Using AssessORF

Deepank Korandla

31 October 2025

Package

AssessORF 1.29.0

Contents

© 00 N O o

Introduction . . . . . ... 2
1.1 Why Proteomics?. . . . . . . . .. .o 2
1.2 Why Evolutionary Conservation? . . . . . . . . ... ... ... 2
Package Structure . . . . . . ... ... 4
Installation. . . . .. ... ... .. 5
GettingtheData . . . . ... ... ... ... L 6
4.1 Proteomics. . . . . . . . . . . L oo 6
4.2 Evolutionary Conservation . . . . . . . . . . . ... ... ... 6
Creating the Mapping Object . . . . . . .. ... ... ... ... 7
Generating the Results Object . . . . . . . ... ... ... ... 10
Viewing the Results Object . . . . . . ... ... ... ... ... 11
Comparing Results Objects . . . . . . ... ... ... ... ... 15
SessioniInfo. . . .. ... ... 16



Using AssessORF

1

Introduction

1.1

1.2

In genomics pipelines, a newly sequenced genome must be annotated before it can be analyzed
and compared to other genomes. One of the crucial first steps in genome annotation is
identification of gene boundaries within the genome, also known as gene finding or gene
prediction. However, gene prediction is not an error-free process and errors can propagate in
downstream analyses. There are three common types of errors in gene finding: a real gene is
missing entirely from the predicted set, a gene is included in the predicted set that is not real,
and the wrong start is chosen for a real gene. Errors in choosing the correct start site are the
most frequent because often times there are multiple possible starts for a gene and it can be
difficult to determine which one is right. When there are multiple possible starts for a gene,
ab initio gene prediction programs are limited in that they can only use information from the
sequence of the genome to pick the best start of the gene. Such programs utilize heuristics
and scoring systems to come to a solution, but the chosen start for a gene might not be the
start used in vivo. AssessORF serves as a tool for assessing the quality of gene predictions
and gene prediction programs, utilizing proteomics data and evolutionary conservation data
as forms of evidence.

Why Proteomics?

One of the direct products of coding genes are proteins, so mapping real protein fragments
back to the corresponding genome can provide a rough guide as to where the genes are within
a genome. In other words, aligning peptide sequences to a genome can prove which genes
from a set of predicted genes are definitively real as well as show which genes have starts that
do not agree with the protein evidence. Protein evidence contradicts a gene start specifically
when there are protein hits in the same open reading frame (ORF) that are directly upstream
of or overlapping the start. Additionally, protein evidence in ORFs without a predicted gene
can point towards the existence of potential genes missed by the gene finding program. The
data from proteomics experiments focused on sequencing the complete set of proteins of an
organism is thus highly useful in assessing the quality of a set of predicted genes for that
organism.

Why Evolutionary Conservation?

Closely related strains usually have similar genomic sequences, and the relative positions of
genes across closely related strains are conserved. This means that the start positions for
genes in one strain’s genome are expected to align with the start positions for genes in a
closely related strain's genome. Aligning genomes from related strains to a central genome
(the genome of the organism of interest) therefore provides a way to determine whether or not
the right decision was made in choosing the start for each predicted gene. Starts for genes in
highly conserved areas of the central genome should also be highly conserved in order to be
considered a good start. Additionally, as described above, there can be multiple possible start
sites for a gene. If the chosen start for a gene is significantly more conserved than neighboring
starts, then that provides strong evidence towards the correctness of that gene.

The conservation of stop codons across genomes can provide information about the correctness
of a gene as well, albeit in a way that is different from the conservation of starts. There
is almost always only one stop possible for a gene because the stop codon serves as the
termination signal when the gene is translated into protein. Therefore, the strength of
conservation of the given stop for a gene is not informative since there are no other possible
(in-frame) stops upstream of the given stop. It is possible, however, for the related genomes



Using AssessORF

to all have a position with a stop codon that aligns to a position in the central genome that
does not have stop. For the purposes of this package, that position in the central genome is
defined as being associated with a conserved stop. If a codon in the middle of a gene in the
central genome has a high degree of stop codon conservation, then that is a sign that at least
the region of the gene upstream of the conserved stop does not code for protein. If there are
no strong conserved starts downstream of the conserved stop that could serve as the correct
start site of the gene, then it is likely that the gene is an over-prediction and should not exist.



