
The Art of Multiple Sequence Alignment in R

Erik S. Wright

October 31, 2025

Contents
1 Introduction 1

2 Alignment Speed 2

3 Alignment Accuracy 4

4 Recommendations for optimal performance 7

5 Single Gene Alignment 8
5.1 Example: Protein coding sequences . 8
5.2 Example: Non-coding RNA sequences . 9
5.3 Example: Aligning two aligned sequence sets . 9

6 Advanced Options & Features 10
6.1 Example: Building a Guide Tree . 10
6.2 Example: Post-processing an existing multiple alignment . 12

7 Aligning Homologous Regions of Multiple Genomes 12

8 Session Information 15

1 Introduction

Figure 1: The art of multiple se-
quence alignment.

This document is intended to illustrate the art of multiple sequence alignment
in R using DECIPHER. Even though its beauty is often concealed, multi-
ple sequence alignment is a form of art in more ways than one. Take a look
at Figure 1 for an illustration of what is happening behind the scenes dur-
ing multiple sequence alignment. The practice of sequence alignment is one
that requires a degree of skill, and it is that art which this vignette intends to
convey. It is simply not enough to “plug” sequences into a multiple sequence
aligner and blindly trust the result. An appreciation for the art as well a careful
consideration of the results are required.

What really is multiple sequence alignment, and is there a single correct
alignment? Generally speaking, alignment seeks to perform the act of taking
multiple divergent biological sequences of the same “type” and fitting them to
a form that reflects some shared quality. That quality may be how they look
structurally, how they evolved from a common ancestor, or optimization of
a mathematical construct. As with most multiple sequence aligners, DECIPHER is “trained” to maximize scoring

1

metrics in order to accomplish a combination of both structural alignment and evolutionary alignment. The idea is
to give the alignment a biological basis even though the molecules that the sequences represent will never meet each
other and align under any natural circumstance.

The workhorse for sequence alignment in DECIPHER is AlignProfiles, which takes in two aligned sets of
DNA, RNA, or amino acid (AA) sequences and returns a merged alignment. For more than two sequences, the function
AlignSeqs can be used to perform multiple sequence alignment in a progressive/iterative manner on sequences of
the same kind. In this case, multiple alignment works by aligning two sequences, merging with another sequence,
merging with another set of sequences, and so-forth until all the sequences are aligned. This process is iterated to
further refine the alignment. There are other functions that extend use of AlignSeqs for different purposes:

1. The first is AlignTranslation, which will align DNA/RNA sequences based on their amino acid translation
and then reverse translate them back to DNA/RNA. Aligning protein sequences is more accurate since amino
acids are more conserved than their corresponding coding sequence.

2. The second function, AlignDB, enables generating alignments from many more sequences than are possible to
fit in memory. Its main purpose is to merge sub-alignments where each alignment alone is composed of many
thousands of sequences. This is accomplished by storing all of the aligned sequences in a database and only
working with “profiles” representing the alignment.

3. The function AdjustAlignment takes in an existing alignment and shifts groups of gaps right and left to
achieve a better alignment. Its purpose is to eliminate artifacts that accumulate during progressive alignment,
and to replace the tedious & subjective process of manually correcting an alignment.

4. Finally, StaggerAlignment will create a “staggered” alignment by separating potentially non-homologous
positions into separate columns. This function will help minimize false homologies when building a phyloge-
netic tree, although the resulting alignment is not as aesthetically pleasing.

5. The functions FindSynteny and AlignSynteny can be used in combination to perform pairwise alignment
of homologous regions from multiple genomes or non-collinear sequences. These functions interact with a
sequence database containing the genomes, which can each be comprised of multiple sequences (i.e., scaffolds,
contigs, or chromosomes).

2 Alignment Speed

Figure 2: The possible alignment
space.

