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Abstract

DEGraph implements recent hypothesis testing methods which directly assess whether
a particular gene network is differentially expressed between two conditions. This is to be
contrasted with the more classical two-step approaches which first test individual genes, then
test gene sets for enrichment in differentially expressed genes. These recent methods take into
account the topology of the network to yield more powerful detection procedures. In practice,
DEGraph makes it very simple to test all KEGG pathways for differential expression on any
gene expression data set and provides tools to visualize the results.

1 Introduction

Measuring gene expressions to study a biological phenomenon or build prognosis tools is now
common practice. Technologies like DNA microarrays or RNA-Seq allow to systematically mea-
sure the expression of thousands of genes in a sample. Statistical univariate statistical procedures
like the t-test are then classically applied to detect differentially expressed genes. However when
analyzing this type of data, one is very often interested in the “systems biology” approach of de-
tecting pre-defined sets of genes that are known to work together and are significantly differentially
expressed between the studied conditions. Two paradigms have been used so far :

* Most approaches are two-step. They start by assessing which genes are differentially ex-
pressed, then test gene sets for enrichment in differentially expressed genes.

* Some approaches directly use multivariate statistics on gene sets as vectors of genes to de-
termine whether the multivariate expression of a gene set varies between groups of samples.

Limitations of the former approach have been widely studied [[Goeman and Bithlmann, [2007] :
that the former family of approaches can lead to incorrect interpretations, as the sampling units for
the tests in the second step become the genes (as opposed to the patients) and these are expected
to have strongly correlated expression measures. This suggests that direct multivariate testing of
gene set differential expression is more appropriate than posterior aggregation of individual gene-
level tests. On the other hand, while multivariate statistics are known to perform well in small
dimensions, they lose power very quickly with increasing dimension [Bai and Saranadasa, [1996].



At the same time, an increasing number of regulation networks are becoming available, specify-
ing, for example, which genes activate or inhibit the expression of which other genes. The method
implemented in DEGraph intends to use these networks to build spaces of lower dimension, yet
retaining most of the expression shift of gene sets. This makes the multivariate testing amenable
and provably more powerful under (partly) coherent expression shift assumption.

2 Software features

DEGraph offers the following functionalities:

Multivariate testing DEGraph proposes functions to test whether a set of genes organised in a
particular network are differentially expressed between two conditions (according to a par-
ticular data set of samples).

Interfacing with KEGGgraph The package also provides functions to easily load a set of KEGG
networks as KEGGgraph objects and systematically test each of their connected components
for differential expression with various statistics.

Visualization DEGraph provides functions to visualize tested KEGG graphs with nodes colored
according to a quantitative variable, typically the individual t-statistics or mean difference of
expression between the two conditions for each gene.

3 Case studies

We now show on a simple example how DEGraph can be used to assess differential expression of
some KEGG pathways using several test statistics, compare and plot the results.

3.1 Loading the library and the data
We load the DEGraph package by typing or pasting the following codes in R command line:
> library (DEGraph)

We then load some more libraries :

library ("R.utils")

##1library (graph)

##library (rrcov) ## for 'T2.test'
library (corpcor)

library (KEGGgraph)

library (Rgraphviz)

##1library (RBGL)
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library(fields) # For image.plot called in plotValuedGraph
library (lattice)
library (marray)
verbose <- TRUE
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In this example, the expression and annotation data as well as the list of KEGG networks has
been pre-stored in an . RData file to avoid lengthy downloading and formatting. For examples on
how to build these variables, see the Loi12008 demo in the package.

data ("Loi2008_DEGraphVignette", package="DEGraph")
classData <- classLoi2008

exprData <- exprLoi2008

annData <- annLoi2008

grList <- grListKEGG
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3.2 Hypothesis testing

We now run several tests on the expression data restricted to the two selected KEGG networks
stored in grListKEGG. We start with individual t-tests on all the genes, which will later be used
for visualization.

## Individual t-test p-values

X1 <- t(exprData[, classData==0])

X2 <- t(exprData[, classData==1])

ttpv <= c ()

tts <- c()

for(i in l:ncol (X1)) |
tt <- t.test(X1[,1],X2[,1])
ttpv/[i]=unlist (ttsSp.value)
tts[i]=unlist (ttSstatistic)

}

names (ttpv) <— names (tts) <- rownames (exprData)
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‘We then run two different multivariate tests on each network:

« Hotelling 7 test, which generalizes the t-test to multivariate data, and does not make use of
the network information.

