Package ‘visiumStitched’

November 4, 2025

Title Enable downstream analysis of Visium capture areas stitched
together with Fiji

Version 1.3.0
Date 2025-10-22

Description This package provides helper functions for working with
multiple Visium capture areas that overlap each other. This package was
developed along with the companion example use case data available from
https://github.com/LieberInstitute/visiumStitched_brain. visiumStitched
prepares SpaceRanger (10x Genomics) output files so you can stitch the
images from groups of capture areas together with Fiji. Then visiumStitched
builds a SpatialExperiment object with the stitched data and makes an
artificial hexagonal grid enabling the seamless use of spatial clustering
methods that rely on such grid to identify neighboring spots, such as
PRECAST and BayesSpace. The SpatialExperiment objects created by
visiumStitched are compatible with spatialLIBD, which can be used to build
interactive websites for stitched SpatialExperiment objects. visiumStitched
also enables casting SpatialExperiment objects as Seurat objects.

License Artistic-2.0

Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2

Depends R (>=4.4), SpatialExperiment

Suggests BiocFileCache, BiocStyle, ggplot2, knitr, RefManageR,
rmarkdown, sessioninfo, Seurat, testthat (>= 3.0.0)

Config/testthat/edition 3
VignetteBuilder knitr

Imports BiocBaseUtils, BiocGenerics, clue, dplyr, DropletUtils,
grDevices, imager, Matrix, methods, pkgcond, readr, rjson,
S4Vectors, SingleCellExperiment, spatialLIBD (>= 1.17.8),
stringr, SummarizedExperiment, tibble, tidyr, xml2

biocViews Software, Spatial, Transcriptomics, Transcription,
GeneExpression, Visualization, Datalmport

2 .add_error_metrics

URL https://github.com/LieberInstitute/visiumStitched

BugReports https://support.bioconductor.org/tag/visiumStitched
git_url https://git.bioconductor.org/packages/visiumStitched

git_branch devel

git_last_commit 829¢946

git_last commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-11-03

Author Nicholas J. Eagles [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9808-5254>),

Leonardo Collado-Torres [ctb] (ORCID:
<https://orcid.org/0000-0003-2140-308X>)

Maintainer Nicholas J. Eagles <nickeagles77@gmail.com>

Contents
.add_error mMetriCS e e e e e 2
clean_round L L L e 3
CONSITUCE_ATTAY .« + v v v v v v e e e e e e e e e e e e e e e e e e 4
fit_to_arrayo 4
fit_to_array_lsapo L 5
.get_neighbors L L L L 6
.get_shared_neighbors 7
map_lsap 7
refine_fit L e 8
validate_array e e 9
add_array_coords e e e 9
add_overlap_info 12
aS.SeUrat e e e e 13
build_SpatialExperiment 14
merge_overlapping L e 17
prep_fiji 18
rescale_fiji_inputs e e 21

Index 23

.add_error_metrics Add error metrics related to array-coordinate mapping
Description

Given tibble()s before and after mapping to new array coordinates, calculate metrics related to
the suitability of the mapping.

https://github.com/LieberInstitute/visiumStitched
https://support.bioconductor.org/tag/visiumStitched
https://orcid.org/0000-0002-9808-5254
https://orcid.org/0000-0003-2140-308X

.clean_round 3

Usage

.add_error_metrics(coords, coords_new, inter_spot_dist_px)

Arguments
coords A tibble() containing array_row, array_col, key, pxl_col_in_fullres,
pxl_row_in_fullres, pxl_col_in_fullres_rounded, px1_row_in_fullres_rounded,
and capture_area columns, representing data before mapping to new array co-
ordinates for one group.
coords_new A tibble() containing array_row, array_col, key, px1_col_in_fullres,

pxl_row_in_fullres, px1_col_in_fullres_rounded, and px1_row_in_fullres_rounded

columns, representing data after mapping to new array coordinates for one group.
inter_spot_dist_px

A numeric(1) giving the number of pixels between spots for the group.

Details

Add column shared_neighbors, the fraction of neighbors a spot started with that are retained after
mapping; add column euclidean_error, the number of multiples of the inter-spot distance a spot
must move to be placed in the new array coordinates.

Value

A tibble() copy of coords_new with additional shared_neighbors and euclidean_error columns.

Author(s)
Nicholas J. Eagles

.clean_round Round to the nearest integer, always rounding up at 0.5

Description
This consistent behavior is favorable for our application, where we want to minimize duplicate
mappings of spots to new array coordinates.

Usage

.clean_round(x)

Arguments

X numeric() vector.

Value

A numeric() vector rounded to the nearest integer.