Using AssessORF

2 Package Structure

Assessing the quality of a set of computationally-derived, ab initio gene predictions for a
genome requires external data to be aligned to that genome before judgments on quality can
be made. AssessORF follows this methodology, and once external data has been acquired and
set up (see the “Getting the Data” section below), usage of the package typically happens in
two steps:

1. Map and align the provided evidence, which can either be proteomics data, evolutionary
conservation data, or both, back to the central genome.

2. Add in gene predictions for that central genome and categorize how much evidence
there is supporting or against each gene in that set.

Each of these steps is implemented by a key function of the package, and each of those two
functions returns an object that contains the outcome of the corresponding step. The function
MapAssessmentData performs the first step (mapping and alignment) and returns a “mapping”
object. Within R, mapping objects are structured as lists and are of class Assessment and
subclass DataMap. The function AssessGenes performs the second step (gene categorization)
by taking in a mapping object and gene predictions and returning a “results” object. Results
objects are also structured as lists and are of class Assessment and subclass Results. As
sessORF provides functions for viewing and visualizing the data stored in both mapping and
results objects, and the Assessment help documentation has detailed explanations of what is
in each object and methods associated with each object.

It is important to note that the mapping object built for a particular genome is not dependent
upon the gene boundaries chosen for that genome, allowing the same mapping object to
be used to assess the quality of gene predictions from multiple programs. This is especially
useful because generating a mapping object, even when using proteomics data or evolutionary
conservation data by themselves, is a long process.

Building off of these concepts, AssessORF has a corresponding data package, AssessORFData,
that provides mapping objects that have already been built and saved for a set of 20 strains.
AssessORFData also provides multiple results objects for each of those strains, and each results
object for a strain uses a set of gene annotations from a different source.

The next couple of sections will describe how to use AssessORF from putting together the
data to analyzing the results.



Using AssessORF

3 Installation

In order to install the package, follow these steps:

1. Install the latest version of R using CRAN.
2. Install AssessORF in R by running the following commands:

if (!requireNamespace("BiocManager", quietly = TRUE)){
install.packages("BiocManager")

}

BiocManager::install("AssessORF")
3. Optionally, install the corresponding data package, AssessORFData, using the following
commands:

if (!requireNamespace("BiocManager", quietly = TRUE)){
install.packages("BiocManager")

}

BiocManager::install("AssessORFData")


https://cran.r-project.org/

Using AssessORF

Getting the Data

4.1

4.2

The central genome should be in FASTA format or GenBank format.

Proteomics

For this package, proteomics data should be given as a set of peptide sequences along with
their associated confidence scores. This data is usually generated in the latter stages of the
proteomics pipeline, following database searching of the mass spectra and statistical analysis.
Additionally, the data should come from experiments focused on sequencing the complete
proteome of the organism. Proteomics datasets are available online through websites such
as ProteomeXchange but may require additional steps before use with the package. For
example, the ProteomeXchange serves as a repository for mass spectra data from proteomics
experiments, and this data must first be searched against a database and analyzed before use
with the package.

Evolutionary Conservation

Evolutionary conservation is determined by aligning genomes from closely related organisms
to the central genome. This allows determination of how often sections in the central genome
are covered by syntenic matches to related genomes and how often positions within those
matching blocks correspond to start codons (ATG, GTG, TTG) in both genomes (central and
related). Start codons in the central genome may be highly covered by syntenic matches to
related genomes, but the positions of the start codons in the central genome may not always
line up with start codons in other genomes.

Related genomes should be genomes from strains that are closely related to the strain of the
central genome. In most cases, using the set of non-partial genomes from the same genus will
work best. However, if the number of available genomes for that genus is too small (less than
a couple hundred), it may be necessary to use all genomes from a higher taxonomic rank or
include closely related genera from the same family in the set.

To compile the set of related genomes, | recommend downloading links to their sequences
from the Prokaryotes section of NCBI's Genome Browser using the following protocol:

1. Search for the taxon.
2. Exclude partial genomes (this is an option in the “Partial” section of the “Filters” menu).
3. Download the selected records to a CSV file.

