
Package ‘topGO’
November 3, 2025

Type Package

Title Enrichment Analysis for Gene Ontology

Version 2.63.0

Date 2025-06-23

Description topGO package provides tools for testing GO terms while accounting for the
topology of the GO graph. Different test statistics and different methods
for eliminating local similarities and dependencies between GO terms can be
implemented and applied.

License LGPL

Encoding UTF-8

Depends R (>= 2.10.0), methods, BiocGenerics (>= 0.13.6), graph (>=
1.14.0), Biobase (>= 2.0.0), GO.db (>= 2.3.0), AnnotationDbi
(>= 1.7.19), SparseM (>= 0.73)

Imports lattice, matrixStats, DBI

Suggests ALL, hgu95av2.db, hgu133a.db, genefilter, multtest,
Rgraphviz, globaltest, knitr, BiocStyle, rmarkdown

Collate AllClasses.R topGOmethods.R topGOgraph.R topGOalgo.R
topGOfunctions.R topGOannotations.R topGOtests.R topGOviz.R
zzz.R

VignetteBuilder knitr

URL https://github.com/federicomarini/topGO

BugReports https://github.com/federicomarini/topGO/issues

biocViews GeneExpression, Transcriptomics, GeneSetEnrichment, GO,
Annotation, Pathways, SystemsBiology, Microarray, Sequencing,
Visualization, Software

git_url https://git.bioconductor.org/packages/topGO

git_branch devel

git_last_commit 35ec429

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

1

https://github.com/federicomarini/topGO
https://github.com/federicomarini/topGO/issues

2 topGO-package

Date/Publication 2025-11-02

Author Adrian Alexa [aut],
Jörg Rahnenführer [aut],
Federico Marini [cre] (ORCID: <https://orcid.org/0000-0003-3252-7758>)

Maintainer Federico Marini <marinif@uni-mainz.de>

Contents
topGO-package . 2
annFUN . 3
classicCount-class . 6
classicExpr-class . 7
classicScore-class . 8
Determines the levels of a Directed Acyclic Graph (DAG) 9
dignostic-methods . 11
elimCount-class . 14
elimExpr-class . 15
elimScore-class . 16
Gene set tests statistics . 17
geneList . 18
getPvalues . 19
getSigGroups . 20
GOdata . 21
groupGOTerms . 22
groupStats-class . 23
inducedGraph . 24
parentChild-class . 25
printGraph-methods . 26
topGOdata-class . 28
topGOresult-class . 31
weightCount-class . 32

Index 34

topGO-package Enrichment analysis for Gene Ontology

Description

topGO package provides tools for testing GO terms while accounting for the topology of the GO
graph. Different test statistics and different methods for eliminating local similarities and depen-
dencies between GO terms can be implemented and applied.

https://orcid.org/0000-0003-3252-7758

annFUN 3

Details

Package: topGO
Type: Package
Version: 1.0
Date: 2006-10-02
License: What license is it under?

TODO: An overview of how to use the package, including the most important functions

Author(s)

Adrian Alexa, J\"org Rahnenf\"uhrer

Maintainer: Adrian Alexa

References

Alexa A., Rahnenf\"uhrer J., Lengauer T., Improved scoring of functional groups from gene expres-
sion data by decorrelating GO graph structure, Bioinformatics 22(13): 1600-1607, 2006

See Also

topGOdata-class, groupStats-class, getSigGroups-methods

annFUN Functions which map gene identifiers to GO terms

Description

These functions are used to compile a list of GO terms such that each element in the list is a character
vector containing all the gene identifiers that are mapped to the respective GO term.

Usage

annFUN.db(whichOnto, feasibleGenes = NULL, affyLib)
annFUN.org(whichOnto, feasibleGenes = NULL, mapping, ID = "entrez")
annFUN(whichOnto, feasibleGenes = NULL, affyLib)
annFUN.gene2GO(whichOnto, feasibleGenes = NULL, gene2GO)
annFUN.GO2genes(whichOnto, feasibleGenes = NULL, GO2genes)
annFUN.file(whichOnto, feasibleGenes = NULL, file, ...)

readMappings(file, sep = "\t", IDsep = ",")
inverseList(l)

4 annFUN

Arguments

whichOnto character string specifying one of the three GO ontologies, namely: "BP", "MF",
"CC"

feasibleGenes character vector containing a subset of gene identifiers. Only these genes will
be used to annotate GO terms. Default value is NULL which means that there are
no genes filtered.

affyLib character string containing the name of the Bioconductor annotation package for
a specific microarray chip.

gene2GO named list of character vectors. The list names are genes identifiers. For each
gene the character vector contains the GO identifiers it maps to. Only the most
specific annotations are required.

GO2genes named list of character vectors. The list names are GO identifiers. For each GO
the character vector contains the genes identifiers which are mapped to it. Only
the most specific annotations are required.

mapping character string specifying the name of the Bioconductor package containing the
gene mappings for a specific organism. For example: mapping = "org.Hs.eg.db".

ID character string specifying the gene identifier to use. Currently only the follow-
ing identifiers can be used: c("entrez", "genbank", "alias", "ensembl",
"symbol", "genename", "unigene")

file character string specifying the file containing the annotations.

... other parameters

sep the character used to separate the columns in the CSV file

IDsep the character used to separate the annotated entities

l a list containing mappings

Details

All these function restrict the GO terms to the ones belonging to the specified ontology and to the
genes listed in the feasibleGenes attribute (if not empty).

The function annFUN.db uses the mappings provided in the Bioconductor annotation data pack-
ages. For example, if the Affymetrix hgu133a chip it is used, then the user should set affyLib =
"hgu133a.db".

The functions annFUN.gene2GO and annFUN.GO2genes are used when the user provide his own
annotations either as a gene-to-GOs mapping, either as a GO-to-genes mapping.

The annFUN.org function is using the mappings from the "org.XX.XX" annotation packages. The
function supports different gene identifiers.

The annFUN.file function will read the annotationsof the type gene2GO or GO2genes from a text
file.

Value

A named(GO identifiers) list of character vectors.

annFUN 5

Author(s)

Adrian Alexa

See Also

topGOdata-class

Examples

library(hgu133a.db)
set.seed(111)

generate a gene list and the GO annotations
selGenes <- sample(ls(hgu133aGO), 50)
gene2GO <- lapply(mget(selGenes, envir = hgu133aGO), names)
gene2GO[sapply(gene2GO, is.null)] <- NA

the annotation for the first three genes
gene2GO[1:3]

inverting the annotations
G2g <- inverseList(gene2GO)

inverting the annotations and selecting an ontology
go2genes <- annFUN.gene2GO(whichOnto = "CC", gene2GO = gene2GO)

generate a GO list with the genes annotations
selGO <- sample(ls(hgu133aGO2PROBE), 30)
GO2gene <- lapply(mget(selGO, envir = hgu133aGO2PROBE), as.character)

GO2gene[1:3]

select only the GO terms for a specific ontology
go2gene <- annFUN.GO2genes(whichOnto = "CC", GO2gene = GO2gene)

##
Using the org.XX.xx.db annotations
##

GO to Symbol mappings (only the BP ontology is used)
xx <- annFUN.org("BP", mapping = "org.Hs.eg.db", ID = "symbol")
head(xx)

Not run:

allGenes <- unique(unlist(xx))
myInterestedGenes <- sample(allGenes, 500)
geneList <- factor(as.integer(allGenes
names(geneList) <- allGenes

6 classicCount-class

GOdata <- new("topGOdata",
ontology = "BP",
allGenes = geneList,
nodeSize = 5,
annot = annFUN.org,
mapping = "org.Hs.eg.db",
ID = "symbol")

End(Not run)

classicCount-class Class "classicCount"

Description

This class that extends the virtual class "groupStats" by adding a slot representing the significant
members.