4 fit_to_array

Author(s)
Nicholas J. Eagles

.construct_array Construct a new Visium-like array encapsulating a set of spots

Description

Given coords containing pixel coordinates of spots from potentially multiple capture areas, return
a new Visium-like array encapsulating all such spots.

Usage

.construct_array(coords, inter_spot_dist_px, buffer = 1)

Arguments

coords A data.frame() with columns *pxl_row_in_fullres’ and ’pxl_col_in_fullres’
whose rows contain spots from potentially multiple capture areas.

inter_spot_dist_px
numeric(1) vector giving the pixel distance between any 2 spots in the new
coordinates.

buffer numeric(1) vector giving the number of spot distances to pad the new array (on
all sides) beyond the min/max pixel coordinates in coords.
Value
A tibble with columns ’array_row’, ’array_col’, *pxl_row_in_fullres’, and *pxl_col_in_fullres’, rep-
resenting the new Visium-like array.
Author(s)
Nicholas J. Eagles

.fit_to_array Fit spots to a new Visium-like array: fast Euclidean approach

Description

Given transformed pixel coordinates, modify the *array_row’ and ’array_col’ columns to represent
a larger Visium capture area containing all capture areas in a common coordinate system. The
number of array rows/cols generally changes from the Visium standards of 78 and 128 (and even
may change in ratio between num rows and num cols).

fit_to_array_Isap 5

Usage

.fit_to_array(coords, inter_spot_dist_px)

Arguments

coords A data.frame() whose rows represent capture areas of the same group, and
containing columns "array_row’, array_col’, "pxl_row_in_fullres’, and *pxl_col_in_fullres’.
inter_spot_dist_px
numeric(1) vector giving the pixel distance between any 2 spots in the new
coordinates.

Details

The mapping algorithm minimizes Euclidean distance of each source spot to each target spot. Run-
time is O(n) with the number of spots, making it extremely fast. However, the Euclidean approach
countintuitively may result in duplicated mappings (one source to the same target) as well as unex-
pected "holes" in the target array, which is often undesirable downstream.

Value

A tibble with modified array_row + array_col columns, as well as new px1_row_in_fullres_rounded
and px1l_col_in_fullres_rounded columns representing the pixel coordinates rounded to the
nearest exact array coordinates.

Author(s)
Nicholas J. Eagles

.fit_to_array_lsap Fit spots to a new Visium-like array: LSAP approach

Description

Given transformed pixel coordinates, modify the ’array_row’ and ’array_col’ columns to represent
a larger Visium capture area containing all capture areas in a common coordinate system. The
number of array rows/cols generally changes from the Visium standards of 78 and 128 (and even
may change in ratio between num rows and num cols).

Usage

.fit_to_array_lsap(coords, inter_spot_dist_px)

Arguments

coords A data.frame() containing capture areas of the same group, and containing
columns ’key’, ’array_row’, ’array_col’, ’pxl_row_in_fullres’, and *pxl_col_in_fullres’.
inter_spot_dist_px
numeric(1) vector giving the pixel distance between any 2 spots in the new
coordinates.

6 .get_neighbors

Details

Mapping to the proper array coordinates is framed as the linear sum assignment problem, and
solved using the Hungarian algorithm. This approach is far slower than . fit_to_array(), running
at O(n”3) with the number of spots, but guarantees a one-to-one mapping of starting to target spots,
at a small cost in the Euclidean distance moved.

Value

A tibble with modified array_row + array_col columns, as well as new px1_row_in_fullres_rounded
and px1l_col_in_fullres_rounded columns representing the pixel coordinates rounded to the
nearest exact array coordinates.

Author(s)

Nicholas J. Eagles

.get_neighbors Get keys of neighboring spots

Description
For a given row of a tibble() containing array coordinates, find the associated spot’s neighbors
(belonging to the same capture area) and return their keys.

Usage

.get_neighbors(i, coords)

Arguments

i An integer(1) giving a row index in coords.

coords A tibble() containing array_row, array_col, key, and capture_area columns.
Value

A character() of neighboring spot keys.

Author(s)

Nicholas J. Eagles

.get_shared_neighbors 7

.get_shared_neighbors Calculate fraction of neighbors retained after mapping to new array
coordinates

Description

Given tibble()s before and after mapping to new array coordinates, calculate for each spot the
fraction of starting neighboring spots that were retained in the new array-coordinate system. Add
this metric and return.

Usage

.get_shared_neighbors(coords_new, coords)

Arguments
coords_new A tibble() containing array_row, array_col, key, and capture_area columns,
representing data after mapping to new array coordinates.
coords A tibble() containing array_row, array_col, key, and capture_area columns,
representing data before mapping to new array coordinates.
Value

A tibble() copy of coords_new with additional shared_neighbors column.