There may also may be rare instances where there are too many genomes for a particular
species (i.e. the 8352 genomes for Streptococcus pneumoniae). In those cases, remove all
genomes for that species from the CSV file and replace them with only genomes for that
species that are complete on the assembly level (this is an option in the “Assembly Level”
section of the “Filters” menu).


http://www.proteomexchange.org/
https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/

Using AssessORF

5 Creating the Mapping Object

After gathering the necessary data, it is time to prepare them for use with the mapping function.
For the proteomics data, put the peptide sequence into one vector and their confidence scores
(if available) into a second vector. The two vectors should have the same length and have the
proteomics hits in the same order (i.e. the score for the xth sequence in the sequence vector
is at index x in the score vector).

For the central genome and the related genomes, use the DECIPHER package to put them
into a SQL database. The example below describes the process for putting genomes into
a database in situations where NCBI's Genome Browser is used as the source for related
genomes. Users are encouraged to adapt this workflow to suit their own needs.

library (DECIPHER)

## Path to the SQL database file (will be created if necessary)

## In this example, a temporary file will be used, but it is recommended that
## the user specify a file path they prefer to use as the location of the

## database instead.

databaseFile <- tempfile()

## Here is what the alternate option would like:

# databaseFile <- "<insert file path to database here>"

## Path to the file containing the links to the related genomes
## In this example, the file comes from NCBI's genome browser site and is in
## CSV format. If the user is also using a CSV file downloaded from NCBI's
## genome browser site as the source for the related genomes links, the user
## can replace the 'system.file' function call below with the path to their
## CSV file instead. The rest of this example assumes that the links are
## provided in this format. For help on adding genome sequences provided in
## other formats to a database, consult DECIPHER's manual and vignettes.
relGenomesFile <- system.file("extdata",

"AdenoviridaeGenomes.csv",

package = "AssessORF")
## Here is what the alternate option would like:
# relGenomesFile <- "<insert path to CSV file here>"

## Extract the FTP links from the CSV file and make sure they are in the right
## format so they can be downloaded from the NCBI server. In order to minimize
## the time spent running the example, only the first 13 rows of the table are
## used. The user should drop the '[1:13, ]' part if they plan on using this
## example as a starting point for putting sequences into a database.
genomesTable <- read.csv(relGenomesFile, stringsAsFactors = FALSE)[1:13, ]
ftps <- genomesTable$GenBank.FTP

ftps <- paste(ftps, paste0®(basename(ftps), "_genomic.fna.gz"), sep="/")

ftps <- ftps[(substring(ftps, 1, 6) == "ftp://")]

## In this example, the first genome in the table is the central genome.

## In most user scenarios however, the path to the central genome will not be 1in
## the related genomes file. The user should instead specify the path to the

## file containing the sequence of the central genome (in FASTA format) and

## append that file path to the start of the vector containing the FTP links.



Using AssessORF

## Here is what that would look like:
# genomeFile <- "<insert file path to genome here>"
# ftps <- c(genomeFile, ftps)

## This vector will hold which genomes were succesfully added to the database.
pass <- logical(length(ftps))

## Add the sequences to the database.

## The loop can cause timeout errors if there is no internet connection

## when the package is built so it has been commented out so the example
## runs smoothly. Users should uncomment this loop when adapting the

## example for their own use.

# for (pIdx in seq_along(pass)) {

# t <- try(Seqs2DB(ftps[pIdx], "FASTA", databaseFile, as.character(pIdx),

# compressRepeats=TRUE, verbose=FALSE),
# silent=TRUE)

#

# if (!(is(t, "try-error"))) {

# pass[pIdx] <- TRUE

# }

#}

## This vector contains the list of identifers for the genomes in the database,
## based on which ones were successfully added. Identifers are character

## strings. The first one, identifier "1", corresponds to the central genome.
## The remaining identifers, in this case "2":"13", correspond to the related
## genomes.

identifiers <- as.character(which(pass))

In the example above, a set of Adenoviridae genomes from NCBI was used as the source
for both the central genome and the related genomes. Human adenovirus 1 is the strain
of interest here, and its genome serves the central genome (identifier 1). The remaining
genomes in the set serve as the related genomes (identifiers 2 - 13). Please note that the
package is only intended to be used with prokaryotes. Viruses are used in some examples
in the package because manipulations with viral genomes run much faster than those with
prokaryotic genomes (due to viral genomes being much smaller in size).