Details

This class is used for test statistic based on counts, like Fisher’s exact test

Objects from the Class

Objects can be created by calls of the form new("classicCount", testStatistic = "function",
name = "character", allMembers = "character", groupMembers = "character", sigMembers
= "character").

Slots

significant: Object of class "integer" ~~

name: Object of class "character" ~~

allMembers: Object of class "character" ~~

members: Object of class "character" ~~

testStatistic: Object of class "function" ~~

Extends

Class "groupStats", directly.

classicExpr-class 7

Methods

contTable signature(object = "classicCount"): ...

initialize signature(.Object = "classicCount"): ...

numSigAll signature(object = "classicCount"): ...

numSigMembers signature(object = "classicCount"): ...

sigAllMembers signature(object = "classicCount"): ...

sigMembers<- signature(object = "classicCount"): ...

sigMembers signature(object = "classicCount"): ...

Author(s)

Adrian Alexa

See Also

classicScore-class, groupStats-class, getSigGroups-methods

Examples

##---- Should be DIRECTLY executable !! ----

classicExpr-class Class "classicExpr"

Description

This class that extends the virtual class "groupStats" by adding two slots for accommodating gene
expression data.

Objects from the Class

Objects can be created by calls of the form new("classicExpr", testStatistic, name, groupMembers,
exprDat, pType, ...).

Slots

eData: Object of class "environment" ~~

pType: Object of class "factor" ~~

name: Object of class "character" ~~

allMembers: Object of class "character" ~~

members: Object of class "character" ~~

testStatistic: Object of class "function" ~~

testStatPar: Object of class "list" ~~

8 classicScore-class

Extends

Class "groupStats", directly.

Methods

allMembers<- signature(object = "classicExpr"): ...

emptyExpr signature(object = "classicExpr"): ...

getSigGroups signature(object = "topGOdata", test.stat = "classicExpr"): ...

GOglobalTest signature(object = "classicExpr"): ...

initialize signature(.Object = "classicExpr"): ...

membersExpr signature(object = "classicExpr"): ...

pType<- signature(object = "classicExpr"): ...

pType signature(object = "classicExpr"): ...

Author(s)

Adrian Alexa

See Also

classicScore-class, groupStats-class, getSigGroups-methods

Examples

showClass("classicExpr")

classicScore-class Class "classicScore"

Description

A class that extends the virtual class "groupStats" by adding a slot representing the score of each
gene. It is used for tests like Kolmogorov-Smirnov test.

Objects from the Class

Objects can be created by calls of the form new("classicScore", testStatistic, name, allMembers,
groupMembers, score, decreasing).

Determines the levels of a Directed Acyclic Graph (DAG) 9

Slots

score: Object of class "numeric" ~~

name: Object of class "character" ~~

allMembers: Object of class "character" ~~

members: Object of class "character" ~~

testStatistic: Object of class "function" ~~

scoreOrder: Object of class "character" ~~

testStatPar: Object of class "ANY" ~~

Extends

Class "groupStats", directly.

Methods

allScore Method to obtain the score of all members.

scoreOrder Returns TRUE if the score should be ordered increasing, FALSE otherwise.

membersScore signature(object = "classicScore"): ...

rankMembers signature(object = "classicScore"): ...

score<- signature(object = "classicScore"): ...

Author(s)

Adrian Alexa

See Also

classicCount-class, groupStats-class, getSigGroups-methods

Examples

define the type of test you want to use
test.stat <- new("classicScore", testStatistic = GOKSTest, name = "KS tests")

Determines the levels of a Directed Acyclic Graph (DAG)

Utility functions to work with Directed Acyclic Graphs (DAG)

Description

Basic functions to work with DAGs

10 Determines the levels of a Directed Acyclic Graph (DAG)

Usage

buildLevels(dag, root = NULL, leafs2root = TRUE)
getNoOfLevels(graphLevels)
getGraphRoot(dag, leafs2root = TRUE)
reverseArch(dirGraph, useAlgo = "sparse", useWeights = TRUE)

Arguments

dag A graphNEL object.

root A character vector specifying the root(s) of the DAG. If not specified the root
node is automatically computed.

leafs2root The leafs2root parameter tell if the graph has edges directed from the leaves to
the root, or vice-versa

graphLevels An object of type list, returned by the buildLevels function.

dirGraph A graphNEL object containing a directed graph.

useAlgo A character string specifying one of the following options c("sparse", "normal").
By default, useAlgo = "sparse", a sparse matrix object is used to transpose the
adjacency matrix. Otherwise a standard R martix is used.

useWeights If weights should be used (if useAlgo = "normal" then the weights are used
anyway)

Details

buildLevels function determines the levels of a Directed Acyclic Graph (DAG). The level of a
node is defined as the longest path from the node to the root. The function take constructs a named
list containing various information about each nodes level. The root has level 1.

getNoOfLevels - a convenient function to extract the number of levels from the object returned by
buildLevels

getGraphRoot finds the root(s) of the DAG

reverseArch - simple function to invert the direction of edges in a DAG. The returned graph is of
class graphNEL. It can use either simple matrices or sparse matrices (SparseM library)

Value

buildLevels returns a list containing:

level2nodes Environment where the key is the level number with the value being the nodes
on that level.

nodes2level Environment where the key is the node label (the GO ID) and the value is the
level on which that node lies.

noOfLevels The number of levels

noOfNodes The number of nodes

An object of class graphNEL-class is returned.

dignostic-methods 11

Author(s)

Adrian Alexa

See Also

topGOdata-class, inducedGraph

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.

dignostic-methods Diagnostic functions for topGOdata and topGOresult objects.

Description

The GenTable function generates a summary of the results of the enrichment analysis.

The showGroupDensity function plots the distributions of the gene’ scores/ranks inside a GO term.

The printGenes function shows a short summary of the top genes annotated to the specified GO
terms.

Usage

GenTable(object, ...)

showGroupDensity(object, whichGO, ranks = FALSE, rm.one = TRUE)

printGenes(object, whichTerms, file, ...)

Arguments

object an object of class topGOdata.

whichGO the GO terms for which the plot should be generated.

ranks if ranks should be used instead of scores.

rm.one the p-values which are 1 are removed.

whichTerms character vector listing the GO terms for which the summary should be printed.

file character string specifying the file in which the results should be printed.

... Extra arguments for GenTable can be:

. . . one or more objects of class topGOresult.

12 dignostic-methods

orderBy if more than one topGOresult object is given then orderBy gives the
index of which scores will be used to order the resulting table. Can be
an integer index or a character vector given the name of the topGOresult
object.

ranksOf same as orderBy argument except that this parameter shows the rela-
tive ranks of the specified result.

topNodes the number of top GO terms to be included in the table.
numChar the GO term definition will be truncated such that only the first numChar

characters are shown.

