Classify Sequences in R

Contents
I Introductionl

Getting Started|

................

Training the Classifier|

3.1 Importing the traming setf

33 |terat1ve|y training the c|ass1ﬁeﬂ A

[3.4 Viewing the training datal

Classifying Sequences|

f.1 Assigning classifications|
4.2 Plotting the results|]

4.3 Create and plot a classification table]

Creating a ‘“‘taxid” file|

Annotating Protein Sequences

T Session Inf :

1 Introduction

EE Exﬁornng tEecass@catlons e
43 Guaranteelng repeata51|1ty

Erik S. Wright
October 31, 2025

NN

WDk W N

This document describes how to perform taxonomic classification of amino acid or nucleotide sequences with the
DECIPHER package using the IDTAXA algorithm. By definition, the taxonomy can be any scheme of classification:
organismal, functional, or operational. The IDTAXA algorithm is split into two phases: a “training” phase where
the classifier learns attributes of the training set, and a “testing” phase where sequences with unknown taxonomic
assignments are classified. The objective of sequence classification is to accurately assign a taxonomic label to as
many sequences as possible, while refraining from labeling sequences belonging to taxonomic groups that are not
represented in the training data. As a case study, the tutorial focuses on classifying a set of 16S ribosomal RNA
(rRNA) gene sequences using a training set of 16S rRNA sequences from organisms belonging to known taxonomic
groups. Despite the focus on the 16S rRNA gene, the IDTAXA process is the same for any set of sequences where
there exist a training set with known taxonomic assignments and a testing set with unknown taxonomic assignments.

2 Getting Started
2.1 Startup

To get started we need to load the DECIPHER package, which automatically loads a few other required packages.
> library (DECIPHER)

The classification process is split into two parts: training carried out by LearnTaxa and testing with TdTaxa. Help
for either function can be accessed through:

> ? IdTaxa
Once DECIPHER is installed, the code in this tutorial can be obtained via:

> browseVignettes ("DECIPHER")

3 Training the Classifier

The training process only needs to occur once per training set, and results in an object that can be reused for testing
as many sequences as desired. If you already have the output of training the classifier (an object of class Taxa and
subclass Train), then you can skip to subsection [3.4](Viewing the training datal) below. Otherwise follow along with
this section to learn how to train the classifier.

The training process begins with a set of sequence representatives assigned to a taxonomic hierarchy, called
a “training set”. Typically taxonomic assignments are obtained from an authoritative source, but they can also be
automatically created (e.g., with Treeline). Here we describe the general training process, where the classifier
iteratively learns about the reference taxonomy.

Note that the training sequences should ideally span the full-length of the gene or target region. The test
(query) sequences can be partial length, but the training sequences are expected to overlap the same region as the
test sequences. Having excess training sequence beyond the region of the test sequence should not negatively effect
performance unless it is a very large amount of excess sequence (many-fold). Also, the training sequences should all
have complete taxonomy. That is, every training sequence should be classified to its terminal rank and not have an
incomplete classification.

3.1 Importing the training set

The first step is to set filepath to the sequences (in FASTA format) and the “taxid” file containing information about
taxonomic ranks. The “taxid” file is optional, but is often provided (along with training sequences) in a standard 5-
column, asterisks (“*”) delimited, text format used by many classifiers. To create your own “taxid” file, see[5| (Creating]
la “taxid” file)) below. Be sure to change the path names to those on your system by replacing all of the text inside quotes
labeled “< <path to ...>>" with the actual path on your system.

> # specify the path to your file of training sequences:
> seqgs_path <- "<<path to training FASTA file>>"

read the sequences into memory

seqgs <- readDNAStringSet (seqgs_path)

Alternatively use readAAStringSet or readRNAStringSet

(optionally) specify a path to the taxid file:
rank_path <- "<<path to taxid text file>>"

>
>
>
>
>
>
> taxid <- read.table(rank_path,

header=FALSE,
col.names=c('Index', 'Name', 'Parent', 'Level', 'Rank'),
sep="+", # asterisks delimited
quote="", # preserve quotes
stringsAsFactors=FALSE)
> # OR, 1if no taxid text file exists, use:
> #taxid <- NULL

(T3] TRk

The training sequences cannot contain gap (“-” or “.”) characters, which can easily be removed with the RemoveGaps
function:

> # 1f they exist, remove any gaps in the sequences:
> segs <- RemoveGaps (segs)

Note that the training sequences must all be in the same orientation. If this is not the case, it is possible to reorient the
sequences with OrientNucleotides:

> # ensure that all sequences are in the same orientation:
> segs <- OrientNucleotides (seqgs)

Here, we make the assumption that each sequence is labeled in the original (FASTA) file by its taxonomy starting with
“Root;”. For example, a sequence might be labeled “AY 193173 Root; Bacteria; SR1; SR1_genera_incertae_sedis”,
in which case we can extract all of the text starting from “Root;” to obtain the sequence’s “group”. In this context,
groups are defined as the set of all possible taxonomic labels that are present in the training set.