* Hotelling 77 test in a space of lower dimension built from the network structure.

> prop <- 0.2
> ## Multivariate tests
> resList <- NULL
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for (ii in seqg(along=grList)) {
gr <— grList[[ii]]
res <- testOneGraph (gr, exprData, classData, verbose=verbose,
reslList <- c(resList, 1ist (res))
}
resNames <- names (grList)
pLabels <- sapply(grList, attr, "label")
## get rid of NULL results (no connected component of size > 1)
isNULL <- sapply(resList, is.null)
if (sum(isNULL)) |
grList [1isNULL]
resList <— resList[!isNULL]
resNames <- names (grList) [!isNULL]
pLabels <- pLabels[!isNULL]
}
resL <- sapply(resList, length)
graphNames <- rep (resNames, times=resL)
pathwayNames <- rep (pLabels, times=resL)
graphList <- NULL
for (res in resList) o
grl <- lapply(res, FUN=function (x) {
xSgraph
})
graphList <- c(graphList, as.list (grl))
}
ndims <- NULL
for (res in resList) {
ndim <- sapply(res, FUN=function (x) {
xSk
})
ndims <- c(ndims, ndim)
}
PKEGG <— NULL
for (res in resList) o
pp <- sapply(res, FUN=function (x) {
xSp.value
})
pPKEGG <- cbind (pKEGG, pp)
}
colnames (pKEGG) <- graphNames
rn <- rownames (pKEGG)
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rownames (pKEGG) [grep ("Fourier", rn)] <- paste("T2 (", round(100+prop),
if (exists("maPalette"”", mode="function")) {
pal <- maPalette (low="red", high="green", mid="black", k=100)
} else {
pal <- heat.colors(100)
}
shift <- tts # Plot t-statistics
names (shift) <- translateGeneIDZ2KEGGID (names (tts))
£fSignif <- which (pKEGG[2,] < 0.05)
fSignif <- fSignif[order (pRKEGG[2, fSignif])]
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Finally we plot two of the tested networks along with the p-value for differential expression for
each of the two multivariate statistics. Node colors correspond to the gene t-statistic :

gldx <—- fSignif[1]

gr <—- graphList[[gIdx]]

mm <- match (translateKEGGIDZ2GenelID (nodes (gr)), rownames (annData))
dn <- annData[mm, "NCBI.gene.symbol"]

stext (side=3, pos=0, pathwayNames [gIdx])

ps <- signif (pKEGG[, gIdx],Z2)

txtl <- paste("p(T2)=", ps[1l], sep="")

txt2 <- paste("p(I2F[", ndims[gIdx], "])=", ps[2], sep="")
txt <- paste(txtl, txt2, sep="\n")

stext (side=3, pos=1, txt)
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glIdx <— fSignif[5]

gr <—- graphList[[gIdx]]

mm <- match (translateKEGGIDZ2GenelID (nodes (gr)), rownames (annData))
dn <- annData[mm, "NCBI.gene.symbol"]

stext (side=3, pos=0, pathwayNames [gIdx])

ps <- signif (pKEGG[, gIdx],2Z2)

txtl <- paste("p(T2)=", ps[l], sep="")

txt2 <- paste("p(T2F[", ndims[gIdx], "])=", ps[2], sep="")
txt <- paste(txtl, txt2, sep="\n")

stext (side=3, pos=1, txt)
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res <- plotValuedGraph (gr, values=shift, nodeLabels=dn, gMax=0.95, colorPalett

image.plot (legend.only=TRUE, zlim=range (resSbreaks), col=pal, legend.shrink=0

res <- plotValuedGraph (gr, values=shift, nodeLabels=dn, gMax=0.95, colorPalett

image.plot (legend.only=TRUE, zlim=range (resSbreaks), col=pal, legend.shrink=0
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Figure 1: Pathway 1.



p(T2)=0.38
=0.011

p(T2F[13])
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Figure 2: Pathway 2.
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