Author(s)

Nicholas J. Eagles

.map_lsap Map source spots to best target spots by solving the LSAP

Description

Given source_coords and target_coords, both containing pixel coordinates of spots, map each
spot in source_coords to a unique spot in target_coords such that the total squared Euclidean
distance between matched spots is minimized, with guaranteed one-to-one mapping. This is done
by solving the Linear Sum Assignment Problem (LSAP) using the Hungarian algorithm. Return the
source_coords with the newly mapped array_row and array_col columns.

Usage

.map_lsap(source_coords, target_coords)

8 .refine_fit

Arguments

source_coords A data.frame() containing the pixel coordinates (i.e. ’pxI_row_in_fullres’ and
pxI_col_in_fullres’) of starting spots from one capture area.

target_coords A data.frame() containing the pixel coordinates (i.e. 'px]l_row_in_fullres’ and
"pxI_col_in_fullres’) of target spots which should just barely encompass the cap-
ture area in source_coords.
Value
A tibble with the same rows as source_coords, but with the array_row and array_col columns
(and rounded pixel coordinates) taken from the best-matching spots in target_coords.
Author(s)
Nicholas J. Eagles

.refine_fit Return array coordinates fit to nearest spot with associated error

Description

First, values of x are rounded to the nearest integer. Then, values of y are rounded to the nearest
valid integer under the constraint that coordinates for x and y must be both odd or both even. These
rounded values are returned, along with the Euclidean distance needed to move x and y from their
original, non-integer values to their rounded values.

Usage

.refine_fit(x, y, INTERVAL_X, INTERVAL_Y)

Arguments
X numeric() vector giving "ideal" array coordinates given every spot’s trans-
formed pixel coordinates.
y Same as x, though y must represent ideal array columns iff x represents array
rows, and vice versa.
INTERVAL_X numeric(1) giving pixel distance between coordinate units used for x (e.g. if
x represents ideal array_col values, INTERVAL_X represents pixel distance be-
tween spot columns).
INTERVAL_Y numeric(1) giving pixel distance between coordinate units used for y.
Value

A list consisting of 3 unnamed numeric() vectors: rounded x, rounded y, and the Euclidean
distance in pixels from rounding both x and y.

.validate_array 9

Author(s)
Nicholas J. Eagles

.validate_array Check if coordinates are Visium-like

Description
Sanity check designed to catch unforeseen bugs: halt if the tibble-like coords, expected to contain
columns ’array_row’ and ’array_col’, represents an invalid Visium array.

Usage

.validate_array(coords)

Arguments
coords A data.frame() containing 'array_row' and 'array_col' columns calcu-
lated internally by add_array_coords().
Value

It returns NULL if all tests were correct.

Author(s)
Nicholas J. Eagles

add_array_coords Add transformed array and pixel coordinates to a
SpatialExperiment

Description

Given a SpatialExperiment-class, sample information, and coordinates produced from the refine-
ment workflow, add array and pixel coordinates appropriate for the linearly transformed capture
areas making up each group present in the SpatialExperiment-class.

Usage

add_array_coords(
spe,
sample_info,
coords_dir,
calc_error_metrics = FALSE,
algorithm = c("LSAP", "Euclidean")

10 add_array_coords

Arguments
spe A SpatialExperiment-class object.
sample_info A data.frame() with columns capture_area, group, fiji_xml_path, fiji_image_path,
spaceranger_dir, intra_group_scalar, and group_hires_scalef. The last
two are made by rescale_fiji_inputs().
coords_dir A character (1) vector giving the directory containing sample directories each

with tissue_positions.csv, scalefactors_json. json, and tissue_lowres_image.png
files produced from refinement with prep_fiji_coords() and related functions.

calc_error_metrics

A logical(1) vector indicating whether to calculate error metrics related to
mapping spots to well-defined array coordinates. If TRUE, adds euclidean_error
and shared_neighbors spot-level metrics to the colData(). The former indi-
cates distance in number of inter-spot distances to "move" a spot to the new array
position; the latter indicates the fraction of neighbors for the associated capture
area that are retained after mapping, which can be quite time-consuming to com-
pute.

algorithm A character(1) vector indicating which mapping algorithm to employ when
computing group-wide array coordinates. The default of "LSAP" is generally
recommended, as it guarantees one-to-one mappings at the cost of computa-
tional time and some Euclidean error. The faster alternative "Euclidean" mini-
mizes Euclidean error but may produce duplicate mappings, which is generally
undesirable downstream (for clustering, etc).