The next example shows how to use the MapAssessmentData function with the SQL database
(and database identifiers) generated in the previous example. Since there is no proteomics
data in this instance, useProt will be set to FALSE.

library(AssessORF)

## Reminder: the first identifier in the database, in this case identifier "1",
## corresponds to the central genome. The remaining identifers, in this case
## "2":"13", correspond to the related genomes.
myMapObj <- MapAssessmentData(databaseFile,
central_ID = identifiers[1],
related_IDs = identifiers[-1],
speciesName = "Human adenovirus 1",
useProt = FALSE)
## Distance from related genomes to central genome (i.e. strain's genome) measured.



Using AssessORF

## Most distant related genomes selected. Beginning evolutionary conservation mapping.
## Evolutionary conservation mapped.

## Remember to use 'unlink' to remove a database once it is no longer needed.
unlink(databaseFile)

The following code chunk shows a generalized call to the MapAssessmentData function, outlin-
ing which parameters users should specify when working with both evolutionary conservation
data and proteomics data.

myMapObj <- MapAssessmentData(databaseFile, ## File path to the SQL database containing the genomes
central_ID = identifiers[1l], ## Identifier for the central genome
related_IDs = identifiers[-1], ## Identifers for the related genomes
protHits_Seqs = protSeqs, ## Sequences for the proteomics hits
protHits Scores = protScores, ## Confidence scores for the proteomics hits
strainID = strain, ## The identifer for the strain
speciesName = species) ## The name of the species



Using AssessORF

6

Generating the Results Object

1. Acquire a set of genes, either from a gene prediction program or from an online database
with annotations, for the strain of interest.
= Make sure that the same genome sequence is used to generate both the mapping
object and set of genes to assess.
2. Parse genes into the three vectors: left boundaries, right boundaries, and strand
information.
= This requires an understanding of how the output from the gene source is structured
and will vary from program to program.
= Strand information must be given as a single character and must either be “+" or

refers to the reverse strand, the reverse complement of the given sequence for
the central genome.
= The left boundary positions and the right boundary positions of the genes must
be in forward strand terms, i.e. where they would be the 5’ to 3’ reading direction
of the forward strand. For genes on the forward strand, this means that the left
boundaries correspond to the start of the gene and the right boundaries correspond
to the stop of the gene. For genes on the reverse strand, this means that the left
boundaries correspond to the stop of the gene and the right boundaries correspond
to the start of the gene.
= Position one of a gene (according to the left and right boundaries) must correspond
to the first nucleotide of the gene and not the first nucleotide before the gene (i.e
the zero-th nucleotide).
3. Use the ‘AssessGenes’ function with the mapping object and the set of predicted genes
to generate the results object.

Below is an example of how to use the AssessGenes function, using the pre-saved mapping
object for Streptococcus pyogenes MGAS5005 and the corresponding set of Prodigal-predicted
genes.

currMap0Obj <- readRDS(system.file("extdata",
"MGAS5005_PreSaved_DataMapObj.rds",
package = "AssessORF"))

currProdigal <- readlLines(system.file("extdata",
"MGAS5005_Prodigal.sco",
package = "AssessORF"))[-1:-2]

prodigallLeft <- as.numeric(sapply(strsplit(currProdigal, "_", fixed=TRUE), “[~,
prodigalRight <- as.numeric(sapply(strsplit(currProdigal, "_", fixed=TRUE), “[~,
prodigalStrand <- sapply(strsplit(currProdigal, " ", fixed=TRUE), " [, 4L)

currResObj <- AssessGenes(geneLeftPos = prodigallLeft,
geneRightPos = prodigalRight,
geneStrand = prodigalStrand,
inputMapObj = currMapObj,
geneSource = "Prodigal")

. “+" refers to the forward strand, the given sequence for the central genome.

2L))

3L))

10



Using AssessORF

7 Viewing the Results Object

The results object contains the assigned category for each predicted gene, which describes
how much evidence there is for or against that gene. There are a number of ways to look at
the distribution of categories and the overall correctness of the set of predicted genes.