> # obtain the taxonomic assignments

> groups <- names (seds) # sequence names

> # assume the taxonomy begins with 'Root;'

> groups <— gsub (" (.*) (Root;)", "\\2", groups) # extract the group label
> groupCounts <- table (groups)

> u_groups <- names (groupCounts) # unique groups

> length (u_groups) # number of groups

3.2 Pruning the training set

The next step is to count the number of representatives per group and, optionally, select only a subset of sequences if the
group is deemed too large. Typically there is a diminishing return in accuracy for having more-and-more representative
sequences in a group. Limiting groups size may be advantageous if some groups contain an inordinately large number
of sequences because it will speed up the classification process. Also, larger groups oftentimes accumulate errors (that
is, sequences which do not belong), and constraining the group size can help to make the classification process more
robust to rare errors that may exist in the training data. In the code below, maxGroupSize controls the maximum size
of any group, and can be set to Inf (infinity) to allow for an unlimited number of sequences per group. An alternative
approach would be to use Clusterize to identify diverse sequences within each group.

> maxGroupSize <- 10 # max sequences per label (>= 1)
> remove <- logical (length (seqgs))
> for (i in which (groupCounts > maxGroupSize)) {
index <- which (groups==u_groups([i])
keep <- sample (length (index),
maxGroupSize)
remove [index [-keep]] <- TRUE
}

> sum (remove) # number of sequences eliminated

3.3 [Iteratively training the classifier

Now we must train the classifier on the training set. One unique feature of the IDTAXA algorithm is that during the
learning process it will identify any training sequences whose assigned classifications completely (with very high
confidence) disagree with their predicted classification. These are almost always sequences that are mislabeled in the
training data, and they can make the classification process slower and less accurate because they introduce error in the
training data. We have the option of automatically removing these putative “problem sequences” by iteratively repeat-
ing the training process. However, we may also want to be careful not to remove sequences that are the last remaining
representatives of an entire group in the training data, which can happen if the entire group appears to be misplaced in

the taxonomic tree. These two training options

are controlled by the maxlterations and allowGroupRemoval variables

(below). Setting maxlIterations to 1 will simply train the classifier without removing any problem sequences, whereas
values greater than 1 will iteratively remove problem sequences.

> maxIterations <- 3 # must be >= 1

> allowGroupRemoval <- FALSE
> probSegsPrev <- integer()

suspected problem sequences from prior iteration

> for (i in seqg_len(maxIterations)) {

"

cat ("Training iteration: ", i, "\n", sep="")

train the classif

trainingSet <- Lear
names (seqgs)
taxid)

look for problem

ier
nTaxa (segs [!remove],
[!remove],

sequences

probSegs <- trainingSetS$problemSequences$Index

if (length (probSegs

)==0) {

cat ("No problem sequences remaining.\n")

break

} else if (length (probSegs)==length (probSegsPrev) &&
all (probSegsPrev==probSeqgs)) {

cat ("Iterat
break

}

ions converged.\n")

if (i==maxIterations)

break
probSegsPrev <- pro

bSegs

remove any problem sequences
index <- which (!remove) [probSegs]
remove [index] <- TRUE # remove all problem sequences
if (!'allowGroupRemoval) {
replace any removed groups

missing <-
missing <-
if (length(

! (u_groups %in% groups/|[!removel])
u_groups [missing]
missing) > 0) {

index <- index[groups[index] %in% missing]
remove [index] <- FALSE # don't remove

}

> sum(remove) # total number of sequences eliminated

> length (probSeqgs) # number of remaining problem sequences

3.4 Viewing the training data

The training process results in a training object (trainingSet) of class Taxa and subclass Train that contains
all of the information required for classification. If you want to use the pre-trained classifier for 16S rRNA sequences,
then it can be loaded with the data function. However, if you just trained the classifier using your own training
data then you should skip these next two lines of code.

> data("TrainingSet_163S")
> trainingSet <- TrainingSet_16S

We can view summary properties of the training set (t rainingSet) by printing it:

> trainingSet

A training set of class 'Taxa'
K-mer size: 8
Number of rank levels: 10
Total number of sequences: 2472
Number of groups: 2472
Number of problem groups: 5
Number of problem sequences: 8

X% X ok X %

And, as shown in Figure[I] we can plot the training set (t rainingSet) to view a variety of information:

1. The first panel contains the taxonomic tree with the “Root™ at the very top. This training set contains different
numbers of ranks for each group, which is why the leaves of the tree end at different heights. Edges of the tree
that are colored show putative “problem groups” that persist after the iterative removal of “problem sequences”
(see above). These colored edges are problematic in that the classifier cannot descend below this edge on the
tree during the initial “tree descent” phase of the algorithm and, instead, must test against every sequence below
this edge. This slows down the classification process for sequences belonging to a group below this edge, but
does not affect the classifier’s accuracy.

2. The second panel of Fig. [I|shows the number of unique groups at each taxonomic rank, ordered from highest to
lowest taxonomic rank in the dataset. We can see that there are about 2.5 thousand genera, where genus is the
lowest rank in this training set.

3. The bottom left panel contains a histogram of the number of sequences per label. The maximum group size is
in accordance with the maxGroupSize set above. Here, the pre-trained classified has only a single sequence per
group so that it will take up minimal space. Typically classifiers will have a wide distribution of the number of
sequences per group.

