome
into non-overlapping windows of fixed width (e.g. 1000), and use the readcount or number of reads starting
in each of these windows (henceforth termed bins).

The main assumption of using readcount as a proxy for copy number is that during the sequencing
protocol, reads are uniformly sampled from all genetic material present in the original input sample. This
assumption has been shown to be incorrect, with reads being sampled at unequal rates depending on the
GC content, among other things [1].

To different extents, this bias exists and varies in all platforms, protocols, and samples. Additionally,
Benjamini and Speed [1] show that two libraries prepared from the same DNA source show different biases,

1

which highlights the fact that matched sample normalization (i.e. normalizing tumour copy by matched
normal reference) is insufficient to eliminate this bias.

2 Generating Copy Number Profiles
For the remainder of this vignette, we will go through a short example using a matched normal tumour
dataset, and show the ease and effects of normalization readcount by GC and mappability.

The dataset that is described here belongs to a female triple-negative breast cancer patient from the
published dataset [2, 3]. This genome library was sequenced on the ABI/Life SOLiD platform, generating
hybrid lengths of 25bp and 50bp paired-end reads. The reads were aligned using BioScope
(https://products.appliedbiosystems.com/) where reads mapped to multiple sites were ignored.

2.1 Obtaining HTS copy number data
It should be noted that due to memory and speed considerations, the raw input that feeds in to this package
are required to be generated by programs distributed as part of the HMMcopy Suite available at:

In short, the suite has tools to:

• Obtain high resolution bin counts for large (≈ 250GB) BAM files within a few hours.

• Obtain GC content for bins from standard FASTA files within minutes for a human genome.

• Obtain average mappability for bins from BigWig within minutes, or FASTA files within a day for a
human genome.

2.2 Loading HTS copy number data
To show the effects of correction in a simple case, let us begin by correcting data obtained from a normal
genome sample.

To start, we load in WIG files containing three sets of data, namely readcounts, GC content, and average
mappability, pre-computed for each bin with an external applications provided by the HMMcopy Suite.

Briefly, the readcounts data consists of the number of reads mapped within the boundaries of each bin.
The GC content file consists of G and C base proportions for each bin; -1 is used when the reference sequence
for the bin contains at least one unknown nucleotide base (i.e. N, rather than A,C, T or G). The mappability
file, which was generated using ENCODE Duke Uniqueness of 35bp sequences track from UCSC
(http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg18&g=wgEncodeMapability), provides scores indi-
cating how mappable the reference sequence at each bin is to aligners; the higher the score, the more
mappable the sequence.

> options(stringsAsFactors = TRUE)
> library(HMMcopy)
> rfile <- system.file("extdata", "normal.wig", package = "HMMcopy")
> gfile <- system.file("extdata", "gc.wig", package = "HMMcopy")
> mfile <- system.file("extdata", "map.wig", package = "HMMcopy")
> normal_reads <- wigsToRangedData(rfile, gfile, mfile)
> normal_reads[1000:1010,]

chr start end reads gc map
<char> <int> <int> <int> <num> <num>

1: 6 9990001 10000001 7351 0.3932 0.558421
2: 6 10000001 10010001 11080 0.3925 0.929000
3: 6 10010001 10020001 9369 0.3689 0.975162
4: 6 10020001 10030001 9505 0.3634 0.963870

2

5: 6 10030001 10040001 10392 0.3903 0.889620
6: 6 10040001 10050001 10785 0.3854 0.952784
7: 6 10050001 10060001 11084 0.4264 0.916659
8: 6 10060001 10070001 9712 0.3826 0.940946
9: 6 10070001 10080001 5320 0.4011 0.422648

10: 6 10080001 10090001 11014 0.3944 0.974912
11: 6 10090001 10100001 10318 0.3667 0.971846

2.3 Correcting HTS copy number data
The resultant output is an data.table object, which can easily use other Bioconductor functions and packages
for analysis and visualzation. Although it is recommended that the output be left untouched until furthur
correction as follows:

> normal_copy <- correctReadcount(normal_reads)
> normal_copy[1000:1010,]

chr start end reads gc map valid ideal cor.gc
<char> <int> <int> <int> <num> <num> <lgcl> <lgcl> <num>