Extra arguments for printGenes can be:

chip character string containing the name of the Bioconductor annotation pack-
age for a microarray chip.

numChar the gene description is trimmed such that it has numChar characters.
simplify logical variable affecting how the results are returned.
geneCutOff the maximal number of genes shown for each term.
pvalCutOff only the genes with a p-value less than pvalCutOff are shown.
oneFile if TRUE then a file for each GO term is generated.

Details

GenTable is an easy to use function for summarising the most significant GO terms and the cor-
responding p-values. The function dispatches for topGOdata and topGOresult objects, and it can
take an arbitrary number of the later, making comparison between various results easier.

Note: One needs to type the complete attribute names (the exact name) of this function, like:
topNodes = 5, rankOf = "resultFis", etc. This being the price paid for flexibility of specifying
different number of topGOdata objects.

The showGroupDensity function analyse the distribution of the gene-wise scores for a specified
GO term. The function will show the distribution of the genes in a GO term compared with the
complementary set, using a lattice plot.

printGenes The function will generate a table with all the probes annotated to the specified GO
term. Various type of identifiers, the gene name and the gene-wise statistics are provided in the
table.

One or more GO identifiers can be given to the function using the whichTerms argument. When
more than one GO is specified, the function returns a list of data.frames, otherwise only one
data.frame is returned.

The function has a argument file which, when specified, will save the results into a file using the
CSV format.

For the moment the function will work only when the chip used has an annotation package available
in Bioconductor. It will not work with other type of custom annotations.

Value

A data.frame or a list of data.frames.

dignostic-methods 13

Author(s)

Adrian Alexa

See Also

groupStats-class, getSigGroups-methods

Examples

data(GOdata)

##
GenTable
##

load two topGOresult sample objects: resultFisher and resultKS
data(results.tGO)

generate the result of Fisher's exact test
sig.tab <- GenTable(GOdata, Fis = resultFisher, topNodes = 20)

results of both test
sig.tab <- GenTable(GOdata, resultFisher, resultKS, topNodes = 20)

results of both test with specified names
sig.tab <- GenTable(GOdata, Fis = resultFisher, KS = resultKS, topNodes = 20)

results of both test with specified names and specified ordering
sig.tab <- GenTable(GOdata, Fis = resultFisher,

KS = resultKS, orderBy = "KS",
ranksOf = "Fis", topNodes = 20)

##
showGroupDensity
##

goID <- "GO:0006091"
print(showGroupDensity(GOdata, goID, ranks = TRUE))
print(showGroupDensity(GOdata, goID, ranks = FALSE, rm.one = FALSE))

##
printGenes
##

Not run:
library(hgu95av2.db)
goID <- "GO:0006629"

14 elimCount-class

gt <- printGenes(GOdata, whichTerms = goID, chip = "hgu95av2.db", numChar = 40)

goIDs <- c("GO:0006629", "GO:0007076")
gt <- printGenes(GOdata, whichTerms = goIDs, chip = "hgu95av2.db", pvalCutOff = 0.01)

gt[goIDs[1]]

End(Not run)

elimCount-class Classes "elimCount" and "weight01Count"

Description

Classes that extend the "classicCount" class by adding a slot representing the members that need to
be removed.

Objects from the Class

Objects can be created by calls of the form new("elimCount", testStatistic, name, allMembers,
groupMembers, sigMembers, elim, cutOff, ...).

Slots

elim: Object of class "integer" ~~
cutOff: Object of class "numeric" ~~
significant: Object of class "integer" ~~
name: Object of class "character" ~~
allMembers: Object of class "character" ~~
members: Object of class "character" ~~
testStatistic: Object of class "function" ~~
testStatPar: Object of class "list" ~~

Extends

Class "classicCount", directly. Class "groupStats", by class "classicCount", distance 2.

Methods

No methods defined with class "elimCount" in the signature.

Author(s)

Adrian Alexa

See Also

classicScore-class, groupStats-class, getSigGroups-methods

elimExpr-class 15

elimExpr-class Class "elimExpr"

Description

Classes that extend the "classicExpr" class by adding a slot representing the members that need to
be removed.

Details

TODO: Some details here.....

Objects from the Class

Objects can be created by calls of the form new("elimExpr", testStatistic, name, groupMembers,
exprDat, pType, elim, cutOff, ...). ~~ describe objects here ~~

Slots

cutOff: Object of class "numeric" ~~

elim: Object of class "integer" ~~

eData: Object of class "environment" ~~

pType: Object of class "factor" ~~

name: Object of class "character" ~~

allMembers: Object of class "character" ~~

members: Object of class "character" ~~

testStatistic: Object of class "function" ~~

testStatPar: Object of class "list" ~~

Extends

Class "weight01Expr", directly. Class "classicExpr", by class "weight01Expr", distance 2.
Class "groupStats", by class "weight01Expr", distance 3.

Methods

cutOff<- signature(object = "elimExpr"): ...

cutOff signature(object = "elimExpr"): ...

getSigGroups signature(object = "topGOdata", test.stat = "elimExpr"): ...

initialize signature(.Object = "elimExpr"): ...

Author(s)

Adrian Alexa

16 elimScore-class

See Also

classicScore-class, groupStats-class, getSigGroups-methods

Examples

showClass("elimExpr")

elimScore-class Classes "elimScore" and "weight01Score"

Description

Classes that extend the "classicScore" class by adding a slot representing the members that need to
be removed.

Details

TODO:

Objects from the Class

Objects can be created by calls of the form new("elimScore", testStatistic, name, allMembers,
groupMembers, score, alternative, elim, cutOff, ...). ~~ describe objects here ~~

Slots

elim: Object of class "integer" ~~

cutOff: Object of class "numeric" ~~

score: Object of class "numeric" ~~

.alternative: Object of class "logical" ~~

name: Object of class "character" ~~

allMembers: Object of class "character" ~~

members: Object of class "character" ~~

testStatistic: Object of class "function" ~~

testStatPar: Object of class "list" ~~

Extends

Class "classicScore", directly. Class "groupStats", by class "classicScore", distance 2.

Methods

No methods defined with class "elimScore" in the signature.

Gene set tests statistics 17

Author(s)

Adrian Alexa

See Also

classicScore-class, groupStats-class, getSigGroups-methods

Examples

##---- Should be DIRECTLY executable !! ----

Gene set tests statistics

Gene set tests statistics

Description

Methods which implement and run a group test statistic for a class inheriting from groupStats
class. See Details section for a description of each method.

Usage

GOFisherTest(object)
GOKSTest(object)
GOtTest(object)
GOglobalTest(object)
GOSumTest(object)
GOKSTiesTest(object)

Arguments

object An object of class groupStats or decedent class.

Details

GOFisherTest: implements Fischer’s exact test (based on contingency table) for groupStats ob-
jects dealing with "counts".

GOKSTest: implements the Kolmogorov-Smirnov test for groupStats objects dealing with gene
"scores". This test uses the ks.test function and does not implement the running-sum-statistic test
based on permutations.

GOtTest: implements the t-test for groupStats objects dealing with gene "scores". It should be
used when the gene scores are t-statistics or any other score following a normal distribution.

GOglobalTest: implement Goeman’s globaltest.

Value

All these methods return the p-value computed by the respective test statistic.