Details

Array coordinates are determined via an algorithm that fits each spot to the nearest spot on a new,
imaginary, Visium-like capture area. The imaginary capture area differs from a real capture area
only in its extent; array coordinates still start at 0 but may extend arbitrarily beyond the normal max-
imum indices of 77 and 127 to fit every capture area in each group defined in the SpatialExperiment-
class. The goal is to return well-defined array coordinates in a consistent spatial orientation for each
group, such that downstream applications, such as clustering with BayesSpace, can process each
group as if it really were one capture area in the first place. See https://research.libd.org/
visiumStitched/articles/visiumStitched.html#defining-array-coordinates for more de-
tails.

Value

A SpatialExperiment-class object with additional colData columns px1_row_in_fullres_[suffix]

and px1_col_in_fullres_[suffix] with [suffix] values original and rounded; array_row_original
and array_col_original columns; and modified colData() columns array_row and array_col

and spatialCoords() with their transformed values.

Author(s)

Nicholas J. Eagles

https://research.libd.org/visiumStitched/articles/visiumStitched.html#defining-array-coordinates
https://research.libd.org/visiumStitched/articles/visiumStitched.html#defining-array-coordinates

add_array_coords 11

Examples

if (lexists("spe")) {
spe <- spatiallIBD::fetch_data(type = "visiumStitched_brain_spe")

S HEHHRHRHEH R AR E RS EHAAEHEHEH B EAREEHRHRHHHREE
Prepare sample_info
HHEHHHHHHHEREE AR AR AR

sample_info <- dplyr::tibble(
group = "Br2719",
capture_area = c("V13B23-283_A1", "V13B23-283_C1", "V13B23-283_D1")
)
Add 'spaceranger_dir' column
sr_dir <- tempdir()
temp <- unzip(
spatiallLIBD::fetch_data("visiumStitched_brain_spaceranger"),
exdir = sr_dir

)
sample_info$spaceranger_dir <- file.path(

sr_dir, sample_info$capture_area, "outs”, "spatial”
)

Add Fiji-output-related columns

fiji_dir <- tempdir()

temp <- unzip(
spatiallLIBD::fetch_data("visiumStitched_brain_Fiji_out"),
exdir = fiji_dir

)

sample_info$fiji_xml_path <- temp[grep(”xml$"”, temp)]

sample_info$fiji_image_path <- temp[grep("png$”, temp)]

Re-size images and add more information to the sample_info
sample_info <- rescale_fiji_inputs(sample_info, out_dir = tempdir())

Preparing Fiji coordinates and images for build_SpatialExperiment()
spe_input_dir <- tempdir()

prep_fiji_coords(sample_info, out_dir = spe_input_dir)
prep_fiji_image(sample_info, out_dir = spe_input_dir)

B g S
Add array coordinates
HHHHHHHHA AR AR A

Run with Euclidean algorithm for speed. On real analyses, "LSAP" is
generally recommended.
spe_new <- add_array_coords(

spe, sample_info, tempdir(), algorithm = "Euclidean”

Several columns related to spatial coordinates were added
added_cols_regex <- "*(array|pxl)_(row|col)(_in_fullres)?_(original|rounded)$”

12 add_overlap_info

colnames(SummarizedExperiment: :colData(spe_new))[
grep(added_cols_regex, colnames(SummarizedExperiment::colData(spe_new)))

1
'array_row', 'array_col', and spatialCoords() were overwritten with
their transformed values

head(spe$array_row)
head(spe$array_col)
head(SpatialExperiment::spatialCoords(spe_new))

add_overlap_info Add info about how spots overlap among capture areas

Description

Given a SpatialExperiment-class and column name in its colData, return a modified copy of the
SpatialExperiment with additional colData columns: spe$exclude_overlapping and spe$overlap_key.

Usage

add_overlap_info(spe, metric_name)

Arguments
spe A SpatialExperiment-class with colData(spe) columns array_row, array_col,
key, and capture_area.
metric_name character (1) in colnames(colData(spe)), where spots belonging to the cap-
ture area with highest average value for the metric take precedence over other
spots.
Details

spe$exclude_overlapping is TRUE for spots with a higher-quality overlapping capture area and
FALSE otherwise. vis_clus onlydisplays FALSE spots to prevent overplotting in regions of overlap.
spe$overlap_key gives comma-separated strings containing the keys of any overlapping spots,
and is the empty string otherwise.

Value

A SpatialExperiment object with additional colData columns spe$exclude_overlapping and
spe$overlap_key.