The dynamic programming method used by DECIPHER for aligning two pro-
files requires order N*M time and memory space where N and M are the width
of the pattern and subject. Since multiple sequence alignment is an inherently
challenging problem for long sequences, heuristics are employed to maximize
speed while maintaining reasonable accuracy. In this regard, the two control
parameters available to the user are restrict and anchor. The objective of the
restrict parameter is to convert the problem from one taking quadratic time to
linear time. The goal of the anchor parameter is do the equivalent for memory
space so that very long sequences can be efficiently aligned.

The orange diagonal line in Figure 2 shows the optimal path for aligning
two sequence profiles. The blue segments to the left and right of the optimal
path give the constraint boundaries, which the user controls with the restrict
parameter. Areas above and below the upper and lower (respectively) constraint
boundaries are neglected from further consideration. A higher (less negative)
value of restrict[1] will further constrain the possible “alignment space,” which
represents all possible alignments between two sequences. Since the optimal
path is not known till completion of the matrix, it is risky to overly constrain the matrix. This is particularly true
in situations where the sequences are not mostly overlapping because the optimal path will likely not be diagonal,

2

causing the path to cross a constraint boundary. In the non-overlapping case restrict[1] could be set below the default
to ensure that the entire “alignment space” is available.

Neglecting the “corners” of the alignment space effectively converts a quadratic time problem into a near-linear
time problem. We can see this by comparing AlignProfiles with and without restricting the matrix at different
sequence lengths. To extend our comparison we can include the DECIPHER function AlignPairs, which is
designed specifically for fast pairwise alignment. In this simulation, two sequences with 90% identity are aligned and
the elapsed time is recorded for a variety of sequence lengths. As can be seen in Figure 3 below, without restriction
AlignProfiles takes quadratic time. However, with restriction AlignProfiles takes linear time, requiring far
less than a microsecond per nucleotide.

0 20000 40000 60000 80000 100000 120000

0
1

2
3

4
5

Sequence length (nucleotides)

E
la

ps
ed

 T
im

e
(s

ec
.)

AlignProfiles (unrestricted, unanchored)
AlignProfiles (restricted, unanchored)
AlignProfiles (restricted, anchored)
AlignPairs (adaptive banding)

Figure 3: Global Pairwise Sequence Alignment Timings.

The parameter anchor controls the fraction of sequences that must share a common region to anchor the alignment
space (Fig. 2). AlignProfiles will search for shared anchor points between the two sequence sets being aligned,
and if the fraction shared is above anchor (70% by default) then that position is fixed in the “alignment space.” Anchors
are 15-mer (for DNA/RNA) or 7-mer (for AA) exact matches between two sequences that must occur in the same
order in both sequence profiles. Anchoring generally does not affect accuracy, but can greatly diminish the amount of
memory required for alignment. In Fig. 2, the largest white box represents the maximal memory space required with
anchoring, while the entire alignment space (grey plus white areas) would be required without anchoring. The longest
pair of sequence profiles that can be aligned without anchoring is about 46 thousand nucleotides, as shown by the end
of the red dotted line in Figure 3. If regularly spaced anchor points are available then the maximum sequence length
is greatly extended. In the vast majority of cases anchoring gives the same result as without anchoring, but with less
time and memory space required.

3

3 Alignment Accuracy
Figure 4 compares the performance of DECIPHER to other sequence alignment software on structural amino acid
benchmarks [2]. All benchmarks have flaws, some of which can easily be found by eye in highly similar sequence
sets, and therefore benchmark results should treated with care [4]. As can be seen in the figure, the performance of
DECIPHER is similar to that of other popular alignment software such as MAFFT [5] and MUSCLE [3] for smaller
benchmarks. However, DECIPHER outperforms other programs on large sequence sets (Fig. 5), and its relative
advantage continues increase as more sequences are aligned [13]. Importantly, this is because DECIPHER exhibits
far less fall-off in accuracy as additional sequences are added.