18 geneList

Author(s)

Adrian Alexa

See Also

groupStats-class, getSigGroups-methods

geneList A toy example of a list of gene identifiers and the respective p-values

Description

The geneList data is compiled from a differential expression analysis of the ALL dataset. It contains
just a small number of genes with the corespondent p-values. The information on where to find the
GO annotations is stored in the ALL object.

The topDiffGenes function included in this dataset will select the differentially expressed genes,
at 0.01 significance level, from geneList.

Usage

data(geneList)

Source

Generated using the ALL gene expression data. See the "scripts" directory.

Examples

data(geneList)

print the object
head(geneList)
length(geneList)

the number of genes with a p-value less than 0.01
sum(topDiffGenes(geneList))

getPvalues 19

getPvalues Convenient function to compute p-values from a gene expression ma-
trix.

Description

Warping function of "mt.teststat", for computing p-values of a gene expression matrix.

Usage

getPvalues(edata, classlabel, test = "t",
alternative = c("greater", "two.sided", "less")[1], genesID = NULL,
correction = c("none", "Bonferroni", "Holm", "Hochberg",

"SidakSS", "SidakSD", "BH", "BY")[8])

Arguments

edata Gene expression matrix.
classlabel The phenotype of the data
test Which test statistic to use
alternative The alternative of the test statistic
genesID if a subset of genes is provided
correction Multiple testing correction procedure

Value

An named numeric vector of p-values.

Author(s)

Adrian Alexa

See Also

GOKSTest, groupStats-class, getSigGroups-methods

Examples

library(ALL)
data(ALL)

discriminate B-cell from T-cell
classLabel <- as.integer(sapply(ALL$BT, function(x) return(substr(x, 1, 1) == 'T')))

Differentially expressed genes
geneList <- getPvalues(exprs(ALL), classlabel = classLabel,

alternative = "greater", correction = "BY")

hist(geneList, 50)

20 getSigGroups

getSigGroups Interfaces for running the enrichment tests

Description

These function are used for dispatching the specific algorithm for a given topGOdata object and a
test statistic.

Usage

getSigGroups(object, test.stat, ...)
runTest(object, algorithm, statistic, ...)
whichAlgorithms()
whichTests()

Arguments

object An object of class topGOdata This object contains all data necessary for running
the test.

test.stat An object of class groupStats. This object defines the test statistic.

algorithm Character string specifying which algorithm to use.

statistic Character string specifying which test to use.

... Other parameters. In the case of runTest they are used for defining the test
statistic

Details

The runTest function can be used only with a predefined set of test statistics and algorithms. The
algorithms and the statistical tests which are accessible via the runTest function are shown by the
whichAlgorithms() and whichTests() functions.

The runTest function is a warping of the getSigGroups and the initialisation of a groupStats
object functions.

...

Value

An object of class topGOresult.

Author(s)

Adrian Alexa

See Also

topGOdata-class, groupStats-class, topGOresult-class

GOdata 21

Examples

load a sample topGOdata object
data(GOdata)
GOdata

##############################
getSigGroups interface
##############################

define a test statistic
test.stat <- new("classicCount", testStatistic = GOFisherTest, name = "Fisher test")
perform the test
resultFis <- getSigGroups(GOdata, test.stat)
resultFis

##############################
runTest interface
##############################

Enrichment analysis by using the "classic" method and Fisher's exact test
resultFis <- runTest(GOdata, algorithm = "classic", statistic = "fisher")
resultFis

weight01 is the default algorithm
weight01.fisher <- runTest(GOdata, statistic = "fisher")
weight01.fisher

not all combinations are possible!
weight.ks <- runTest(GOdata, algorithm = "weight", statistic = "t")

GOdata Sample topGOdata and topGOresult objects

Description

The GOdata contains an instance of a topGOdata object. It can be used to run an enrichment analysis
directly.

The resultFisher contains the results of an enrichment analysis.

Usage

data(GOdata)

Source

Generated using the ALL gene expression data. See topGOdata-class for code examples on how-to
generate such an object.

22 groupGOTerms

Examples

data(GOdata)

print the object
GOdata

data(results.tGO)

print the object
resultFisher

groupGOTerms Grouping of GO terms into the three ontologies

Description

This function split the GOTERM environment into three different ontologies. The newly created
environments contain each only the terms from one of the following ontologies ’BP’, ’CC’, ’MF’

Usage

groupGOTerms(where)

Arguments

where The the environment where you want to bind the results.

Value

The function returns NULL.

Author(s)

Adrian Alexa

See Also

topGOdata-class, GOTERM

Examples

groupGOTerms()

groupStats-class 23

groupStats-class Class "groupStats"

Description

A virtual class containing basic gene set information: the gene universe, the member of the current
group, the test statistic defined for this group, etc.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

name: Object of class "character" ~~

allMembers: Object of class "character" ~~

members: Object of class "character" ~~

testStatistic: Object of class "function" ~~

testStatPar: Object of class "ANY" ~~

Methods

allMembers<- signature(object = "groupStats"): ...

allMembers signature(object = "groupStats"): ...

initialize signature(.Object = "groupStats"): ...

members<- signature(object = "groupStats"): ...

members signature(object = "groupStats"): ...

Name<- signature(object = "groupStats"): ...

Name signature(object = "groupStats"): ...

numAllMembers signature(object = "groupStats"): ...

numMembers signature(object = "groupStats"): ...

runTest signature(object = "groupStats"): ...

testStatistic signature(object = "groupStats"): ...

Author(s)

Adrian Alexa

See Also

classicCount-class, getSigGroups-methods

24 inducedGraph

inducedGraph The subgraph induced by a set of nodes.

Description

Given a set of nodes (GO terms) this function is returning the subgraph containing these nodes and
their ancestors.

Usage

inducedGraph(dag, startNodes)
nodesInInducedGraph(dag, startNodes)

Arguments

dag An object of class graphNEL containing a directed graph.

startNodes A character vector giving the starting nodes.

Value

An object of class graphNEL-class is returned.

Author(s)

Adrian Alexa

See Also

topGOdata-class, reverseArch,

Examples

data(GOdata)

the GO graph
g <- graph(GOdata)
g

select 10 random nodes
sn <- sample(nodes(g), 10)

the subgraph induced by these nodes
sg <- inducedGraph(g, sn)
sg

parentChild-class 25

parentChild-class Classes "parentChild" and "pC"

Description

Classes that extend the "classicCount" class by adding support for the parent-child test.

Objects from the Class

Objects can be created by calls of the form new("parentChild", testStatistic, name, groupMembers,
parents, sigMembers, joinFun, ...).

Slots

splitIndex: Object of class "integer" ~~

joinFun: Object of class "character" ~~

significant: Object of class "integer" ~~

name: Object of class "character" ~~

allMembers: Object of class "character" ~~

members: Object of class "character" ~~

testStatistic: Object of class "function" ~~

testStatPar: Object of class "list" ~~

Extends

Class "classicCount", directly. Class "groupStats", by class "classicCount", distance 2.

Methods

allMembers<- signature(object = "parentChild"): ...

allMembers signature(object = "parentChild"): ...

allParents signature(object = "parentChild"): ...

getSigGroups signature(object = "topGOdata", test.stat = "parentChild"): ...

initialize signature(.Object = "parentChild"): ...

joinFun signature(object = "parentChild"): ...

numAllMembers signature(object = "parentChild"): ...

numSigAll signature(object = "parentChild"): ...

sigAllMembers signature(object = "parentChild"): ...

sigMembers<- signature(object = "parentChild"): ...

updateGroup signature(object = "parentChild", name = "missing", members = "character"):
...