Author(s)
Nicholas J. Eagles

as.Seurat 13

Examples

if (lexists("spe")) {
spe <- spatiallIBD::fetch_data(type = "visiumStitched_brain_spe")

}
Find the mean of the 'sum_umi' metric by capture area to understand
which capture areas will be excluded in regions of overlap

SummarizedExperiment: :colData(spe) |>
dplyr::as_tibble() |>
dplyr::group_by(capture_area) |>
dplyr::summarize(mean_sum_umi = mean(sum_umi))

spe <- add_overlap_info(spe, "sum_umi")

See how many spots were excluded by capture area
table(spe$exclude_overlapping, spe$capture_area)

Examine how data about overlapping spots is stored (for the first
few spots with overlap)
head(spe$overlap_key[spe$overlap_key != ""])

as.Seurat Convert a SpatialExperiment object to a Seurat object

Description

Given a SpatialExperiment-class object, first as. Seurat () is run, which operates on SingleCellExperiment-
class objects. The remaining components (images, spatial coordinates) are added manually. The
actual appearance of images are buggy for now.

Usage
as.Seurat(
spe,
spatial_cols = c(tissue = "in_tissue”, row = "array_row"”, col = "array_col"”, imagerow =
"pxl_row_in_fullres"”, imagecol = "pxl_col_in_fullres"),
verbose = TRUE
)
Arguments
spe A SpatialExperiment-class with colData() or spatialCoords() columns given

by spatial_cols. This does not have to be a stitched spe object as this function
should work with any type of spe objects.

spatial_cols A character(5) named vector mapping which colData(spe) or spatialCoords(spe)
columns contain the tissue, row, col, imagerow, and imagecol information
expected by Seurat.

verbose A logical(1) vector. If TRUE, print status update about the conversion process.
This information can be useful for debugging.

14 build_Spatial Experiment

Details

Note that only the lowres images from imgData(spe) will be used.

Value

A Seurat object.

Author(s)
Nicholas J. Eagles

Examples

Download some example data

spe_unstitched <- spatiallLIBD::fetch_data(
type = "spatialDLPFC_Visium_example_subset”

Y[seq(100), seq(100)]

Make the column names unique
colnames(spe_unstitched) <- spatiallIBD::add_key(spe_unstitched)$key

Convert from a SpatialExperiment to a Seurat object
seur <- as.Seurat(spe_unstitched)
seur

Example with an stitched SPE object
if (lexists("spe")) {
spe <- spatiallIBD::fetch_data(type = "visiumStitched_brain_spe")
3
seur_stitched <- as.Seurat(spel[seq(100), seq(100)1)

Let's look at our resulting Seurat object
seur_stitched

build_SpatialExperiment
Build stitched SpatialExperiment

Description

First, read in capture-area-level SpaceRanger https://www.10xgenomics.com/support/software/
space-ranger/latest/analysis/running-pipelines/space-ranger-count outputs. Then, over-
write spatial coordinates and images to represent group-level samples using sample_info$group
(though keep original coordinates in colData columns ending with the suffix "_original”). Next,
add info about overlaps (via spe$exclude_overlapping and spe$overlap_key). Ultimately, re-
turn a SpatialExperiment-class ready for visualization or downstream analysis.

https://www.10xgenomics.com/support/software/space-ranger/latest/analysis/running-pipelines/space-ranger-count
https://www.10xgenomics.com/support/software/space-ranger/latest/analysis/running-pipelines/space-ranger-count

build_Spatial Experiment 15

Usage

build_SpatialExperiment(

sample_info,

coords_dir,

count_type = c("sparse”, "HDF5"),

data_type =

c("raw”, "filtered"),

reference_gtf = NULL,

gtf_cols = c("source”, "type"”, "gene_id", "gene_version"”, "gene_name", "gene_type"),
calc_error_metrics = FALSE,

algorithm = c("LSAP", "Euclidean")

)

Arguments

sample_info

coords_dir

count_type

data_type

reference_gtf

gtf_cols

A data.frame() with columns capture_area, group, fiji_xml_path, fiji_image_path,
spaceranger_dir, intra_group_scalar, and group_hires_scalef. The last
two are made by rescale_fiji_inputs().

A character (1) vector giving the directory containing sample directories each
with tissue_positions.csv, scalefactors_json. json, and tissue_lowres_image.png
files produced from refinement with prep_fiji_coords() and related functions.

A character (1) vector passed to type from SpatialExperiment: :read1@xVisiumWrapper,
defaulting to "sparse".

A character (1) vector passed to data from SpatialExperiment: :read10xVisiumWrapper,
defaulting to "raw".

Passed to spatiallLIBD: :read10xVisiumWrapper(). If working on the same
system where SpaceRanger was run, the GTF will be automatically found; oth-
erwise a character(1) path may be supplied, pointing to a GTF file of gene
annotation to populate rowData() with.