The accuracy of protein alignment begins to drop-off when sequences in the reference alignment have less than
40% average pairwise identity (Fig. 4). A similar decline in performance is observed with DNA/RNA sequences,
but the drop-off occurs much earlier at around 60% sequence identity. Therefore, it is generally preferable to align
coding sequences by their translation using AlignTranslation. This function first translates the input DNA/RNA
sequences, then aligns the translation, and finally (conceptually) reverse translates the amino acid sequences to obtain
aligned DNA/RNA sequences. Nevertheless, even protein alignment cannot be considered reliable when the sequences
being aligned differ by more than 70%.

4

v2.5
Changes:

a) switched to PFASUM50 matrix and re-optimized parameters
b) exaggerated stop penalties

c) made the traceback jump gaps in a single step
d) record the last gap in pattern and subject and allow restarting from it

e) reoptimized structure matrix and gapPower: went from -1 to -0.5
f) switched from recursion to iteration (with stack) in AlignSeqs and IdClusters

g) changed default in AlignSeqs to iterations=2

What does this do (matches letters above)?:
a) slightly better performance overall on AA alignment (bali=0.5%?; hm=0.3%)

b) stops (*) align better at the end
c) makes traceback negligibly more efficient, but enables (d)

d) slight improvement in score by excluding accessing more tracebacks; very slightly slower
e) very small improvement in score, lowers the chance of super-long gaps

f) keeps deep guideTrees from running into the stack limit
g) slightly improves performance

0 20 40 60 80 100

0
20

40
60

80
10

0

Average Reference Sequence Identity (%)

Sh
ar

ed
 H

om
ol

og
y

w
ith

 R
ef

er
en

ce
 A

lig
nm

en
t (

%
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● DECIPHER
MAFFT L−INS−i
MUSCLE
ClustalW

0 20 40 60 80 100

0
20

40
60

80
10

0

Average Reference Sequence Identity (%)

Sh
ar

ed
 H

om
ol

og
y

w
ith

 R
ef

er
en

ce
 A

lig
nm

en
t (

%
)

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●● ●●

●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●● ●●

●

●
●

●

●

●

●●

●

●

● ●●●
●

●

●● ●●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●
●

●● ●
●●

●

●

● ●

●●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●
●

●

●
●

● ●● ●● ●
●

●

●

●

●

●
●

●

●●●● ●●

●

●

●

●

●

●

●

●● ●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●
●

●

● ● ●● ●● ●●

●

●
●● ● ●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●●

●

●●
●

●●

●

●

●

●●●●● ● ●● ● ●●

●
●

● ● ●●
●

●

●

●

● ●●●●

●

●

● ●

● ●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

●●
●

●

●
●

● DECIPHER
MAFFT L−INS−i
MUSCLE
ClustalW

0 20 40 60 80 100

0
20

40
60

80
10

0

Average Reference Sequence Identity (%)

Sh
ar

ed
 H

om
ol

og
y

w
ith

 R
ef

er
en

ce
 A

lig
nm

en
t (

%
)

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● DECIPHER
MAFFT L−INS−i
MUSCLE
ClustalW

0 20 40 60 80 100

0
20

40
60

80
10

0

Average Reference Sequence Identity (%)

Sh
ar

ed
 H

om
ol

og
y

w
ith

 R
ef

er
en

ce
 A

lig
nm

en
t (

%
)

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● DECIPHER
MAFFT L−INS−i
MUSCLE
ClustalW

Figure 4: Performance comparison between different programs for multiple alignment [3, 5, 10, 13] using amino acid
structural benchmarks. The x-axis shows percent identity between sequences in each reference alignment. The y-axis
gives the percentage of correctly aligned residues in the estimated alignment according to the reference alignment
(i.e., the Q-score). The upper-left plot is for the PREFAB (version 4) benchmark [3]. The upper-right plot shows the
results of the BALiBASE (version 3) benchmark [11]. The lower-left plot is for SABmark (version 1.65) [12]. The
lower-right plot gives the results on the OXBench alignments [8]. A comparison of these benchmarks can be found in
reference [2].

5

0 1000 2000 3000 4000

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Number of Sequences

M
ea

n
Q

−
sc

or
e

+
/−

 S
.E

.