26 printGraph-methods

Author(s)

Adrian Alexa

See Also

classicCount-class, groupStats-class, getSigGroups-methods

Examples

showClass("parentChild")
showClass("pC")

printGraph-methods Visualisation functions

Description

Functions to plot the subgraphs induced by the most significant GO terms

Usage

showSigOfNodes(GOdata, termsP.value, firstSigNodes = 10, reverse = TRUE,
sigForAll = TRUE, wantedNodes = NULL, putWN = TRUE,
putCL = 0, type = NULL, showEdges = TRUE, swPlot = TRUE,
useFullNames = TRUE, oldSigNodes = NULL,
useInfo = c("none", "pval", "counts", "def", "np", "all")[1],
plotFunction = GOplot, .NO.CHAR = 20)

printGraph(object, result, firstSigNodes, refResult, ...)

Arguments

object an object of class topGOdata.

GOdata an object of class topGOdata.

result an object of class topGOresult.

firstSigNodes the number of top scoring GO terms which

refResult an object of class topGOresult.

termsP.value named vector of p-values.

reverse the direction of the edges.

sigForAll if TRUE the score/p-value of all nodes in the DAG is shown, otherwise only the
score for the sigNodes

wantedNodes the nodes that we want to find, we will plot this nodes with a different color. The
vector contains the names of the nodes

putWN the graph is generated with using the firstSigNodes and the wantedNodes.

printGraph-methods 27

putCL we generate the graph from the nodes given by all previous parameters, plus
their children. if putCL = 1 than only the children are added, if putCL = n we
get the nodes form the next n levels.

type used for plotting pie charts

showEdges if TRUE the edge are shown

swPlot if true the graph is ploted, if not no plotting is done.

useInfo additional info to be ploted to each node.

oldSigNodes used to plot the (new) sigNodes in the same color range as the old ones

useFullNames argument for internal use ..

plotFunction argument for internal use ..

.NO.CHAR argument for internal use ..

... Extra arguments for printGraph can be:

fn.prefix character string giving the file name prefix.
useInfo as in showSigOfNodes function.
pdfSW logical attribute switch between PDF or PS formats.

Details

There are two functions available. The showSigOfNodes will plot the induced subgraph to the
current graphic device. The printGraph is a warping function for showSigOfNodes and will save
the resulting graph into a PDF or PS file.

In the plots, the significant nodes are represented as rectangles. The plotted graph is the upper
induced graph generated by these significant nodes.

Author(s)

Adrian Alexa

See Also

groupStats-class, getSigGroups-methods

Examples

Not run:
data(GOdata)
data(results.tGO)

showSigOfNodes(GOdata, score(resultFisher), firstSigNodes = 5, useInfo = 'all')
printGraph(GOdata, resultFisher, firstSigNodes = 5,

fn.prefix = "sampleFile", useInfo = "all", pdfSW = TRUE)

End(Not run)

28 topGOdata-class

topGOdata-class Class "topGOdata"

Description

TODO: The node attributes are environments containing the genes/probes annotated to the respec-
tive node

If genes is a numeric vector than this should represent the gene’s score. If it is factor it should
discriminate the genes in interesting genes and the rest

TODO: it will be a good idea to replace the allGenes and allScore with an ExpressionSet class. In
this way we can use tests like global test, globalAncova.... – ALL variables starting with . are just
for internal class usage (private)

Objects from the Class

Objects can be created by calls of the form new("topGOdata", ontology, allGenes, geneSelectionFun,
description, annotationFun, ...). ~~ describe objects here ~~

Slots

description: Object of class "character" ~~

ontology: Object of class "character" ~~

allGenes: Object of class "character" ~~

allScores: Object of class "ANY" ~~

geneSelectionFun: Object of class "function" ~~

feasible: Object of class "logical" ~~

nodeSize: Object of class "integer" ~~

graph: Object of class "graphNEL" ~~

expressionMatrix: Object of class "matrix" ~~

phenotype: Object of class "factor" ~~

Methods

allGenes signature(object = "topGOdata"): ...

attrInTerm signature(object = "topGOdata", attr = "character", whichGO = "character"):
...

attrInTerm signature(object = "topGOdata", attr = "character", whichGO = "missing"):
...

countGenesInTerm signature(object = "topGOdata", whichGO = "character"): ...

countGenesInTerm signature(object = "topGOdata", whichGO = "missing"): ...

description<- signature(object = "topGOdata"): ...

description signature(object = "topGOdata"): ...

topGOdata-class 29

feasible<- signature(object = "topGOdata"): ...

feasible signature(object = "topGOdata"): ...

geneScore signature(object = "topGOdata"): ...

geneSelectionFun<- signature(object = "topGOdata"): ...

geneSelectionFun signature(object = "topGOdata"): ...

genes signature(object = "topGOdata"): A method for obtaining the list of genes, as a charac-
ter vector, which will be used in the further analysis.

numGenes signature(object = "topGOdata"): A method for obtaining the number of genes,
which will be used in the further analysis. It has the same effect as: lenght(genes(object)).

sigGenes signature(object = "topGOdata"): A method for obtaining the list of significant genes,
as a character vector.

genesInTerm signature(object = "topGOdata", whichGO = "character"): ...

genesInTerm signature(object = "topGOdata", whichGO = "missing"): ...

getSigGroups signature(object = "topGOdata", test.stat = "classicCount"): ...

getSigGroups signature(object = "topGOdata", test.stat = "classicScore"): ...

graph<- signature(object = "topGOdata"): ...

graph signature(object = "topGOdata"): ...

initialize signature(.Object = "topGOdata"): ...

ontology<- signature(object = "topGOdata"): ...

ontology signature(object = "topGOdata"): ...

termStat signature(object = "topGOdata", whichGO = "character"): ...

termStat signature(object = "topGOdata", whichGO = "missing"): ...

updateGenes signature(object = "topGOdata", geneList = "numeric", geneSelFun = "function"):
...

updateGenes signature(object = "topGOdata", geneList = "factor", geneSelFun = "missing"):
...

updateTerm<- signature(object = "topGOdata", attr = "character"): ...

usedGO signature(object = "topGOdata"): ...