4. The bottom right panel displays the inverse document frequency (IDF) weights associated with each k-mer.
We can see that there are many rare k-mers that have high weights (i.e., high information content), and a few
common k-mers that have very low weights. This highly-skewed distribution of information content among
k-mers is typical among sequence data.

> plot (trainingSet)

Taxonomic tree (problem groups in magenta)

Frequency of rank levels

o
S _
Yol
N
% -
o
g -
[
o
S 4
Ye)
o - . .]] . | . |
I T T T T T T T 1
rootrank domain phylum class subclass order suborder family genus
° Sequences per label Inverse document frequency (IDF) weights
B
Q -
o
O_ —
> o 3
o - —
5§ B S
z 2 3
1] = s |
T o —
o -
o N
(=} =
I T T T T 1 e T T T T T T T
0 0.2 0.4 0.6 0.8 1 0 10000 30000 50000
Number of sequence representatives Sorted 8—-mers

Figure 1: Result of plotting the training set (t rainingSet) produced by LearnTaxa.

4 Classifying Sequences

Now that we have trained the classifier, the next step is to use it to assign taxonomic classifications to new sequences.
This is accomplished with the TdTaxa function, which takes in “test” (new) sequences along with the training set
(trainingSet) object that was returned by LearnTaxa. For the purposes of this tutorial, we are going to use
some 16S rRNA gene sequences collected from organisms present in tap water. Feel free to follow along with your
own sequences, or load the FASTA file included with the tutorial.

> fas <- "<<path to FASTA file>>"
> # OR use the example 165 sequences:
> fas <- system.file("extdata",
"Bacteria_175seqgs.fas",
package="DECIPHER")
> # read the sequences into memory
> test <- readDNAStringSet (fas)
> # Alternatively use readAAStringSet or readRNAStringSet

9

As in training (above), the test sequences cannot contain gap (“-” or .
the RemoveGaps function:

) characters, which can easily be removed with

> # 1f they exist, remove any gaps in the sequences:
> test <- RemoveGaps (test)

> test
DNAStringSet object of length 175:
width seq names
[1] 1235 TCTGATATAGCGGCGGACGGGT...TTCTCAGTTCGGATTGTAGGCT uncultured bacter...
[2] 1351 TTAGCGGCGGACGGGTGAGTAA...GAGTTTGTAACACCCGAAGCCG uncultured bacter...
[3] 1326 CGGCGGACGGGTGAGTAACACG...CACCGCCCGTCACACCACGAGA uncultured bacter...
[4] 1345 GCGAACGGGTGAGTAACACGTG...TTGGAACACCCGAAGTCGGCCG uncultured bacter...
[5] 1343 AACGCGTGGGTAACCTACCCAT...GTCTGCACACCCGAAGCCGGTG uncultured bacter...
[171] 1314 CGGACGGGTGAGTAAAGCATAG. ..GCCCGTCACACCATGGGAGTGG uncultured bacter...
[172] 1316 ACGGGTGAGTAATGCTTAGGAA...CCCGTCACACCATGGGAGTTGG uncultured bacter...
[173] 1308 GGCAACCCCAGAGAATGGCGAA...TGAACACGTTCCCGGGCCTTGT uncultured bacter...
[174] 1313 GACGGGTGGTTAACACGTAGGT...AGAGGGTCACGCCCGAAGTCGG uncultured bacter...
[175] 1333 CTTTCGGGGGTGCTTCAGTGGC. . .CGAAAGAAGGTCACGCCCGAAG uncultured bacter...

4.1 Assigning classifications

Now, for the moment we have been waiting for: it’s time to classify some test sequences! It’s important to have read the
help file for IdTaxa to acquaint yourself with the available options before performing this step. The most important
(optional) arguments are the fype of output, the strand used in testing, the confidence threshold of assignments, and
the number of processors to use. Here, we are going to request the "extended" (default) output fype that allows
for plotting the results, but there is also a "collapsed" type that might be easier to export (see section [4.4] below).
Also, we know that all of the test sequences are in the same (“+” strand) orientation as the training sequences, so
we can specify to only look at the "top" strand rather than the default of "both" strands (i.e., both “+” and “-”
strands). This makes the classification process over twice as fast. We could also set processors to NULL to use all
available processors.

> ids <- IdTaxa(test,
trainingSet,

type="extended",
strand="top",
threshold=60,
processors=1)

Time difference of 12.23 secs

The threshold of 60% is recommended at the default confidence threshold. Confidence levels are informally
defined as 70% (stringent), 60% (cautious), 50% (sensible), and 40% (lenient). Using a threshold of 0% will
report classifications down to all rank levels. Note that the test sequences should generally be fully-overlapped by the
information in the training sequences. In this way, the training sequences can be longer than the test sequences, but
the reverse situation would result in lower confidences.