●

●

●

●

●

●

●

●

DECIPHER
MAFFT
MUSCLE
Clustal Omega
PROMALS
PASTA

Figure 5: DECIPHER offers improved accuracy over other alignment programs ([3, 5–7, 9, 13]) on large sets of
input sequences. Average accuracy on the Homstrad-mod benchmark [13] is shown for an increasing number of
input sequences, ranging from 2 to 4,000. All programs display a peak in accuracy at fewer than 500 sequences, but
DECIPHER exhibits the least drop-off in accuracy as additional input sequences are added.

6

Only very
dissimilar

sequences?
Start

Try adding more
homologous
sequences

Yes

Type of input
sequences?

No

Amino acids ncRNA DNA/mRNA

All protein coding?Input as an
RNAStringSet

Use AlignSeqs Use AlignTranslation

Yes

Using the alignment
for phylogenetics?

Aligning hundreds
of thousands of

unique sequences?

After alignment run
StaggerAlignment

YesNo

Only extremely similar
sequences?Consider using a

chained guide tree

Specify arguments:
iterations=0
refinements=0

Yes No

Yes

Many sequences
much shorter than

others (fragments)?

No

Specify argument:
normPower=0

Yes

Ready to align!

Accuracy can often be improved
considerably by including closely

related sequences, which can then
be removed after alignment. The

additional sequences act as
“stepping stones” between

distantly-related sequences.

Basis for each recommendation:

Alignment of amino acid and non-
coding RNA sequences can be
improved by making use of their
conserved secondary structure.
DECIPHER will automatically

predict secondary structures if the
input is an AAStringSet or
RNAStringSet. For coding

(nucleotide) sequences,
AlignTranslation will align the

sequences in amino acid space.

Staggering the alignment decreases
false positive homologies by

separating independent insertions.

Chained guide trees offer a viable
alternative when aligning hundreds
of thousands of unique sequences,
as the default requires O(n2) time.
Refer to the section of this vignette

entitled “Building a Guide Tree”.

Iteration and refinement steps are
unnecessary when all of the

sequences are very similar or when
a chained guide tree is being used.

Setting normPower to zero will
weigh all columns of the alignment

equally, regardless of column
occupancy. This helps with aligning
partial-length sequences because

many columns of the alignment are
expected to have low occupancy.

Figure 6: Flow-chart depicting how to choose the best combination of alignment functions and parameters for the
most common multiple sequence alignment problems.

4 Recommendations for optimal performance
DECIPHER has a number of alignment functions and associated parameters. The flow-chart in Figure 6 is intended
to simplify this process for the most frequently encountered multiple sequence alignment tasks. For more information
on any of these suggestions, refer to the examples in the following sections of this vignette.

7

5 Single Gene Alignment

5.1 Example: Protein coding sequences
For this example we are going to align the rplB coding sequence from many different Bacteria. The rplB gene encodes
one of the primary ribosomal RNA binding proteins: the 50S ribosomal protein L2. We begin by loading the library
and importing the sequences from a FASTA file. Be sure to change the path names to those on your system by replacing
all of the text inside quotes labeled “<<path to ...>>” with the actual path on your system.

> library(DECIPHER)
> # specify the path to your sequence file:
> fas <- "<<path to FASTA file>>"
> # OR find the example sequence file used in this tutorial:
> fas <- system.file("extdata", "50S_ribosomal_protein_L2.fas", package="DECIPHER")
> dna <- readDNAStringSet(fas)
> dna # the unaligned sequences

DNAStringSet object of length 317:
width seq names

[1] 819 ATGGCTTTAAAAAATTTTAATC...ATTTATTGTAAAAAAAAGAAAA Rickettsia prowaz...
[2] 822 ATGGGAATACGTAAACTCAAGC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...
[3] 822 ATGGGAATACGTAAACTCAAGC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...
[4] 822 ATGGGAATACGTAAACTCAAGC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...
[5] 819 ATGGCTATCGTTAAATGTAAGC...CATCGTACGTCGTCGTGGTAAA Pasteurella multo...
...