Printing the results object prints out the number of genes in each category as well as the

accuracy scores for the set of predicted genes:

print(currRes0bj)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

An Assessment object that categorizes predicted genes
Strain: S. pyogenes MGAS5005
Number of Genes Provided from Prodigal: 1768

Score Using All Evidence: 0.9607

Score Using Only Proteomic Evidence: 0.9919
Score Using Only Conserved Start Evidence: 0.9371
CS+ PE+ (correct with strong evidence): 596
CS+ PE- (correct with some evidence): 74
CS- PE+ (correct with some evidence): 601
CS- PE- (no evidence): 446

CS< PE! (definitely incorrect): 2

CS- PE! (likely incorrect): 7

CS! PE+ (likely incorrect): 12

CS! PE- (likely incorrect): 10

CS> PE+ (potentially incorrect): 10

CS> PE- (potentially incorrect): 3

CS< PE+ (potentially incorrect): 5

CS< PE- (potentially incorrect): 2

CS< PE+ (likely missing genes): 1

CS- PE+ (potentially missing genes): O

T=TXX<X<X<X<X<<X<®<X-<xX-=<<

Number of Genes with Supporting Evidence: 1271
Number of Genes with Contradictory Evidence: 51

Number of ORFs with Protein Evidence and No Given Start:

11



Using AssessORF

Plotting the results object shows the number of genes in each category in bar chart format:

plot(currResObj)

S. pyogenes MGAS5005 Prodigal Gene Category Assignments

B Definitely Correct B Definitely Incorrect B Likely Missing
O Likely Correct @ Likely Incorrect O Potentially Missing
O No Evidence O Potentially Incorrect

600 —

500 —

400 —

300 —

200 —

100 —

|
1
|
|

Y CS+ PE+
Y CS+ PE-
Y CS- PE+
Y CS- PE-
Y CS< PE!
Y CS- PE!
Y CS! PE+
Y CS> PE+
Y CS< PE+
N CS< PE+
N CS- PE+



Using AssessORF

Plotting the results object in combination with its corresponding mapping object generates a
genome viewer plot that shows how evolutionary conservation evidence & proteomics evidence
align to the genome of interest, particularly in relation to the set of predicted genes:

plot(currMapObj, currResObj, interactive_GV = FALSE,
rangeStart_GV = 106000, rangeEnd_GV = 120000)

S. pyogenes MGAS5005 Genome Viewer

Reading frame (forward)
2
|

T T T T T
106000 108000 110000 112000 114000 116000 118000 1200

Reading frame (reverse)
5
|

T T T T T T
1732000 1730000 1728000 1726000 1724000 1722000 1720000

Position

In the genome viewer plot, predicted starts are magenta lines, predicted stops are cyan lines,
genome stops are yellow lines, conserved starts are gray lines, and proteomic hits are blue /
red / green blocks.

In this example, interactive GV was set to FALSE which results in an static genome viewer
plot being generated. Setting interactive GV to be TRUE results in a genome viewer that
can interacted with via the locator, which facilitates further exploration of how the available
evidence supports some genes and disproves others. With the interactive genome viewer, users
may scroll to the left or right, zoom in to particular region, or zoom out.

Specifying an initial range of genomic positions to plot using rangeStart GV and rangeEnd_GV
is optional but useful for zooming into a particular region of the genome to understand why a
particular gene (or group of genes) were categorized as correct / incorrect. Omitting those
arguments will result genome viewer plot that spans the whole genome, which may overwhelm
some graphical devices.