Let’s look at the results by printing the object (ids) that was returned:

> ids

A test set of class 'Taxa' with length 175
confidence name taxon

[1] 73% uncultured bacter... Root; Bacteria; Firmicutes; Bacilli;
[2] 68% uncultured bacter... Root; Bacteria; Firmicutes; Bacilli;
[3] 63% uncultured bacter... Root; Bacteria; Firmicutes; Bacilli;
[4] 92% uncultured bacter... Root; Bacteria; Firmicutes; Bacilli;
[5] 61% uncultured bacter... Root; Bacteria; Firmicutes; Clostridi

[171] 39% uncultured bacter... Root; unclassified_Root

[172] 48% uncultured bacter... Root; unclassified_Root

[173] 31% uncultured bacter... Root; unclassified_Root

[174] 49% uncultured bacter... Root; unclassified_Root

[175] 54% uncultured bacter... Root; unclassified_Root

Note that the data has class Taxa and subclass Test, which is stored as an object of rype list. Therefore we can
access a subset of the returned object (ids) with single square brackets ([) or access the contents of individual list
elements with double square brackets ([[). The allows the classifications to be subset and merged, as shown in the
examples below.

> ids[1:5] # summary results for the first 5 sequences
A test set of class 'Taxa' with length 5

confidence name taxon
[1] 73% uncultured bacter... Root; Bacteria; Firmicutes; Bacilli; Ba
[2] 68% uncultured bacter... Root; Bacteria; Firmicutes; Bacilli; Ba
[3] 63% uncultured bacter... Root; Bacteria; Firmicutes; Bacilli; Ba
[4] 92% uncultured bacter... Root; Bacteria; Firmicutes; Bacilli; La
[5] 61% uncultured bacter... Root; Bacteria; Firmicutes; Clostridia;
> ids[[1]] # results for the first sequence
Staxon
[1] "Root" "Bacteria"
[3] "Firmicutes" "Bacilli"
[5] "Bacillales" "Planococcaceae"
[7] "unclassified_Planococcaceae"

Ba...
Ba...
Ba...
La...
aj ...

ci...
ci...
ci...
ct...

C...

100%

Sconfidence
[1] 74.21434 74.21434 74.21434 74.21434 74.21434 73.49649 73.49649

Ba...
Ba...

La...

Srank
[1] "rootrank" "domain" "phylum" "class™" "order" "family" "genus"
> i1ds[c (10, 25)] # combining different sequences
A test set of class 'Taxa' with length 2
confidence name taxon
[1] 49% uncultured bacter... Root; unclassified_Root
[2] 34% uncultured bacter... Root; unclassified_Root
> c(ids[10], ids[25]) # merge different sets
A test set of class 'Taxa' with length 2
confidence name taxon
[1] 49% uncultured bacter... Root; unclassified_Root
[2] 34% uncultured bacter... Root; unclassified_Root
> ids[, c("rootrank", "domain", "class")] # only look at specific rank levels
A test set of class 'Taxa' with length 175
confidence name taxon
[1] 74% uncultured bacter... Root; Bacteria; Bacilli
[2] 71% uncultured bacter... Root; Bacteria; Bacilli
[3] 68% uncultured bacter... Root; Bacteria; Bacilli
[4] 92% uncultured bacter... Root; Bacteria; Bacilli
[5] 66% uncultured bacter... Root; Bacteria; Clostridia
[171] 39% uncultured bacter... Root; unclassified_Root
[172] 48% uncultured bacter... Root; unclassified_Root
[173] 31% uncultured bacter... Root; unclassified_Root
[174] 49% uncultured bacter... Root; unclassified_Root
[175] 54% uncultured bacter... Root; unclassified_Root
> ids[threshold=70] # threshold the results at a higher confidence
A test set of class 'Taxa' with length 175
confidence name taxon
[1] 73% uncultured bacter... Root; Bacteria; Firmicutes; Bacilli;
[2] 71% uncultured bacter... Root; Bacteria; Firmicutes; Bacilli;
[3] 68% uncultured bacter... Root; unclassified_Root...
[4] 92% uncultured bacter... Root; Bacteria; Firmicutes; Bacilli;
[5] 66% uncultured bacter... Root; unclassified_Root...
[171] 39% uncultured bacter... Root; unclassified_Root
[172] 48% uncultured bacter... Root; unclassified_Root
[173] 31% uncultured bacter... Root; unclassified_Root
[174] 49% uncultured bacter... Root; unclassified_Root
[175] 54% uncultured bacter... Root; unclassified_Root

The output can easily be converted to a character vector with taxonomic information assigned to each sequence:

> assignment <- sapply(ids,
function (x)
paste (x$taxon,
collapse=";"))
> head (assignment)

uncultured bacterium; Pro_CL-05069_0OTU-15.
"Root;Bacteria;Firmicutes;Bacilli;Bacillales;Planococcaceae;unclassified_Planococcaceae"
uncultured bacterium; Fin_CL-100646_0OTU-6.
"Root;Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae; Staphylococcus™"
uncultured bacterium; Mar_CL-050642_0OTU-13.
"Root;Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae; Staphylococcus"
uncultured bacterium; Mar_CL-100626_0TU-8.
"Root;Bacteria;Firmicutes;Bacilli;Lactobacillales;Carnobacteriaceae;Dolosigranulum"
uncultured bacterium; Fin_CL-100633_0TU-22.
"Root;Bacteria;Firmicutes;Clostridia;Clostridiales;Peptococcaceae 1;Desulfosporosinus"
uncultured bacterium; Fin_CL-050645_0TU-2.