[313] 819 ATGGCAATTGTTAAATGTAAAC...TATCGTACGTCGCCGTACTAAA Pectobacterium at...
[314] 822 ATGCCTATTCAAAAATGCAAAC...TATTCGCGATCGTCGCGTCAAG Acinetobacter sp....
[315] 864 ATGGGCATTCGCGTTTACCGAC...GGGTCGCGGTGGTCGTCAGTCT Thermosynechococc...
[316] 831 ATGGCACTGAAGACATTCAATC...AAGCCGCCACAAGCGGAAGAAG Bradyrhizobium ja...
[317] 840 ATGGGCATTCGCAAATATCGAC...CAAGACGGCTTCCGGGCGAGGT Gloeobacter viola...

We can align the DNA by either aligning the coding sequences directly, or their translations (amino acid se-
quences). Both methods result in an aligned set of DNA sequences, unless the argument type is "AAStringSet"
in AlignTranslation. A quick inspection reveals that the method of translating before alignment yields a more
appealing result. In particular, the reading frame is maintained when aligning the translations. However, if the dna did
not code for a protein then the only option would be to use AlignSeqs because the translation would be meaningless.

> AA <- AlignTranslation(dna, type="AAStringSet") # align the translation
> BrowseSeqs(AA, highlight=1) # view the alignment
> DNA <- AlignSeqs(dna) # align the sequences directly without translation
> DNA <- AlignTranslation(dna) # align the translation then reverse translate
> # write the aligned sequences to a FASTA file
> writeXStringSet(DNA, file="<<path to output file>>")

Note that frameshift errors can greatly disrupt the alignment of protein coding sequences. Frameshifts can be
corrected by first using CorrectFrameshifts on the nucleotide sequences, and then using the corrected sequences
as input to AlignTranslation with the argument readingFrame equal to 1. It is also feasible to obtain the amino
acid alignment or specify a non-standard genetic code, if needed:

> # using a mixture of standard and non-standard genetic codes
> gC1 <- getGeneticCode(id_or_name2="1", full.search=FALSE, as.data.frame=FALSE)
> # Mollicutes use an alternative genetic code
> gC2 <- getGeneticCode(id_or_name2="4", full.search=FALSE, as.data.frame=FALSE)

8

> w <- grep("Mycoplasma|Ureaplasma", names(dna))
> gC <- vector("list", length(dna))
> gC[-w] <- list(gC1)
> gC[w] <- list(gC2)
> AA <- AlignTranslation(dna, geneticCode=gC, type="AAStringSet")

If the input sequences include exact replicates, then alignment can be accelerated by de-replicating the sequences
before alignment. The sequences can then be re-replicated after alignment to create a larger alignment of all the
original sequences. AlignSeqs does not automatically handle redundancy in the input sequences, but doing so is
fairly straightforward. In this case there aren’t any exact duplicates in the example dna sequences. Nonetheless, the
process to de-replicate before alignment and re-replicate after alignment would look like:

> u_dna <- unique(dna) # the unique input sequences
> index <- match(dna, u_dna) # de-replication index
> U_DNA <- AlignSeqs(u_dna) # align the sequences directly without translation
> DNA <- U_DNA[index]
> names(DNA) <- names(dna) # the re-replicated alignment

Also, when aligning nucleotide sequences (or their translations), it may be the case that the sequences are in
different orientations. If so, consider reorienting the sequences so that they all have the same directionality and
complementarity by using OrientNucleotides prior to alignment.

5.2 Example: Non-coding RNA sequences
Much like proteins, non-coding RNAs often have a conserved secondary structure that can be used to improve their
alignment. The PredictDBN function will predict base pairings from a sequence alignment by calculating the mutual
information between pairs of positions. If RNA sequences are given as input, AlignSeqs will automatically use the
output of PredictDBN to iteratively improve the alignment. Providing an RNAStringSet also causes single-base and
double-base substitution matrices to be used, and is preferable to providing a DNAStringSet when the sequences are
non-coding RNA. The type of the input sequences can easily be converted to RNA, as shown below.