Author(s)

Adrian Alexa

See Also

buildLevels, annFUN

30 topGOdata-class

Examples

load the dataset
data(geneList)
library(package = affyLib, character.only = TRUE)

the distribution of the adjusted p-values
hist(geneList, 100)

how many differentially expressed genes are:
sum(topDiffGenes(geneList))

build the topGOdata class
GOdata <- new("topGOdata",

ontology = "BP",
allGenes = geneList,
geneSel = topDiffGenes,
description = "GO analysis of ALL data: DE B-cell vs T-cell",
annot = annFUN.db,
affyLib = affyLib)

display the GOdata object
GOdata

##
Examples on how to use the methods
##

description of the experiment
description(GOdata)

obtain the genes that will be used in the analysis
a <- genes(GOdata)
str(a)
numGenes(GOdata)

obtain the score (p-value) of the genes
selGenes <- names(geneList)[sample(1:length(geneList), 10)]
gs <- geneScore(GOdata, whichGenes = selGenes)
print(gs)

if we want an unnamed vector containing all the feasible genes
gs <- geneScore(GOdata, use.names = FALSE)
str(gs)

the list of significant genes
sg <- sigGenes(GOdata)
str(sg)
numSigGenes(GOdata)

to update the gene list
.geneList <- geneScore(GOdata, use.names = TRUE)
GOdata ## more available genes

topGOresult-class 31

GOdata <- updateGenes(GOdata, .geneList, topDiffGenes)
GOdata ## the available genes are now the feasible genes

the available GO terms (all the nodes in the graph)
go <- usedGO(GOdata)
length(go)

to list the genes annotated to a set of specified GO terms
sel.terms <- sample(go, 10)
ann.genes <- genesInTerm(GOdata, sel.terms)
str(ann.genes)

the score for these genes
ann.score <- scoresInTerm(GOdata, sel.terms)
str(ann.score)

to see the number of annotated genes
num.ann.genes <- countGenesInTerm(GOdata)
str(num.ann.genes)

to summarise the statistics
termStat(GOdata, sel.terms)

topGOresult-class Class "topGOresult"

Description

Class instance created by getSigGroups-methods or by runTest

Objects from the Class

Objects can be created by calls of the form new("topGOresult", description, score, testName,
algorithm, geneData).

Slots

description: character string containing a short description on how the object was build.

score: named numerical vector containing the p-values or the scores of the tested GO terms.

testName: character string containing the name of the test statistic used.

algorithm: character string containing the name of the algorithm used.

geneData: list containing summary statistics on the genes/gene universe/annotations.

Methods

score: method to access the score slot.

testName: method to access the testName slot.

32 weightCount-class

algorithm: method to access the algorithm slot.

geneData: method to access the geneData slot.

show: method to print the object.

combineResults: method to aggregate two or more topGOresult objects. method = c("gmean",
"mean", "median", "min", "max") provides the way the object scores (which most of the
time are p-values) are combined..

Author(s)

Adrian Alexa

See Also

groupStats-class, getSigGroups-methods

Examples

data(results.tGO)

s <- score(resultFisher)

go <- sort(names(s))
go.sub<- sample(go, 100)
go.mixed <- c(sample(go, 50), sample(ls(GOCCTerm), 20))
go.others <- sample(ls(GOCCTerm), 100)

str(go)
str(go.sub)
str(go.mixed)
str(go.others)

str(score(resultFisher, whichGO = go))
str(score(resultFisher, whichGO = go.sub))
str(score(resultFisher, whichGO = go.mixed))
str(score(resultFisher, whichGO = go.others))

avgResult <- combineResults(resultFisher, resultKS)
avgResult
combineResults(resultFisher, resultKS, method = "min")

weightCount-class Class "weightCount"

Description

~~ A concise (1-5 lines) description of what the class is. ~~

weightCount-class 33

Details

TODO: Some details here.....

Objects from the Class

Objects can be created by calls of the form new("weightCount", testStatistic, name, allMembers,
groupMembers, sigMembers, weights, sigRatio, penalise, ...).

Slots

weights: Object of class "numeric" ~~

sigRatio: Object of class "function" ~~

penalise: Object of class "function" ~~

roundFun: Object of class "function" ~~

significant: Object of class "integer" ~~

name: Object of class "character" ~~

allMembers: Object of class "character" ~~

members: Object of class "character" ~~

testStatistic: Object of class "function" ~~

testStatPar: Object of class "list" ~~

Extends

Class "classicCount", directly. Class "groupStats", by class "classicCount", distance 2.

Methods

No methods defined with class "weightCount" in the signature.

Author(s)

Adrian Alexa

See Also

groupStats-class, getSigGroups-methods

Index

∗ classes
classicCount-class, 6
classicExpr-class, 7
classicScore-class, 8
elimCount-class, 14
elimExpr-class, 15
elimScore-class, 16
groupStats-class, 23
parentChild-class, 25
topGOdata-class, 28
topGOresult-class, 31
weightCount-class, 32

∗ datasets
geneList, 18
GOdata, 21

∗ graphs
Determines the levels of a

Directed Acyclic Graph (DAG), 9
getPvalues, 19
inducedGraph, 24
topGOdata-class, 28

∗ methods
dignostic-methods, 11
getSigGroups, 20
printGraph-methods, 26

∗ misc
annFUN, 3
Gene set tests statistics, 17
groupGOTerms, 22

∗ package
topGO-package, 2

affyLib (geneList), 18
algorithm (topGOresult-class), 31
algorithm,topGOresult-method

(topGOresult-class), 31
algorithm<- (topGOresult-class), 31
algorithm<-,topGOresult-method

(topGOresult-class), 31
allGenes (topGOdata-class), 28

allGenes,topGOdata-method
(topGOdata-class), 28

allMembers (groupStats-class), 23
allMembers,elimScore-method

(elimScore-class), 16
allMembers,groupStats-method

(groupStats-class), 23
allMembers,parentChild-method

(parentChild-class), 25
allMembers,weight01Expr-method

(elimExpr-class), 15
allMembers,weight01Score-method

(elimScore-class), 16
allMembers,weightCount-method

(weightCount-class), 32
allMembers<- (groupStats-class), 23
allMembers<-,classicExpr-method

(classicExpr-class), 7
allMembers<-,groupStats-method

(groupStats-class), 23
allMembers<-,parentChild-method

(parentChild-class), 25
allMembers<-,pC-method

(parentChild-class), 25
allParents (parentChild-class), 25
allParents,parentChild-method

(parentChild-class), 25
allScore (classicScore-class), 8
allScore,classicScore,logical-method

(classicScore-class), 8
allScore,classicScore,missing-method

(classicScore-class), 8
allScore,elimScore,logical-method

(elimScore-class), 16
allScore,elimScore,missing-method

(elimScore-class), 16
allScore,weight01Score,logical-method

(elimScore-class), 16
allScore,weight01Score,missing-method

34

INDEX 35

(elimScore-class), 16
alternative,elimScore-method

(elimScore-class), 16
annFUN, 3, 29
attrInTerm (topGOdata-class), 28
attrInTerm,topGOdata,character,character-method

(topGOdata-class), 28
attrInTerm,topGOdata,character,missing-method

(topGOdata-class), 28

buildLevels, 29
buildLevels (Determines the levels of

a Directed Acyclic Graph
(DAG)), 9

classicCount, 14, 25, 33
classicCount-class, 6
classicExpr, 15
classicExpr-class, 7
classicScore, 16
classicScore-class, 8
combineResults (topGOresult-class), 31
contTable (classicCount-class), 6
contTable,classicCount-method

(classicCount-class), 6
contTable,elimCount-method

(elimCount-class), 14
countGenesInTerm (topGOdata-class), 28
countGenesInTerm,topGOdata,character-method

(topGOdata-class), 28
countGenesInTerm,topGOdata,missing-method

(topGOdata-class), 28
cutOff (elimCount-class), 14
cutOff,elimCount-method

(elimCount-class), 14
cutOff,elimExpr-method

(elimExpr-class), 15
cutOff,elimScore-method

(elimScore-class), 16
cutOff<- (elimCount-class), 14
cutOff<-,elimCount-method

(elimCount-class), 14
cutOff<-,elimExpr-method

(elimExpr-class), 15
cutOff<-,elimScore-method

(elimScore-class), 16

depth (elimCount-class), 14

depth,leaCount-method
(elimCount-class), 14

depth,leaExpr-method (elimExpr-class),
15

depth,leaScore-method
(elimScore-class), 16

depth<- (elimCount-class), 14
depth<-,leaCount-method

(elimCount-class), 14
depth<-,leaExpr-method

(elimExpr-class), 15
depth<-,leaScore-method

(elimScore-class), 16
description (topGOdata-class), 28
description,topGOdata-method