1: 6 9990001 10000001 7351 0.3932 0.558421 TRUE FALSE 0.6667950
2: 6 10000001 10010001 11080 0.3925 0.929000 TRUE TRUE 1.0083988
3: 6 10010001 10020001 9369 0.3689 0.975162 TRUE TRUE 0.9602569
4: 6 10020001 10030001 9505 0.3634 0.963870 TRUE TRUE 1.0055782
5: 6 10030001 10040001 10392 0.3903 0.889620 TRUE FALSE 0.9557880
6: 6 10040001 10050001 10785 0.3854 0.952784 TRUE TRUE 1.0154319
7: 6 10050001 10060001 11084 0.4264 0.916659 TRUE TRUE 0.8754294
8: 6 10060001 10070001 9712 0.3826 0.940946 TRUE TRUE 0.9268861
9: 6 10070001 10080001 5320 0.4011 0.422648 TRUE FALSE 0.4655253

10: 6 10080001 10090001 11014 0.3944 0.974912 TRUE TRUE 0.9934066
11: 6 10090001 10100001 10318 0.3667 0.971846 TRUE TRUE 1.0709252

cor.map copy
<num> <num>

1: 0.9462945 -0.079638885
2: 1.0391931 0.055463804
3: 0.9369282 -0.093989665
4: 0.9947256 -0.007629453
5: 1.0304725 0.043305954
6: 1.0179066 0.025605244
7: 0.9154566 -0.127436530
8: 0.9420144 -0.086178990
9: 0.7623204 -0.391530635

10: 0.9695664 -0.044588376
11: 1.0491263 0.069188320

>

The corrected reads are in the two columns cor.gc and cor.map, which are corrected and normalized,
effectively a copy number estimation for each bin. For downstream analysis, copy is used, which is simply
the base 2 log values of cor.map, to normalize the differences between values above and below 1. Specifically,
the columns output from this process are:

valid Bins with valid GC and average mappability and non-zero read

ideal Valid bins of high mappability and reads that are not outliers

3

cor.gc Readcounts after the first GC correction step

cor.map cor.gc readcounts after a furthur mappability correction

copy cor.map transformed into log2 space

2.4 Visualizing the effects of correction
To best visualize the biases in the original sample and the effects of correction, convenience plotting functions
are available as follows:

> par(cex.main = 0.7, cex.lab = 0.7, cex.axis = 0.7, mar = c(4, 4, 2, 0.5))
> plotBias(normal_copy, pch = 20, cex = 0.5)
>

4

As observed, a unimodal relationship typically exists between readcount and GC content (excuse the weak
tail), which is corrected and eliminated in the GC correction step. The GC-corrected readcounts exhibit a
slight correlation with mappability, which is corrected in the second step.

2.5 Visualizing corrected copy number profiles
To see the effects of correction for copy number estimation, we can plot the copy number along a segment
of a chromosome as follows:

> par(mar = c(4, 4, 2, 0))
> plotCorrection(normal_copy, pch = ".")
>

5

In the top track, the original uncorrected reads are used to estimate copy number (by simply dividing
by the median value), followed by tracks with additional GC then mappability correction. Mediam absolute
deviations (MAD) measuring the variance of each track can be seen to decrease after each correction step.

2.6 Correcting and visualizing tumour copy number profiles
The identical process can be applied to tumour genomes using the same GC and mappability files as follows:

> tfile <- system.file("extdata", "tumour.wig", package = "HMMcopy")
> tumour_copy <- correctReadcount(wigsToRangedData(tfile, gfile, mfile))
> par(mar = c(4, 4, 2, 0))
> plotCorrection(tumour_copy, pch = ".")
>

6

Note that at this stage, the correction of the normal and tumour samples were done indepedently, meaning
that HMMcopy is usable both in single sample and matched sample libraries.

3 Segmentation and Classification of Copy Number Profiles
While corrected copy number data points are pleasing to stare at, they are often of much more practical
use if we could group and classify them segments of specific copy number variation events. Included in the
package is an implementation of an Hidden Markov Model [4] which does two main things:

1. Segments the copy number profile in regions predicted to be generated by the same copy number
variation event

2. Predicts the copy number variation event for each segment, based on the biological likelihood of the
event occuring

> tumour_segments <- HMMsegment(tumour_copy)
>

3.1 Visualizing segments and classified states
We can visualize both the resultant segments and the states assigned to each segment easily as follows:

> par(mfrow = c(1, 1))
> par(cex.main = 0.5, cex.lab = 0.5, cex.axis = 0.5, mar = c(2, 1.5, 0, 0), mgp = c(1, 0.5, 0))
> plotSegments(tumour_copy, tumour_segments, pch = ".",
+ ylab = "Tumour Copy Number", xlab = "Chromosome Position")
> cols <- stateCols() # 6 default state colours
> legend("topleft", c("HOMD", "HETD", "NEUT", "GAIN", "AMPL", "HLAMP"),
+ fill = cols, horiz = TRUE, bty = "n", cex = 0.5)
>

As observed, there are six coloured states, corresponding to six biological CNA events:

HOMD Homozygous deletion, ≤ 0 copies

HETD Heterozygous deletion, 1 copy

NEUT Neutral change, 2 copies

GAIN Gain of chromosome, 3 copies

7

AMPL Amplification event, 4 copies

HLAMP High level amplification, ≥ 5 copies

Segments are seen as neon green lines running through regions estimate to belong to the same CNA
event.

3.2 Improving segmentation performance
The segmentation program will attempt its best at creating the most biologically likely state assignment, but
unfortunately and fortunately for us humans, the automated program can often fail, as seen in this specific
example. In cases like these, there is then a need to adjust the parameters generated by the algorithm.
Instead of getting parameters from scratch however, one can easily retrieve the default set of parameters as
follows:

> default_param <- HMMsegment(tumour_copy, getparam = TRUE)
> default_param

strength e mu lambda nu kappa m eta gamma
1 1e+07 0.9999999 -0.42054605 20 2.1 50 -0.42054605 5e+04 3
2 1e+07 0.9999999 -0.28184226 20 2.1 50 -0.28184226 5e+04 3
3 1e+07 0.9999999 0.04200362 20 2.1 700 0.04200362 5e+05 3
4 1e+07 0.9999999 0.18884920 20 2.1 100 0.18884920 5e+04 3
5 1e+07 0.9999999 0.36472889 20 2.1 50 0.36472889 5e+04 3
6 1e+07 0.9999999 0.89363465 20 2.1 50 0.89363465 5e+04 3

S
1 0.01858295
2 0.01858295
3 0.01858295
4 0.01858295
5 0.01858295
6 0.01858295

>

By calling the same segmentation algorithm with the getparam argument set to TRUE, the algorithm
generates parameters without actually running the segmentation and returns it. There are 10 parameters
explained in detail in the documentation (i.e. ?HMMsegment), each having values across six states in each
row.

3.3 Reducing the number of segments
To reduce the segment, the two parameters we need to adjust are e and strength, which are the suggested
probability of staying in a segment, and the strength of your suggestion to the algorithm. Once set, we run
the segmentation algorithm, but this time expliciting providing our new parameters.

> longseg_param <- default_param
> longseg_param$e <- 0.999999999999999
> longseg_param$strength <- 1e30
> longseg_segments <- HMMsegment(tumour_copy, longseg_param, verbose = FALSE)
>

And finally, we can visualize the results to confirm a decrease in segments as intended.

8

> par(cex.main = 0.5, cex.lab = 0.5, cex.axis = 0.5, mar = c(2, 1.5, 0, 0), mgp = c(1, 0.5, 0))
> plotSegments(tumour_copy, longseg_segments, pch = ".",
+ ylab = "Tumour Copy Number", xlab = "Chromosome Position")
> legend("topleft", c("HOMD", "HETD", "NEUT", "GAIN", "AMPL", "HLAMP"),
+ fill = cols, horiz = TRUE, bty = "n", cex = 0.5)
>

As one can imagine, if for some odd reason you’d like to increase the number of segments, simply decrease
e and strength to a small value (close to 0). Although the algorithm will almost certainly take a few times
longer to run.

3.4 Adjusting copy number state ranges
A second more subtle and debilitating problem seen in this profile is actually the incorrect median of each
copy number state. Specifically, this is a problem with the mu parameter. Accessing one of the output values
of the segmentation process:

> longseg_segments$mus

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.42054605 -0.41758720 -0.41856737 -0.4189370 -0.41910605 -0.41919148
[2,] -0.28184226 -0.28218243 -0.28192091 -0.2819198 -0.28192063 -0.28192108
[3,] 0.04200362 0.04252202 0.04233246 0.0422898 0.04227474 0.04227086
[4,] 0.18884920 0.18763502 0.18755810 0.1877988 0.18806709 0.18818965
[5,] 0.36472889 0.36339188 0.36354889 0.3637438 0.36383827 0.36388573
[6,] 0.89363465 0.89183095 0.89189894 0.8919867 0.89203100 0.89205326