Passed to spatiallLIBD: :read1@xVisiumWrapper(). Columns in the refer-
ence GTF to extract and populate rowData().

calc_error_metrics

algorithm

A logical(1) vector indicating whether to calculate error metrics related to
mapping spots to well-defined array coordinates. If TRUE, adds euclidean_error
and shared_neighbors spot-level metrics to the colData(). The former indi-
cates distance in number of inter-spot distances to "move" a spot to the new array
position; the latter indicates the fraction of neighbors for the associated capture
area that are retained after mapping, which can be quite time-consuming to com-
pute.

A character(1) vector indicating which mapping algorithm to employ when
computing group-wide array coordinates. The default of "LSAP" is generally
recommended, as it guarantees one-to-one mappings at the cost of computa-
tional time and some Euclidean error. The faster alternative "Euclidean” mini-
mizes Euclidean error but may produce duplicate mappings, which is generally
undesirable downstream (for clustering, etc).

16 build_Spatial Experiment

Value

A SpatialExperiment-class object with one sample per group specified in sample_info using trans-
formed pixel and array coordinates (including in the spatialCoords()).

Author(s)
Nicholas J. Eagles

Examples

S
Prepare sample_info
HHHEHHHEHEE AR AR

sample_info <- dplyr::tibble(
group = "Br2719",
capture_area = c("V13B23-283_A1", "V13B23-283_C1", "V13B23-283_D1")
)
Add 'spaceranger_dir' column
sr_dir <- tempdir()
temp <- unzip(
spatiallLIBD::fetch_data("visiumStitched_brain_spaceranger”),
exdir = sr_dir

)
sample_info$spaceranger_dir <- file.path(

sr_dir, sample_info$capture_area, "outs", "spatial”
)

Add Fiji-output-related columns

fiji_dir <- tempdir()

temp <- unzip(
spatiallLIBD::fetch_data("visiumStitched_brain_Fiji_out”),
exdir = fiji_dir

)

sample_info$fiji_xml_path <- temp[grep("xml$", temp)]

sample_info$fiji_image_path <- temp[grep("png$”, temp)]

Re-size images and add more information to the sample_info
sample_info <- rescale_fiji_inputs(sample_info, out_dir = tempdir())

Preparing Fiji coordinates and images for build_SpatialExperiment()
spe_input_dir <- tempdir()

prep_fiji_coords(sample_info, out_dir = spe_input_dir)
prep_fiji_image(sample_info, out_dir = spe_input_dir)

AR AR
Build the SpatialExperiment
HHH

Since we don't have access to the original GTF used to run SpaceRanger,
we must explicitly supply our own GTF to build_SpatialExperiment(). We use
GENCODE release 32, intended to be quite close to the actual GTF used,

merge_overlapping 17

which is available from:

https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-2024-A.tar.gz
bfc <- BiocFileCache::BiocFileCache()

gtf_cache <- BiocFileCache: :bfcrpath(

bfc,

pasted(
"ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/",
"release_32/gencode.v32.annotation.gtf.gz"

)

)

Now we can build the stitched SpatialExperiment object. Use the Euclidean
algorithm for calculating new array coordinates because of speed in this
example, but "LSAP" is generally recommended.
spe <- build_SpatialExperiment(
sample_info, coords_dir = spe_input_dir, reference_gtf = gtf_cache,
algorithm = "Euclidean”

)

Let's explore the stitched SpatialExperiment object
spe

merge_overlapping Merge overlapping spots

Description

Given a stitched SpatialExperiment-class, merge overlapping (same array coordinates) spots by
adding expression (i.e. from assays(spe)$counts), returning a SpatialExperiment with at most
one spot per array location.

Usage

merge_overlapping(spe)

Arguments
spe A SpatialExperiment-class with colData(spe) columns array_row, array_col,
key, group, and capture_area.
Details

colData(spe) and spatialCoords(spe) of the merged spots are taken from the spots whose
exclude_overlapping values are TRUE.

Value

A SpatialExperiment with at most one spot per array location

18 prep_fiji

Author(s)
Nicholas J. Eagles

Examples

if (lexists("spe")) {
spe <- spatiallIBD::fetch_data(type = "visiumStitched_brain_spe")
3

Group colData by group and array coordinates
grouped_coldata <- colData(spe) |>
dplyr::as_tibble() |>
dplyr::group_by(group, array_row, array_col)

Find the first 100 keys that overlap other spots and don't, respectively
overlapping_keys <- grouped_coldata |>
dplyr::filter(dplyr::n() > 1) |>
dplyr::slice_head(n = 2) |>
dplyr::ungroup() |>
dplyr::slice_head(n
dplyr: :pull(key)
nonoverlapping_keys <- grouped_coldata |>
dplyr::filter(dplyr::n() == 1) |>
dplyr::ungroup() |>
dplyr::slice_head(n = 100) |>
dplyr::pull(key)