"Root;unclassified_Root"

4.2 Plotting the results

We can also plot the results, as shown in Figure 2] This produces a pie chart showing the relative abundance of the
taxonomic groups assigned to test sequences. It also displays the training taxonomic tree, with edges colored where
they match the taxonomic groups shown in the pie chart. Note that we could also have only plotted the pie chart by
omitting the trainingSet. Also, it is possible to specify the parameter n if each classification represents a varying
number of sequences, e.g., when only unique sequences were originally classified.

10

> plot (ids, trainingSet)

4 <
Koy (/’)O 2 ES
Q\S‘ {9 S <
ALY ko 8
S /Qo« % < =3
S = Y
Un, %y %L & :
Clas,,; 8. %, G :
Sife, 0, %, %65 ' [genus
S Yo, R ? L
~ag,, S, | family
Unclag Dzop, 7oQ [suborder
Sif _cg, | order
= Fgfob/a/e: i 2|uabscs| ass
unclassii rovipy; i
oL Erythrobacy © [phylum
Sphingopyxis domain
- hingomo:--
Sified_SP
unclas o
ing0 \wott)
et~ (O &€
unc?® W S %
é\“\e - \/\6\ ’bé (7\ - {9\9
S) O o S
oF & & %
W oS NS Q) B 00:
N S SIS @ z
c® SLILOT 35 = N
> & OS85 22 3 %
& & Soasd 22 g ‘
2\ d Y@ TS T T35 5
0\'&6 N FFS g S g =
\)(\ \}(\ § § §Q0) S § 2} ®

Figure 2: Result of plotting the classifications (1ds) made by IdTaxa.

11

4.3 Create and plot a classification table

When analyzing multiple samples, it is often useful to create a classification table with the number of times each
taxon is observed. Here we can choose a specific taxonomic rank to consider, or simply select the lowest (i.e., basal)
taxonomic level:

> phylum <- sapply (ids,
function (x) {
w <—- which (x$Srank=="phylum")
if (length(w) != 1) {
"unknown"
} else {
xStaxon [w]

})
> table (phylum)

phylum
"Actinobacteria"™ "Bacteroidetes" "Proteobacteria" Firmicutes
26 8 78 5
Nitrospirae unknown
5 53

> taxon <- sapply(ids,
function (x)
x$taxon[length (x$taxon)])
> head (taxon)
uncultured bacterium; Pro_CL-05069_0OTU-15.
"unclassified_Planococcaceae"
uncultured bacterium; Fin_CL-100646_0TU-6.

"Staphylococcus™"
uncultured bacterium; Mar_CL-050642_0OTU-13.
"Staphylococcus™"
uncultured bacterium; Mar_CL-100626_0TU-8.
"Dolosigranulum"

uncultured bacterium; Fin_CL-100633_0TU-22.
"Desulfosporosinus"
uncultured bacterium; Fin_CL-050645_0TU-2.
"unclassified_Root"

Next, we need to know which test sequences belonged to each sample. This must be in the form of a vector of sample
names that is the same length as the number of samples. For example, in this case the sample names are part of the
sequence names. Using this vector we can easily generate a classification table:

> # get a vector with the sample name for each sequence

> samples <— gsub(".*; (.+2)_.*", "\\1", names (test))

> taxaTbl <- table(taxon, samples)

> taxaTbl <- t(t(taxaTbl)/colSums (taxaTbl)) # normalize by sample
> head(taxaTbl)

samples
taxon Chlminus Chlplus Fin Lol LO3
Achromobacter 0.00000000 0.03846154 0.00000000 0.00000000 0.00000000
Acidovorax 0.07692308 0.00000000 0.00000000 0.00000000 0.00000000
Afipia 0.07692308 0.00000000 0.00000000 0.00000000 0.00000000

12

Asinibacterium 0.00000000
Blastomonas 0.00000000
Brevundimonas 0.00000000
samples
taxon Mar
Achromobacter 0.00000000
Acidovorax 0.00000000
Afipia 0.00000000
Asinibacterium 0.00000000
Blastomonas 0.00000000
Brevundimonas 0.00000000

o O

O O O O O o

.03846154
.00000000
.03846154

Pro

.00000000
.00000000
.00000000
.00000000
.00000000
.00000000

We can summarize the results in a stacked barplot:

13

o O

o O O O o o

.00000000
.00000000
.00000000

UWH

.00000000
.00000000
.00000000
.00000000
.04166667
.04166667

o O

o O O O o o

.00000000 0.00000000
.00000000 0.00000000
.00000000 0.12500000

UWL

.00000000
.00000000
.00000000
.00000000
.00000000
.00000000

> include <- which (rowMeans (taxaTbl) >= 0.04)

> barplot (taxaTbl[include,],
legend=TRUE,
col=rainbow (length (include), s=0.4),
ylab="Relative abundance",
ylim=c (0, 1),
las=2, # vertical x—axis labels
args.legend=list (x="topleft", bty="n", ncol=2))

1.0
O unclassified_Sphingomonadaceae O unclassified_Corynebacl
O unclassified_Root

0.8 —

Relative abundance

0.2

0.0 —

Chlminus
Chlplus
Fin

LO1

LO3

Mar

Pro

UWH
UWL

Figure 3: Barplot of taxonomic assignments by sample.