[,7]
[1,] -0.41923759
[2,] -0.28192211
[3,] 0.04226854
[4,] 0.18825160
[5,] 0.36391057
[6,] 0.89206445

>

We see the median of 6 states (rows) after each iteration of the optimization algorithm (columns). The
first column is our initial suggested mu:

> longseg_param$mu

9

[1] -0.42054605 -0.28184226 0.04200362 0.18884920 0.36472889 0.89363465

>

And the last column is the actual values used during the segmentation process, which we can visualize
as follows:

> par(cex.main = 0.5, cex.lab = 0.5, cex.axis = 0.5, mar = c(2, 1.5, 0, 0), mgp = c(1, 0.5, 0))
> plotSegments(tumour_copy, longseg_segments, pch = ".",
+ ylab = "Tumour Copy Number", xlab = "Chromosome Position")
> for(i in 1:nrow(longseg_segments$mus)) {
+ abline(h = longseg_segments$mus[i ,ncol(longseg_segments$mus)], col = cols[i],
+ lwd = 2, lty = 3)
+ }
> abline(v = 7.68e7, lwd = 2, lty = 3)
> abline(v = 8.02e7, lwd = 2, lty = 3)
>

From this, it becomes obvious that the medians are clearly not running through the middle of the visually
obvious segments for many of the states. For example, the red medians for GAIN, AMPL and HLAMP are much
too high, the green medians for HOMD and HETDare much too close together. Finally there is a clear segment
flanked by vertical black dashed lines near the centre of the chromosome that is stuck between medians for
green HETD and blue NEUT, when it should definitively belong to one or the other.

Staring at such a diagram, it is easy to suggest new mu params, which can be put back into the segmen-
tation algorithm once again and visualized as follows.

> newmu_param <- longseg_param
> newmu_param$mu <- c(-0.5, -0.4, -0.15, 0.1, 0.4, 0.7)
> newmu_segments <- HMMsegment(tumour_copy, newmu_param, verbose = FALSE)
> par(cex.main = 0.5, cex.lab = 0.5, cex.axis = 0.5, mar = c(2, 1.5, 0, 0), mgp = c(1, 0.5, 0))
> plotSegments(tumour_copy, newmu_segments, pch = ".",
+ ylab = "Tumour Copy Number", xlab = "Chromosome Position")
>

10

3.4.1 Understanding parameter convergence

The observant reader will noticed nothing has changed. And this was done to purposely highlight that the
parameters you set are often just suggestions, and given sufficient flexibility, the algorithm will effectively
ignore your suggestions. As seen below in newmu_segments, after several iterations our newly suggested
values of mu (first column) effectively converge (in the last column) to the same default values of mu in
longseg_param.

> newmu_segments$mus

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.50 -0.42054605 -0.41943464 -0.41935974 -0.4193407 -0.41933805
[2,] -0.40 -0.29262755 -0.28206379 -0.28192587 -0.2819340 -0.28194784
[3,] -0.15 0.04183711 0.04199752 0.04218017 0.0423006 0.04228132
[4,] 0.10 0.17033461 0.17508748 0.18509160 0.1876240 0.18800732
[5,] 0.40 0.36329444 0.36360858 0.36377537 0.3638543 0.36389415
[6,] 0.70 0.89064389 0.89162704 0.89185993 0.8919678 0.89202060

[,7] [,8]
[1,] -0.41933936 -0.4193419
[2,] -0.28195775 -0.2819646
[3,] 0.04227209 0.0422691
[4,] 0.18814544 0.1882269
[5,] 0.36391512 0.3639264
[6,] 0.89204721 0.8920609

> longseg_param$mu

[1] -0.42054605 -0.28184226 0.04200362 0.18884920 0.36472889 0.89363465

>

3.4.2 Overriding parameter convergence

The solution is to simply disallow the algorithm from making large shifts to mu, which we can achieve by
setting the prior mean of n (i.e. m) to values identical to mu.