100) |>

Built a small SPE containing some overlaps and some non-overlapping spots
small_spe <- spe[, c(overlapping_keys, nonoverlapping_keys)]

Merge overlapping spots
small_spe_merged <- merge_overlapping(small_spe)

All array coordinates have just one unique spot after merging
colData(small_spe_merged) |>
dplyr::as_tibble() |>
dplyr::group_by(group, array_row, array_col) [>
dplyr::summarize(n = dplyr::n()) |>
dplyr::pull(n) |>
table()

prep_fiji Prepare Fiji outputs for building a SpatialExperiment

Description

Together, prep_fiji_image() and prep_fiji_coords() process Fiji outputs and generate one di-
rectory per group resembling Spaceranger’s spatial outputs; in particular, tissue_positions.csyv,
tissue_lowres_image.png, and scalefactors_json. json files are created. These functions are
necessary to run in preparation for build_SpatialExperiment().

https://www.10xgenomics.com/support/software/space-ranger/latest/analysis/outputs/spatial-outputs

prep_fiji 19

Usage

prep_fiji_image(sample_info, out_dir, lowres_max_size = 1200)

prep_fiji_coords(sample_info, out_dir)

Arguments
sample_info A data. frame() with columns capture_area, group, fiji_xml_path, fiji_image_path,
spaceranger_dir, intra_group_scalar, and group_hires_scalef. The last
two are made by rescale_fiji_inputs().
out_dir A character (1) vector giving a path to a directory to place the output pixel

coordinates CSVs. It must exist in advance.

lowres_max_size
An integer (1) vector: the resolution (number of pixels) of the larger dimen-
sion of the output image(s), considered to be "low resolution". The default value
of 1200 assumes that you are stitching together at most a 2 by 2 grid of Visium
capture areas, where each has at most 600 pixels on the longest dimension (as is
the default in SpaceRanger).

Details

Given adata. frame () of sample information (sample_info) with columns capture_area, group,

and fiji_xml_path, expected to have one unique path to Fiji XML output per group, prep_fiji_coords
reads in the pixel coordinates from each capture area’s tissue_positions.csv file from Spac-
eRanger, and transform using the rotation matrix specified by Fiji https://imagej.net/software/
fiji/. It writes one new tissue_positions.csv file per group.

After stitching all groups in sample_info with Fiji, images of various resolutions (pixel dimen-
sions) are left. prep_fiji_image() creates copies of each image whose largest dimension is
lowres_max_size pixels. It also creates a corresponding scalefactors_json. json file much
like SpaceRanger’s.

Value

This function returns a character () with the file paths to the files it created. For prep_fiji_coords(),
these are the tissue_positions.csv files; for prep_fiji_image(), these are the tissue_lowres_image.png
and scalefactors_json. json files.

Functions

* prep_fiji_image(): Create low-res images and scale factors from high-res Fiji output im-
ages

* prep_fiji_coords(): Apply transform info from Fiji XML output

Author(s)
Nicholas J. Eagles

https://imagej.net/software/fiji/
https://imagej.net/software/fiji/

20

Examples

sample_info <- dplyr::tibble(
group = "Br2719",
capture_area = c("V13B23-283_A1", "V13B23-283_C1", "V13B23-283_D1")
)
Add 'spaceranger_dir' column
sr_dir <- tempdir()
temp <- unzip(
spatiallLIBD::fetch_data("visiumStitched_brain_spaceranger”),
exdir = sr_dir

)
sample_info$spaceranger_dir <- file.path(

sr_dir, sample_info$capture_area, "outs”, "spatial”
)

Add Fiji-output-related columns

fiji_dir <- tempdir()

temp <- unzip(
spatiallLIBD::fetch_data(”visiumStitched_brain_Fiji_out"),
exdir = fiji_dir

)

sample_info$fiji_xml_path <- temp[grep(”xml$"”, temp)]

sample_info$fiji_image_path <- temp[grep("png$"”, temp)]

Re-size images and add more information to the sample_info
sample_info <- rescale_fiji_inputs(sample_info, out_dir = tempdir())

spe_input_dir <- tempdir()
out_paths_image <- prep_fiji_image(

sample_info,

out_dir = spe_input_dir, lowres_max_size = 1000
)

out_path_coords <- prep_fiji_coords(sample_info, out_dir = spe_input_dir)

A "low resolution” stitched image was produced, which has 1000
pixels in its largest dimension
this_image <- imager::load.image(
file.path(spe_input_dir, "Br2719", "tissue_lowres_image.png")
)
dim(this_image)
library("imager")
plot(this_image)