14

4.4 Exporting the classifications

We can switch between outputting in extended or collapsed format by setting the fype argument in IdTaxa.
The collapsed type of output is simply a character vector, which cannot be plotted but is easy to write to a text file
with the writeLines function. In this tutorial we requested the ext ended type of output, which is stored in a list
structure that must be converted into a character vector before we can write it to a text file. Here we may choose what
we want the text output to look like, by pasting together the result for each sequence using delimiters. For example:

> output <- sapply(ids,
function (id) {
paste (id$taxon,
" ("I
round (id$Sconfidence, digits=1),
"%) "I
Sep:" "I
collapse="; ")
})
> tail (output)
uncultured bacterium; UWH_CL-010746_O0OTU-2.
"Root (46%); unclassified_Root (46%)"
uncultured bacterium; UWH_CL-01079_OTU-21.
"Root (39%); unclassified_Root (39%)"
uncultured bacterium; UWH_CL-08061_OTU-5.
"Root (48.6%); unclassified_Root (48.6%)"
uncultured bacterium; Fin_CL-03079_0TU-21.
"Root (31.7%); unclassified_Root (31.7%)"
uncultured bacterium; UWL_CL-110518_0OTU-11.
"Root (49.3%); unclassified_Root (49.3%)"
uncultured bacterium; UWL_CL-110548_0TU-32.
"Root (54.1%); unclassified_Root (54.1%)"

> #writelLines (output, "<<path to output text file>>")

4.5 Guaranteeing repeatability

The IDTAXA algorithm uses bootstrapping, which involves random sampling to obtain a confidence score. For this
reason, the classifications are expected to change slightly if the classification process is repeated with the same inputs.
For some applications this randomness is undesirable, and it can easily be avoided by setting the random seed before
classification. The process of setting and then unsetting the seed in R is straightforward:

> set.seed(123) # choose a whole number as the random seed
> # then classify sequences with IdTaxa (not shown)
> set.seed (NULL) # return to the original state by unsetting the seed

5 Creating a “taxid” file

The “taxid” file format supplies a table that can be used by LearnTaxa to specify taxonomic ranks (e.g., phylum,
class, order, etc.) associated with each taxon. Previously we imported the rank information from a plain text file
containing 5 columns separate by asterisks (“*”’). An example of the contents of this file is:

15

0xRootx—1*x0xrootrank
l1xBacteriax0x1lxdomain
2xActinobacteriaxl*2+phylum
3xAcidimicrobiales*2*3xorder
4xAcidimicrobiaceae*3*x4xfamily
5xAcidimicrobium*4*5xgenus
6xFerrimicrobiumx4+5+xgenus

The leftmost column is simply an index starting at zero. Next, there is a column with each unique taxonomic
name in the training set. The third column contains a pointer to the index of each line’s parent. The fourth column
gives the rank level starting from “Root” at level 0. The last column provides the taxonomic rank information that is
used by LearnTaxa.

The first line is always the same, and specifies that the “Root” rank is index 0, has no parent (-1), and points to
itself (index 0). The rest of the lines must point to a positive index for their parent. For example, the line for index 6
states that the genus “Ferrimicrobium” exist within the family “Acidimicrobiaceae” (index 4) at rank level 5.

If you would like to create a custom “taxid” file for your training set, the easiest way is to start with a set of
taxonomic labels preceded by prefixes indicating their rank. For example, the above “taxid” file could be generated
from these lines of text:

d__Bacteria;p__Actinobacteria;o__Acidimicrobiales;f__Acidimicrobiaceae;g__Acidimicrobiun
d__Bacteria;p__Actinobacteria;o__Acidimicrobiales;f__Acidimicrobiaceae;g__Ferrimicrobiun
Then the following code will convert this text into the fields required for the “taxid” file:

> ranks <- readLines ("<<path to lines of text>>")

> taxa <- setNames (c("domain", "phylum", "order", "family", "genus"),
c("d_", "p_", "o_", "f_", "g_"))
> ranks <- strsplit(ranks, ";", fix=T)
> count <- 1L
> groups <- "Root"
> index <- -1L
> level <- 0L
> rank <- "rootrank"
> pBar <- txtProgressBar (style=3)
> for (i in seqg_along(ranks)) {
for (j in seq_along(ranks[[i]])) |
rank_level <- taxal[substring(ranks[[i]]1[3], 1, 3)]

group <- substring(ranks[[i]]1[3], 4)
w <- which (groups==group & rank==rank_level)
if (length(w) > 0) {

parent <- match (substring(ranks([[i]l][]j - 1], 4),
groups)
if (j==1 || any((parent - 1L)==index[w]))

next # already included

count <- count + 1L
groups <- c(groups, group)
if (J==1) {

index <- c(index, 0)

16

} else {

parent <- match (substring(ranks[[i]l][]j - 1], 4),
groups)
index <- c¢(index,
parent - 1L)
}
level <- c(level, J)
rank <- c(rank, taxal[jl)
}
setTxtProgressBar (pBar, i/length (ranks))
}
> groups <- gsub("*[1+", "", groups)
> groups <—- gsub("[]+$", "", groups)
> taxid <- paste(0: (length(index) - 1L), groups, index, level, rank, sep="x*")

> head(taxid, n=10)

1 "O0xRootx—-1x0*rootrank"

] "1lxBacteriax0Oxl+xdomain"

] "2xActinobacteriaxlx2+phylum"
] "3xAcidimicrobialesx2*3*order"
]
]
]

"5xAcidimicrobiumx4x5+xgenus"

N o U W N

[
[
[
[
[
[
[

"6xFerrimicrobiumx4x5+xgenus"

"AxAcidimicrobiaceaex3*4xfamily"

Now these lines of text can be written to a file to be imported as the “taxid” file above.