> par(cex.main = 0.5, cex.lab = 0.5, cex.axis = 0.5, mar = c(2, 1.5, 0, 0), mgp = c(1, 0.5, 0))
> newmu_param$m <- newmu_param$mu
> realmu_segments <- HMMsegment(tumour_copy, newmu_param, verbose = FALSE)

11

> plotSegments(tumour_copy, realmu_segments, pch = ".",
+ ylab = "Tumour Copy Number", xlab = "Chromosome Position")
>

4 Matched Tumour-Normal Sample Correction
So far, our entire process has been done on single samples, providing respectable results and aesthetically
pleasing profiles. However, when give matched tumour and normal pairs, we can improve our copy number
results in two ways:

1. We can divide our tumour copy number profile by normal copy number profile to eliminate any germline
copy number variation (CNV) events present in both normal and tumour profiles. This will leave only
somatic copy number aberration (CNA) events in the tumour.

2. A dramatic reduction in noise is also observed, furthur improving copy number profiles.

4.1 Normalizing tumour by normal copy number profiles
The normalization is a simple division of tumour copy number by normal copy number in a bin-wise fashion
as follows, or a subtracting of the values in log space as follows:

> somatic_copy <- tumour_copy
> # LOGARITHM IDENTITY: log(a) - log(b) == lob(a / b)
> somatic_copy$copy <- tumour_copy$copy - normal_copy$copy
>

We can then do the same segmentation and visualization as follows:

> somatic_segments <- HMMsegment(somatic_copy, newmu_param, verbose = FALSE)
> par(cex.main = 0.5, cex.lab = 0.5, cex.axis = 0.5, mar = c(2, 1.5, 0, 0), mgp = c(1, 0.5, 0))
> plotSegments(somatic_copy, somatic_segments, pch = ".",
+ ylab = "Tumour Copy Number", xlab = "Chromosome Position")
>

12

The resultant corrected reads can easily be analyzed and exported with other R and Bioconductor
packages.

5 Session Information
The version number of R and packages loaded for generating the vignette were:

• R Under development (unstable) (2025-10-20 r88955), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Time zone: America/New_York

• TZcode source: system (glibc)

• Running under: Ubuntu 24.04.3 LTS

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so

• LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: HMMcopy 1.53.0, data.table 1.17.8

• Loaded via a namespace (and not attached): KernSmooth 2.23-26, compiler 4.6.0, tools 4.6.0

References
[1] Yuval Benjamini and Terence P Speed. Summarizing and correcting the gc content bias in high-

throughput sequencing. Nucleic Acids Res, 40(10):e72, May 2012.

[2] Gavin Ha, Andrew Roth, Daniel Lai, Ali Bashashati, Jiarui Ding, Rodrigo Goya, Ryan Giuliany, Jamie
Rosner, Arusha Oloumi, Karey Shumansky, Suet-Feung Chin, Gulisa Turashvili, Martin Hirst, Carlos
Caldas, Marco A Marra, Samuel Aparicio, and Sohrab P Shah. Integrative analysis of genome-wide loss
of heterozygosity and mono-allelic expression at nucleotide resolution reveals disrupted pathways in triple
negative breast cancer. Genome Research, (advanced online publication), May 2012.

13

[3] S P Shah, A Roth, R Goya, A Oloumi, G Ha, Y Zhao, G Turashvili, J Ding, K Tse, G Haffari,
A Bashashati, L M Prentice, J Khattra, A Burleigh, D Yap, V Bernard, A McPherson, K Shuman-
sky, A Crisan, R Giuliany, A Heravi-Moussavi, J Rosner, D Lai, I Birol, R Varhol, A Tam, N Dhalla,
T Zeng, K Ma, S K Chan, M Griffith, A Moradian, S W Cheng, G B Morin, P Watson, K Gelmon,
S Chia, S F Chin, C Curtis, O M Rueda, P D Pharoah, S Damaraju, J Mackey, K Hoon, T Harkins,
V Tadigotla, M Sigaroudinia, P Gascard, T Tlsty, J F Costello, I M Meyer, C J Eaves, W W Wasserman,
S Jones, D Huntsman, M Hirst, C Caldas, M A Marra, and S Aparicio. The clonal and mutational
evolution spectrum of primary triple-negative breast cancers. Nature, 486(7403):395–399, Jun 2012.

[4] Sohrab P Shah, Xiang Xuan, Ron J DeLeeuw, Mehrnoush Khojasteh, Wan L Lam, Raymond Ng, and
Kevin P Murphy. Integrating copy number polymorphisms into array cgh analysis using a robust hmm.
Bioinformatics, 22(14):e431–9, Jul 2006.

14