'prep_fiji_image' produced an image and scalefactors
out_paths_image

'prep_fiji_coords' produced a file of spatial coordinates for the
stitched Br2719
readr: :read_csv(out_path_coords)

prep_fiji

rescale_fiji_inputs 21

rescale_fiji_inputs Write same-scale hires images for input to Fiji

Description

Given adata. frame() of sample information (sample_info) with columns capture_area, group,
and spaceranger_dir, Write new high-resolution images for use as input to Fiji https: //imagej.
net/software/fiji/. Particularly when capture areas come from different slides, there is a risk of
significant scale differences among SpaceRanger’s tissue_hires_image.png images; that is, the
physical distance represented by a pixel from each capture area may differ nontrivially, leading to a
distance-distorted output image, and inconsistent scaling when later transforming pixel coordinates.
This function writes approximately high-res images whose pixels are of equal physical size within
each group, then adds intra_group_scalar and group_hires_scalef columns to sample_info.
intra_group_scalar gives the scalar by a which a given capture area’s tissue_hires_image.png
image and pixel coordinates must be multiplied to match the scale of other group members; group_hires_scalef
gives the new tissue_hires_scalef (as from SpaceRanger’s scalefactors_json. json file) ap-
propriate for every capture area from the group.

Usage

rescale_fiji_inputs(sample_info, out_dir)

Arguments
sample_info A data.frame() with columns capture_area, group, fiji_xml_path, fiji_image_path,
spaceranger_dir, intra_group_scalar, and group_hires_scalef. The last
two are made by rescale_fiji_inputs().
out_dir A character(1) vector giving a path to a directory to place the output images,
which must exist in advance.
Value

A tibble: a copy of sample_info with additional columns intra_group_scalar and group_hires_scalef.

Author(s)
Nicholas J. Eagles

Examples

Define sample information for the example human brain data
sample_info <- dplyr::tibble(

group = "Br2719",

capture_area = c("V13B23-283_A1", "V13B23-283_C1", "V13B23-283_D1")
)
Add 'spaceranger_dir' column
sr_dir <- tempdir()
temp <- unzip(

https://imagej.net/software/fiji/
https://imagej.net/software/fiji/

22

rescale_fiji_inputs

spatiallLIBD::fetch_data("visiumStitched_brain_spaceranger"),
exdir = sr_dir

)

sample_info$spaceranger_dir <- file.path(
sr_dir, sample_info$capture_area, "outs”, "spatial”

)

Add Fiji-output-related columns

fiji_dir <- tempdir()

temp <- unzip(
spatiallIBD::fetch_data("visiumStitched_brain_Fiji_out"),
exdir = fiji_dir

)

sample_info$fiji_xml_path <- temp[grep(”xml$”, temp)]

sample_info$fiji_image_path <- temp[grep("png$", temp)]

Re-size images and add more information to the sample_info
out_dir <- tempdir()
sample_info_new <- rescale_fiji_inputs(sample_info, out_dir = out_dir)

Scale factors are computed that are necessary downstream (i.e. with
prep_fiji_*() functions)
sample_info_new[, setdiff(colnames(sample_info_new), colnames(sample_info))]

Image are produced that are ready for alignment in Fiji
list.files(out_dir)

Index

* internal spatiallLIBD::read10xVisiumWrapper(),
.add_error_metrics, 2 15
.clean_round, 3
.construct_array, 4 tibble, 4-6, 8, 21

.fit_to_array, 4
.fit_to_array_lsap, 5
.get_neighbors, 6
.get_shared_neighbors, 7
.map_lsap, 7
.refine_fit, 8
.validate_array, 9
.add_error_metrics, 2
.clean_round, 3
.construct_array, 4
.fit_to_array, 4
.fit_to_array_lsap, 5
.get_neighbors, 6
.get_shared_neighbors, 7
.map_1lsap, 7
.refine_fit, 8
.validate_array, 9

vis_clus, 12

add_array_coords, 9
add_overlap_info, 12
as.Seurat, 13

build_SpatialExperiment, 14
merge_overlapping, 17
prep_fiji, 18

prep_fiji_coords (prep_fiji), 18
prep_fiji_coords(), 10, 15
prep_fiji_image (prep_fiji), 18

rescale_fiji_inputs, 21

SingleCellExperiment-class, /3

SpatialExperiment, 12, 17

SpatialExperiment-class, 9, 10, 12-14, 16,
17

23

	.add_error_metrics
	.clean_round
	.construct_array
	.fit_to_array
	.fit_to_array_lsap
	.get_neighbors
	.get_shared_neighbors
	.map_lsap
	.refine_fit
	.validate_array
	add_array_coords
	add_overlap_info
	as.Seurat
	build_SpatialExperiment
	merge_overlapping
	prep_fiji
	rescale_fiji_inputs
	Index