> # database containing 16S ribosomal RNA sequences
> fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")
> dna <- readDNAStringSet(fas)
> rna <- RemoveGaps(RNAStringSet(dna))
> # or if starting with DNA sequences, convert to RNA with:
> # rna <- RNAStringSet(dna)
> # or import RNA sequences directly using:
> # rna <- readRNAStringSet("<<path to FASTA file>>")
>
> alignedRNA <- AlignSeqs(rna) # align with RNA secondary structure

5.3 Example: Aligning two aligned sequence sets
It is sometimes useful to align two or more previously-aligned sets of sequences. Here we can use the function
AlignProfiles to directly align profiles of the two sequence sets:

> half <- floor(length(dna)/2)
> dna1 <- dna[1:half] # first half
> dna2 <- dna[(half + 1):length(dna)] # second half
> AA1 <- AlignTranslation(dna1, type="AAStringSet")
> AA2 <- AlignTranslation(dna2, type="AAStringSet")
> AA <- AlignProfiles(AA1, AA2) # align two alignments

9

When the two sequence sets are very large it may be impossible to fit both sets of input sequences and the output
alignment into memory at once. The function AlignDB can align the sequences in two database tables, or two
sets of sequences corresponding to separate identifiers in the same table. AlignDB takes as input two tblNames
and/or identifiers, and iteratively builds a profile for each of those respective sequence alignments in the database.
These profiles are aligned, and the insertions are iteratively applied to each of the input sequences until the completed
alignment has been stored in add2tbl.

> # Align DNA sequences stored in separate tables:
> dbConn <- dbConnect(dbDriver("SQLite"), ":memory:")
> Seqs2DB(AA1, "DNAStringSet", dbConn, "AA1", tblName="AA1")
> Seqs2DB(AA2, "DNAStringSet", dbConn, "AA2", tblName="AA2")
> AlignDB(dbConn, tblName=c("AA1", "AA2"), add2tbl="AA",

type="AAStringSet")
> AA <- SearchDB(dbConn, tblName="AA", type="AAStringSet")
> BrowseDB(dbConn, tblName="AA")
> dbDisconnect(dbConn)

The number of sequences required to fit into memory when aligning two sequence sets with AlignDB is controlled
by the batchSize parameter. In this way AlignDB can be used to align large sequence alignments with only minimal
memory required.

6 Advanced Options & Features

6.1 Example: Building a Guide Tree
The AlignSeqs function uses a guide tree to decide the order in which to align pairs of sequence profiles. The
guideTree input is a dendrogram (tree) object with one leaf per input sequence. By default this guide tree is generated
directly from the input sequences using the order of shared k-mers (i.e., when the argument guideTree is NULL). This
default guide tree performs very well but requires O(n2) time and memory space to construct. Therefore, it may be
useful to rely on a chained guide tree when aligning hundreds of thousands of unique sequences.

It has been shown that reasonably accurate alignments of tens of thousands of sequences can be obtained by using
a chain guide tree [1]. With a chained guide tree, sequences are added one-by-one to a growing profile representing all
of the aligned sequences. Figure 7 shows the result of using DECIPHER to align increasing numbers of Cytochrome
P450 sequences (in accordance with the method in reference [1]), using either a chained guide tree or the default guide
tree. A chained guide tree can be easily generated, as shown below.