(topGOdata-class), 28
description,topGOresult-method

(topGOresult-class), 31
description<- (topGOdata-class), 28
description<-,topGOdata,ANY-method

(topGOdata-class), 28
description<-,topGOresult,ANY-method

(topGOresult-class), 31
Determines the levels of a Directed

Acyclic Graph (DAG), 9
dignostic-methods, 11

elim (elimCount-class), 14
elim,elimCount-method

(elimCount-class), 14
elim,elimScore-method

(elimScore-class), 16
elim,weight01Count-method

(elimCount-class), 14
elim,weight01Expr-method

(elimExpr-class), 15
elim,weight01Score-method

(elimScore-class), 16
elim<- (elimCount-class), 14
elim<-,elimCount-method

(elimCount-class), 14
elim<-,elimScore-method

(elimScore-class), 16
elim<-,weight01Count-method

(elimCount-class), 14
elim<-,weight01Expr-method

(elimExpr-class), 15
elim<-,weight01Score-method

(elimScore-class), 16

36 INDEX

elimCount-class, 14
elimExpr-class, 15
elimScore-class, 16
emptyExpr,classicExpr-method

(classicExpr-class), 7
expressionMatrix (topGOdata-class), 28
expressionMatrix,topGOdata-method

(topGOdata-class), 28

feasible (topGOdata-class), 28
feasible,topGOdata-method

(topGOdata-class), 28
feasible<- (topGOdata-class), 28
feasible<-,topGOdata-method

(topGOdata-class), 28

Gene set tests statistics, 17
geneData (topGOresult-class), 31
geneData,topGOresult-method

(topGOresult-class), 31
geneData<- (topGOresult-class), 31
geneData<-,topGOresult-method

(topGOresult-class), 31
geneList, 18
genes (topGOdata-class), 28
genes,topGOdata-method

(topGOdata-class), 28
geneScore (topGOdata-class), 28
geneScore,topGOdata,character-method

(topGOdata-class), 28
geneScore,topGOdata,missing-method

(topGOdata-class), 28
geneScore,topGOdata-method

(topGOdata-class), 28
geneSelectionFun (topGOdata-class), 28
geneSelectionFun,topGOdata-method

(topGOdata-class), 28
geneSelectionFun<- (topGOdata-class), 28
geneSelectionFun<-,topGOdata-method

(topGOdata-class), 28
genesInTerm (topGOdata-class), 28
genesInTerm,topGOdata,character-method

(topGOdata-class), 28
genesInTerm,topGOdata,missing-method

(topGOdata-class), 28
GenTable (dignostic-methods), 11
GenTable,topGOdata-method

(dignostic-methods), 11

getGraphRoot (Determines the levels of
a Directed Acyclic Graph
(DAG)), 9

getNoOfLevels (Determines the levels
of a Directed Acyclic Graph
(DAG)), 9

getPvalues, 19
getSigGroups, 20
getSigGroups,topGOdata,classicCount-method

(getSigGroups), 20
getSigGroups,topGOdata,classicExpr-method

(getSigGroups), 20
getSigGroups,topGOdata,classicScore-method

(getSigGroups), 20
getSigGroups,topGOdata,elimCount-method

(getSigGroups), 20
getSigGroups,topGOdata,elimExpr-method

(getSigGroups), 20
getSigGroups,topGOdata,elimScore-method

(getSigGroups), 20
getSigGroups,topGOdata,leaCount-method

(getSigGroups), 20
getSigGroups,topGOdata,leaExpr-method

(getSigGroups), 20
getSigGroups,topGOdata,leaScore-method

(getSigGroups), 20
getSigGroups,topGOdata,parentChild-method

(getSigGroups), 20
getSigGroups,topGOdata,pC-method

(getSigGroups), 20
getSigGroups,topGOdata,weight01Count-method

(getSigGroups), 20
getSigGroups,topGOdata,weight01Expr-method

(getSigGroups), 20
getSigGroups,topGOdata,weight01Score-method

(getSigGroups), 20
getSigGroups,topGOdata,weightCount-method

(getSigGroups), 20
getSigGroups-methods (getSigGroups), 20
getSigRatio (weightCount-class), 32
getSigRatio,weightCount-method

(weightCount-class), 32
GOBPTerm (groupGOTerms), 22
GOCCTerm (groupGOTerms), 22
GOdata, 21
GOFisherTest (Gene set tests

statistics), 17
GOFisherTest,classicCount-method

INDEX 37

(classicCount-class), 6
GOFisherTest,elimCount-method

(elimCount-class), 14
GOglobalTest (Gene set tests

statistics), 17
GOglobalTest,classicExpr-method

(classicExpr-class), 7
GOKSTest, 19
GOKSTest (Gene set tests statistics), 17
GOKSTest,classicScore-method

(classicScore-class), 8
GOKSTiesTest (Gene set tests

statistics), 17
GOKSTiesTest,classicScore-method

(classicScore-class), 8
GOMFTerm (groupGOTerms), 22
GOplot (printGraph-methods), 26
GOSumTest (Gene set tests statistics),

17
GOSumTest,classicScore-method

(classicScore-class), 8
GOTERM, 22
GOtTest (Gene set tests statistics), 17
GOtTest,classicScore-method

(classicScore-class), 8
graph (topGOdata-class), 28
graph,topGOdata-method

(topGOdata-class), 28
graph<- (topGOdata-class), 28
graph<-,topGOdata-method

(topGOdata-class), 28
groupGOTerms, 22
groupStats, 8, 14–16, 25, 33
groupStats-class, 23

inducedGraph, 11, 24
initialize,classicCount-method

(classicCount-class), 6
initialize,classicExpr-method

(classicExpr-class), 7
initialize,classicScore-method

(classicScore-class), 8
initialize,elimCount-method

(elimCount-class), 14
initialize,elimExpr-method

(elimExpr-class), 15
initialize,elimScore-method

(elimScore-class), 16

initialize,groupStats-method
(groupStats-class), 23

initialize,leaCount-method
(elimCount-class), 14

initialize,leaExpr-method
(elimExpr-class), 15

initialize,leaScore-method
(elimScore-class), 16

initialize,parentChild-method
(parentChild-class), 25

initialize,pC-method
(parentChild-class), 25

initialize,topGOdata-method
(topGOdata-class), 28

initialize,topGOresult-method
(topGOresult-class), 31

initialize,weight01Count-method
(elimCount-class), 14

initialize,weight01Expr-method
(elimExpr-class), 15

initialize,weight01Score-method
(elimScore-class), 16

initialize,weightCount-method
(weightCount-class), 32

inverseList (annFUN), 3

joinFun (parentChild-class), 25
joinFun,parentChild-method

(parentChild-class), 25

leaCount-class (elimCount-class), 14
leaExpr-class (elimExpr-class), 15
leaScore-class (elimScore-class), 16

members (groupStats-class), 23
members,elimScore-method

(elimScore-class), 16
members,groupStats,missing-method

(groupStats-class), 23
members,weight01Expr,missing-method

(elimExpr-class), 15
members,weight01Score,missing-method

(elimScore-class), 16
members,weightCount-method

(weightCount-class), 32
members<- (groupStats-class), 23
members<-,groupStats-method