> writeLines (taxid,

con="<<path to taxid file>>")

6 Annotating Protein Sequences

The IDTAXA algorithm can also be used to classify amino acid sequences into a taxonomy of genes, functions, or
organisms. As an example, we can train the classifier on the set of named genes from the phylum Planctobacteria. Sets

such as this can be constructed from various databases, including https://www.uniprot.org/uniprot/?query=reviewedSw

The example training sequences can be loaded with:

> fas <- system.file ("extdata",

"PlanctobacteriaNamedGenes.fas.gz",

package="DECIPHER")

> aa <- readAAStringSet (fas)

> aa

AAStringSet object of length 2497:

width seq
227
394
195
437
539

g w N

MAGPKHVLLVSEHWDLEFQTKE. .
MKRNPHEFVSLTKNYLFADLQKR. .
MAYGTRYPTLAFHTGGIGESDD. .
MMLRGVHRIFKCEFYDVVLVCAF. .
MSFKSIFLTGGVVSSLGKGLTA. .

17

.VGYLFSDDGDKKFSQQODTKLS
.GKREDILAACERLQOMAPALQS
.GFCLTALGFLNFENAEPAKVN
. TASFDRTWRALKSYIPLYKNS
.FIEFIRAAKAYSLEKANHEHR

names

AOAOH3MDW1 |Root;N. ..
084395 |Root;2;6;1...
Q9726M7 |Root;4;1;1...
Q46222 |Root;2;4;9...
Q059321 |Root;6;3;4...

https://www.uniprot.org/uniprot/?query=reviewed

[2493] 1038 MFEEVLQESFDEREKKVLKFWQ. ..EGTDWDLNGEPTKIIIKKSEY Q6MDY1l|Root;6;1;1...
[2494] 102 MVQIVSQDNFADSIASGLVLVD. ..VERSVGLKDKDSLVKLISKHQ Q9PJK3|Root;NoEC; ...
[2495] 224 MKPQDLKLPYFWEDRCPKIENH. ..NLWRSKGEKIFCTEFVKRVGI Q9PL91|Root;2;1;1...
[2496] 427 MLRRLFVSTFLIFGMVSLYAKD. ..KIVIGLGEKREFPSWGGFPNNQ Q256H8|Root;NoEC; ...
[2497] 344 MLTLGLESSCDETACALVDAKG...GIHPCARYHWESISASLSPLP Q822Y4|Root;2;3;1...
> head (names (aa))

[1] "AOAOH3MDW1 |Root;NoEC; chxR" "084395|Root;2;6;1;83;dapL"

[3] "Q9Zo6M7|Root;4;1;1;19;aaxB" "Q46222|Root;2;4;99;Multiple; waaA"

[5] "Q59321|Root;6;3;4;2;pyrG" "POCOZ7|Root;NoEC; groL"

Here, protein sequences are named by their enzyme commission (EC) number and three or four-letter gene name. It is
important to only train the classifier with sequences having complete labels. In this case, we will get rid of sequences
without any EC number.

> aa <- aal['!'grepl ("Root;NoEC", names (aa), fixed=TRUE)]

> aa

AAStringSet object of length 1542:

width seqg names

[1] 394 MKRNPHEFVSLTKNYLFADLQKR. ..GKREDILAACERLQMAPALQS 084395|Root;2;6;1
[2] 195 MAYGTRYPTLAFHTGGIGESDD...GFCLTALGFLNFENAEPAKVN Q9Z6M7|Root;4;1;1...
[3] 437 MMLRGVHRIFKCEFYDVVLVCAF...TASFDRTWRALKSYIPLYKNS Q46222 |Root;2;4;9...
[4] 539 MSFKSIFLTGGVVSSLGKGLTA...FIEFIRAAKAYSLEKANHEHR Q59321 |Root;6;3;4
[5] 92 MQVNEYFDGNVTSIAFENGEGR. ..DANQKFQVRVIEPTAYLCFYS Q7USAl|Root;2;4;2

1538 1036 MDNEDKISISAKEEKILSFWKE...EGEEWDINGHAVSFVLERVER BOBBO5|Root; 6;

1;1
1;1...
;1;1...
1;1
3;1

[] i1l
[1539] 342 MTIQEELEAVKQQFSCDVSLAH...YGISDIRLFSENDLRFLRQFS 084843 |Root; 6;1;
[1540] 1038 MFEEVLQESFDEREKKVLKFWQ...EGTDWDLNGEPTKIIIKKSEY Q6MDY1|Root; 6

[1541] 224 MKPQDLKLPYFWEDRCPKIENH...NLWRSKGEKIFCTEFVKRVGI Q9PL91|Root;2;1;
[1542] 344 MLTLGLESSCDETACALVDAKG...GIHPCARYHWESISASLSPLP Q822Y4|Root;2;3;

Since this taxonomy contains widely disparate sequences, we would not expect tree descent to be useful. We can
disable tree descent by setting maxChildren to 1 in LearnTaxa

> trainingSet <- LearnTaxa (train=aa,
taxonomy=names (aa),
maxChildren=1)

Time difference of 0.46 secs

Next we need a set of query sequences to classify. To this end, we will use a representative genome of the Chlamydia
trachomatis species, a member of the Planctobacteria phylum. We can find genes in the genome using the DECIPHER
function FindGenes.