> # form a chained guide tree
> gT <- lapply(order(width(dna), decreasing=TRUE),

function(x) {
attr(x, "height") <- 0
attr(x, "label") <- names(dna)[x]
attr(x, "members") <- 1L
attr(x, "leaf") <- TRUE
x

})
> attr(gT, "height") <- 0.5
> attr(gT, "members") <- length(dna)
> class(gT) <- "dendrogram"
> # use the guide tree as input for alignment
> DNA <- AlignTranslation(dna,

guideTree=gT,

10

0.
0

0.
4

0.
8

Shared Homology with Reference Alignment

Number of Sequences

Q
-S
co
re

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

16 32 64 128 256 512 1024 2048 4096 8192

Default Guide Tree Chained Guide Tree

0.
0

0.
4

0.
8

Total Reference Columns Preserved

Number of Sequences

TC
-S
co
re

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

16 32 64 128 256 512 1024 2048 4096 8192

Default Guide Tree Chained Guide Tree

Figure 7: Comparison between the default and chained guide trees when aligning increasing numbers of Cytochrome
P450 sequence sets. The top panel shows average pairwise homology shared with the reference alignment (Q-score)
and the bottom panel shows the average fraction of alignment columns that are exactly shared with the reference
alignment (TC-score).

11

iterations=0,
refinements=0)

It is also possible to read a Newick formatted tree into R using the function ReadDendrogram, and specify this
object as the input guideTree.

6.2 Example: Post-processing an existing multiple alignment
There are several steps that can be taken after alignment to verify or improve the alignment. The most important step
is to look at the result to ensure that it meets expectations. Spurious (unalignable) sequences can then be removed
and the alignment process repeated as desired. The simplest way to view sequences with DECIPHER is by using the
function BrowseSeqs. The highlight parameter controls which sequence, if any, is in focus (highlighted). A value
of zero highlights the consensus sequence as shown below.

> BrowseSeqs(DNA, highlight=0)

All DECIPHER multiple sequence alignments are optimized using AdjustAlignment (unless the input ar-
gument FUN is changed), with the goal of removing artifacts of the progressive alignment process. This function
will efficiently correct most obvious inaccuracies that could be found by-eye. Therefore, making manual correc-
tions is not recommended unless additional expert knowledge of the sequences is available. The advantage of using
AdjustAlignment is that it is a repeatable process that is not subjective, unlike most manual adjustments. In order
to further refine an existing alignment, AdjustAlignment can be called directly.

> DNA_adjusted <- AdjustAlignment(DNA)

It is common to use alignment as a preliminary step before the creation of a phylogenetic tree. DECIPHER, like the
majority of alignment programs, attempts to maximize homologous positions between the sequences being aligned.
Such an alignment is particularly useful when investigating which residues are in the same structural position of a
protein. However, disparate sequence regions tend to be concentrated into the same “gappy” areas of the alignment.
When viewed from a phylogenetic perspective these homologies have highly implausible insertion/deletion scenarios.

To mitigate the problem of false homologies, StaggerAlignment will automatically generate a staggered
version of an existing alignment. Staggered alignments separate potentially non-homologous regions into separate
columns of the alignment. The result is an alignment that is less visually appealing, but likely more accurate from a
phylogenetic perspective.

> DNA_staggered <- StaggerAlignment(DNA)

7 Aligning Homologous Regions of Multiple Genomes
The functions described so far have all required collinear sequences as input. This requirement is frequently bro-
ken by genomes, which may include many sequence rearrangements such as inversion, duplication, and reorder-
ing. FindSynteny will find homologous regions between pairs of genomes, which can then be aligned using
AlignSynteny. A database of sequences identified by their genome name is used as input to both functions. This
enables the alignment of genomes that are composed of many contigs, so long as they all share the same identifier
in the database. The example below uses a database containing five Influenza virus A genomes, which are each com-
posed of eight separate segments.

> db <- system.file("extdata", "Influenza.sqlite", package="DECIPHER")
> synteny <- FindSynteny(db, verbose=FALSE)
> synteny # an object of class `Synteny`
> InfluenzaA <- AlignSynteny(synteny, db, verbose=FALSE)
> unlist(InfluenzaA[[1]])

12

The output is a list, with each list component containing a DNAStringSetList of pairwise alignments between
two genomes. Names of the output correspond to their sequence’s identifier in the database, and the index of the
syntenic block.

13

It is also possible to display the blocks of synteny between all pairs of genomes. Figure 8 shows the different
genome segments (i.e., sequences) separated by thin horizontal and vertical lines. The syntenic blocks are diagonal
lines that are composed of many homologous “hits” between the genomes.