13



Using AssessORF

It is also possible to do a mosaic plot of the results object. The mosaic plot shows how the
distribution of categories varies by gene length:

mosaicplot(currRes0bj)

S. pyogenes  MGAS5005Prodigal Gene Category Assignments by Nucleotide Length

(90.260.4] (260.4.381) (381522 (522,654 (654,768] (768,893.4] (893.4,1050.6] (10506,1278] (1278,1629.6] (1629.6,6180]
Y s+ PEF
o |:|
Y cs-pEr |:|
——//

Y cs-pE-

- — —
Y cs<pEl - - - = — = . - - — ===
Y Cs- PE! . e — — — e =
YCstpEr _—— - - - = = = - - — —_— e ==

Y Cs! PE- [ I s R ] T T T s —— L e
Y cs> pEs - T T T e

Y cs> PE- - e = —_ = /e - 7‘:|7 —
Y Cs<PE+ - - — - = _— = = — —

Y Cs<pE- -_ . - == :.: 7l:'7 =
NCS<PE+ — ==

14



Using AssessORF

8 Comparing Results Objects

Since the same mapping object can be reused to assess any set of genes for that particular
genome, it is useful to compare the results from assessing the set of predictions from one
program to the results from assessing the set of predictions from another program. The
CompareAssessmentResults function compares the genes and their corresponding category
assignments inside two results objects generated from the same mapping object. The example
below shows a comparison of the results object generated above using predicted genes from

Prodigal to a results object generated using genes from another program, GeneMarkS-2:

resObj2 <- readRDS(system.file("extdata",

"MGAS5005_PreSaved_ResultsObj_GeneMarkS2.rds",

package = "AssessORF"))

CompareAssessmentResults(currResObj, res0Obj2)

##
##
##
##
#i#t
##
##
##
##
##
##
##
##
##
##
##
##

Comparison of Two Assessment Results Objects from S. pyogenes MGAS5005
Object 1 - Prodigal vs Object 2 - GeneMarkS2

Number of Shared Coding Regions (number of stops found in both sets): 1729

Number of Shared Genes (number of start-stop pairs found in both sets): 1632

Number of Shared Stop - Different Start Coding Regions: 97
(This is where the stop for a coding region is found in both sets,
but the corresponding starts in each set differ.)

For the shared stop - different start set, there were 20 instances
where the start from object 1 has conservation evidence ('CS+')
and the start from object 2 does not ('CS-', 'CS>', 'CS<').

For the shared stop - different start set, there were 12 instances
where the start from object 2 has conservation evidence ('CS+')
and the start from object 1 does not ('CS-', 'CS>', 'CS<').

15



Using AssessORF

9 Session Info

All of the output in this vignette was produced under the following conditions:

## R Under development (unstable) (2025-10-20 r88955)

## Platform: x86_64-pc-linux-gnu

## Running under: Ubuntu 24.04.3 LTS

##

## Matrix products: default

## BLAS: /home/biocbuild/bbs-3.23-bioc/R/1lib/1libRblas.so

## LAPACK: /usr/lib/x86_64-1linux-gnu/lapack/liblapack.s0.3.12.0 LAPACK version 3.12.0

#i#

## attached base packages:

## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base

#i#t

## other attached packages:

## [1] AssessORF_1.29.0 DECIPHER 3.7.0 Biostrings_2.79.1

## [4] Seqinfo_1.1.0 XVector_0.51.0 IRanges_2.45.0

## [7] S4Vectors_0.49.0 BiocGenerics_0.57.0 generics_0.1.4
## [10] BiocStyle 2.39.0

#it

## loaded via a namespace (and not attached):

## [1] vctrs_0.6.5 crayon_1.5.3 cli_3.6.5

## [4] knitr_1.50 rlang_1.1.6 xfun_0.54

## [7] DBI_1.2.3 bit 4.6.0 htmltools_0.5.8.1
## [10] tinytex 0.57 rmarkdown_2.30 evaluate_1.0.5
## [13] fastmap_1.2.0 yaml_2.3.10 memoise 2.0.1

## [16] bookdown_0.45 BiocManager_1.30.26 compiler_4.6.0
## [19] blob_1.2.4 RSQLite _2.4.3 pkgconfig_2.0.3
## [22] digest _0.6.37 GenomicRanges_1.63.0 bit64 4.6.0-1

## [25] tools_4.6.0 cachem_1.1.0



	1 Introduction
	1.1 Why Proteomics?
	1.2 Why Evolutionary Conservation?

	2 Package Structure
	3 Installation
	4 Getting the Data
	4.1 Proteomics
	4.2 Evolutionary Conservation

	5 Creating the Mapping Object
	6 Generating the Results Object
	7 Viewing the Results Object
	8 Comparing Results Objects
	9 Session Info