> fas <- system.file ("extdata",
"Chlamydia_trachomatis_NC_000117.fas.gz",
package="DECIPHER")

> genome <- readDNAStringSet (fas)

> genes <- FindGenes (genome, verbose=FALSE)

> test <- ExtractGenes (genes, genome, type="AAStringSet")

> test

18

AAStringSet
width

[1] 392
[2] 91
[3] 101
[4] 492
[5] 489
[891] 1017
[892] 101
[893] 879
[894] 32
[895] 200

object of length 895:
seq

AAAREIAKRWEQRVRDLODKGAARKLLNDPLGR. .
MLCKVCRGLSSLIVVLGAINTGILGVTGYKVNL. .
MTESYVNKEEITSLAKNAALELEDAHVEEFVTS. ..
MYRKSALELRDAVVNRELSVTAITEYFYHRIES. .
MGIAHTEWESVIGLEVHVELNTESKLESPARNH. .

MPEFSLRSTSFCFLACLCSYSYGFASSPQVLTPN. .
MLATIKKITVLLLSKRKAGIRIDYCALALDAVE. ..
MRPDHMNFCCLCAAILSSTAVLFGQODPLGETAL. .

MSKKSNNLQTFSSRALFHVEFQDEELRKIFGL*
MSIRGVGGNGNSRIPSHNGDGSNRRSQONTKGNN

.QVEGILRDMLTNGSQTFRDLMRRWNREVDRE %
.CLNFLKCCFKKRHGDCCSSKGGYHHHHMDRE
DMVTSDEFTQEEFLSNVPVSLGGLVKVPTVIK*
. ICQVGYSFQEHSQIKQLYPKAVNGLEDGGIE %
.GFLVGQIMKRTEGKAPPKRVNELLLAAMRDM*

.HHFGRAYMNYSLDARRRQTAHEFVSMGLNRIF %
LDASLESAQVRLAGLMLDYWDGDSRLECKKI %
.LHRLOQTLLNVSYVLRGQSHSYSLDLGTTYRE %

.. .NLDVNEARLMAAYTSECADHLEANKLAGPDGV

Now, we can take advantage of the fact that our training and testing sets are composed of full-length sequences by
setting fullLength to 0. 99 in IdTaxa. This will automatically infer the expected length variability among proteins,
and filter potential classifications to only those within a reasonable length range. Furthermore, we will lower the
threshold to 50%, the recommended value for protein sequences.

> ids

<— IdTaxa (test,
trainingSet,
fullLength=0.99,
threshold=50,
processors=1)

Time difference of 3.17 secs

> ids

A test set of class 'Taxa' with length 895
confidence taxon

8% Root; unclassified_Root
3% Root; unclassified_Root
100% Root; 6; 3; 5; —; gatC
100% Root; 6; 3; 5; 7; gathA
100% Root; 6; 3; 5; —; gatB

Root; unclassified_Root
Root; unclassified_Root
Root; unclassified_Root
Root; unclassified_Root
Root; unclassified_Root

0 O o) b U1 .
o° o0 o° o° oP

Since only about a third of the proteins are classifiable in this dataset, we can display the subset of genes that did not
belong to “unclassified_Root”. To make the plot more interesting, we will subset to the first EC number.
We see that most genes either are not placed in a class with an EC number or belong to EC 2 (Transferases) or EC 3

(Hydrolases).

19

> unclassified <- sapply (ids,
function (x)
"unclassified_Root" %in% xS$Staxon)
> plot (ids[!unclassified, 1:27)

Level 1

Multiple
7

Figure 4: Names of genes in the E. coli genome.

20

7 Session Information

All of the output in this vignette was produced under the following conditions:

R Under development (unstable) (2025-10-20 r88955), x86_64-pc—-1inux-gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.23-bioc/R/1ib/1libRblas.so
LAPACK: /usr/1ib/x86_64-1linux—-gnu/lapack/liblapack.s0.3.12.0
Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils

Other packages: BiocGenerics 0.57.0, Biostrings 2.79.1, DECIPHER 3.7.0, IRanges 2.45.0, S4Vectors 0.49.0,
Seqinfo 1.1.0, XVector 0.51.0, generics 0.1.4

Loaded via a namespace (and not attached): DBI 1.2.3, compiler 4.6.0, crayon 1.5.3, tools 4.6.0

21

	Introduction
	Getting Started
	Startup

	Training the Classifier
	Importing the training set
	Pruning the training set
	Iteratively training the classifier
	Viewing the training data

	Classifying Sequences
	Assigning classifications
	Plotting the results
	Create and plot a classification table
	Exporting the classifications
	Guaranteeing repeatability

	Creating a ``taxid'' file
	Annotating Protein Sequences
	Session Information