> pairs(synteny, boxBlocks=TRUE) # scatterplot matrix

Figure 8: Dot plots showing the homologous regions among five Influenza virus A genomes.

14

8 Session Information
All of the output in this vignette was produced under the following conditions:

• R Under development (unstable) (2025-10-20 r88955), x86_64-pc-linux-gnu

• Running under: Ubuntu 24.04.3 LTS

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so

• LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

• Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils

• Other packages: BiocGenerics 0.57.0, Biostrings 2.79.1, DECIPHER 3.7.0, IRanges 2.45.0, S4Vectors 0.49.0,
Seqinfo 1.1.0, XVector 0.51.0, generics 0.1.4

• Loaded via a namespace (and not attached): DBI 1.2.3, compiler 4.6.0, crayon 1.5.3, tools 4.6.0

References
[1] Boyce, K., Sievers, F., & Higgins, D. G. Simple chained guide trees give high-quality protein multiple sequence

alignments. Proceedings of the National Academy of Sciences of the United States of America., 111(29), 10556-
10561. doi:10.1073/pnas.1405628111, 2014.

[2] Edgar, R. C. Quality measures for protein alignment benchmarks. Nucleic Acids Research, 38(7), 2145-2153.
doi:10.1093/nar/gkp1196, 2010.

[3] Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids
Research, 32(5), 1792-97, 2004.

[4] Iantorno, S., Gori, K., Goldman, N., Gil, M., & Dessimoz, C. Who watches the watchmen? An appraisal
of benchmarks for multiple sequence alignment. Methods in Molecular Biology (Clifton, N.J.), 1079, 59-73.
doi:10.1007/978-1-62703-646-7_4, 2014.

[5] Katoh, K., Misawa, K., Kuma, K.-I., & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment
based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059-3066, 2002.

[6] Mirarab, S., Nguyen, N., Guo, S., Wang, L.-S., Kim, J., & Warnow, T. PASTA: Ultra-Large Multiple Sequence
Alignment for Nucleotide and Amino-Acid Sequences. Journal of Computational Biology, 22(5), 377-386, 2015.

[7] Pei, J. & Grishin, N. V. PROMALS: towards accurate multiple sequence alignments of distantly related proteins.
Bioinformatics, 23(7), 802-808, 2007.

[8] Raghava, G. P., Searle, S. M., Audley, P. C., Barber, J. D., & Barton, G. J. OXBench: a benchmark for evaluation
of protein multiple sequence alignment accuracy. BMC Bioinformatics, 4: 47, 2003.

[9] Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert,
M., Soding, J., Thompson, J., & Higgins, D. Fast, scalable generation of high-quality protein multiple sequence
alignments using Clustal Omega. Molecular Systems Biology, 7, 1-6, 2011.

[10] Thompson, J. D., Higgins, D. G., & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple
sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic
Acids Research, 22(22), 4673-4680, 1994.

15

[11] Thompson, J. D., Koehl, P., Ripp, R., & Poch, O. BAliBASE 3.0: Latest developments of the multiple sequence
alignment benchmark. Proteins, 61(1), 127-136, 2005.

[12] Van Walle, I., Lasters, I., & Wyns, L. SABmark–a benchmark for sequence alignment that covers the entire
known fold space. Bioinformatics, 21(7), 1267-1268, 2005.

[13] Wright, E. S. DECIPHER: harnessing local sequence context to improve protein multiple sequence alignment
BMC Bioinformatics, 16(322), 1-14, 2015.

16

	Introduction
	Alignment Speed
	Alignment Accuracy
	Recommendations for optimal performance
	Single Gene Alignment
	Example: Protein coding sequences
	Example: Non-coding RNA sequences
	Example: Aligning two aligned sequence sets

	Advanced Options & Features
	Example: Building a Guide Tree
	Example: Post-processing an existing multiple alignment

	Aligning Homologous Regions of Multiple Genomes
	Session Information