(groupStats-class), 23
membersExpr (classicExpr-class), 7

38 INDEX

membersExpr,classicExpr-method
(classicExpr-class), 7

membersScore (classicScore-class), 8
membersScore,classicScore-method

(classicScore-class), 8
membersScore,elimScore-method

(elimScore-class), 16
membersScore,weight01Score-method

(elimScore-class), 16

Name (groupStats-class), 23
Name,groupStats-method

(groupStats-class), 23
Name,weightCount-method

(weightCount-class), 32
Name<- (groupStats-class), 23
Name<-,groupStats-method

(groupStats-class), 23
nodesInInducedGraph (inducedGraph), 24
numAllMembers (groupStats-class), 23
numAllMembers,elimCount-method

(elimCount-class), 14
numAllMembers,elimScore-method

(elimScore-class), 16
numAllMembers,groupStats-method

(groupStats-class), 23
numAllMembers,parentChild-method

(parentChild-class), 25
numAllMembers,weight01Count-method

(elimCount-class), 14
numAllMembers,weight01Expr-method

(elimExpr-class), 15
numAllMembers,weight01Score-method

(elimScore-class), 16
numAllMembers,weightCount-method

(weightCount-class), 32
numGenes (topGOdata-class), 28
numGenes,topGOdata-method

(topGOdata-class), 28
numMembers (groupStats-class), 23
numMembers,elimCount-method

(elimCount-class), 14
numMembers,elimScore-method

(elimScore-class), 16
numMembers,groupStats-method

(groupStats-class), 23
numMembers,weight01Count-method

(elimCount-class), 14

numMembers,weight01Expr-method
(elimExpr-class), 15

numMembers,weight01Score-method
(elimScore-class), 16

numMembers,weightCount-method
(weightCount-class), 32

numSigAll (classicCount-class), 6
numSigAll,classicCount-method

(classicCount-class), 6
numSigAll,elimCount-method

(elimCount-class), 14
numSigAll,parentChild-method

(parentChild-class), 25
numSigAll,weight01Count-method

(elimCount-class), 14
numSigAll,weightCount-method

(weightCount-class), 32
numSigGenes (topGOdata-class), 28
numSigGenes,topGOdata-method

(topGOdata-class), 28
numSigMembers (classicCount-class), 6
numSigMembers,classicCount-method

(classicCount-class), 6
numSigMembers,elimCount-method

(elimCount-class), 14
numSigMembers,weight01Count-method

(elimCount-class), 14
numSigMembers,weightCount-method

(weightCount-class), 32

ontology (topGOdata-class), 28
ontology,topGOdata-method

(topGOdata-class), 28
ontology<- (topGOdata-class), 28
ontology<-,topGOdata-method

(topGOdata-class), 28

parentChild-class, 25
pC-class (parentChild-class), 25
penalise (weightCount-class), 32
penalise,weightCount,numeric,numeric-method

(weightCount-class), 32
permSumStats (Gene set tests

statistics), 17
phenotype (topGOdata-class), 28
phenotype,topGOdata-method

(topGOdata-class), 28
print,topGOdata-method

(topGOdata-class), 28

INDEX 39

print,topGOresult-method
(topGOresult-class), 31

printGenes (dignostic-methods), 11
printGenes,topGOdata,character,character-method

(dignostic-methods), 11
printGenes,topGOdata,character,missing-method

(dignostic-methods), 11
printGenes-methods (dignostic-methods),

11
printGraph (printGraph-methods), 26
printGraph,topGOdata,topGOresult,numeric,missing-method

(printGraph-methods), 26
printGraph,topGOdata,topGOresult,numeric,topGOresult-method

(printGraph-methods), 26
printGraph-methods, 26
pType (classicExpr-class), 7
pType,classicExpr-method

(classicExpr-class), 7
pType<- (classicExpr-class), 7
pType<-,classicExpr-method

(classicExpr-class), 7

rankMembers (classicScore-class), 8
rankMembers,classicScore-method

(classicScore-class), 8
rankMembers,elimScore-method

(elimScore-class), 16
rankMembers,weight01Score-method

(elimScore-class), 16
readMappings (annFUN), 3
resultFisher (GOdata), 21
resultKS (GOdata), 21
reverseArch, 24
reverseArch (Determines the levels of

a Directed Acyclic Graph
(DAG)), 9

roundFun (weightCount-class), 32
roundFun,weightCount-method

(weightCount-class), 32
runTest (getSigGroups), 20
runTest,groupStats,missing,missing-method

(groupStats-class), 23
runTest,groupStats-method

(groupStats-class), 23
runTest,topGOdata,character,character-method

(getSigGroups), 20
runTest,topGOdata,missing,character-method

(getSigGroups), 20

score (topGOresult-class), 31
score,topGOresult-method

(topGOresult-class), 31
score<- (classicScore-class), 8
score<-,classicScore-method

(classicScore-class), 8
score<-,elimScore-method

(elimScore-class), 16
score<-,topGOresult-method

(topGOresult-class), 31
scoreOrder (classicScore-class), 8
scoreOrder,classicScore-method

(classicScore-class), 8
scoresInTerm (topGOdata-class), 28
scoresInTerm,topGOdata,character-method

(topGOdata-class), 28
scoresInTerm,topGOdata,missing-method

(topGOdata-class), 28
show,topGOdata-method

(topGOdata-class), 28
show,topGOresult-method

(topGOresult-class), 31
showGroupDensity (dignostic-methods), 11
showSigOfNodes (printGraph-methods), 26
sigAllMembers (classicCount-class), 6
sigAllMembers,classicCount-method

(classicCount-class), 6
sigAllMembers,elimCount-method

(elimCount-class), 14
sigAllMembers,parentChild-method

(parentChild-class), 25
sigAllMembers,weight01Count-method

(elimCount-class), 14
sigGenes (topGOdata-class), 28
sigGenes,topGOdata-method

(topGOdata-class), 28
sigMembers (classicCount-class), 6
sigMembers,classicCount-method

(classicCount-class), 6
sigMembers,elimCount-method

(elimCount-class), 14
sigMembers,weight01Count-method

(elimCount-class), 14
sigMembers<- (classicCount-class), 6
sigMembers<-,classicCount-method

(classicCount-class), 6
sigMembers<-,elimCount-method

(elimCount-class), 14

40 INDEX

sigMembers<-,parentChild-method
(parentChild-class), 25

sigMembers<-,pC-method
(parentChild-class), 25

significant (weightCount-class), 32
significant,weightCount-method

(weightCount-class), 32
sigRatio (weightCount-class), 32
sigRatio,weightCount-method

(weightCount-class), 32
sigRatio<- (weightCount-class), 32
sigRatio<-,weightCount-method

(weightCount-class), 32

termStat (topGOdata-class), 28
termStat,topGOdata,character-method

(topGOdata-class), 28
termStat,topGOdata,missing-method

(topGOdata-class), 28
testName (topGOresult-class), 31
testName,topGOresult-method

(topGOresult-class), 31
testName<- (topGOresult-class), 31
testName<-,topGOresult-method

(topGOresult-class), 31
testStatistic (groupStats-class), 23
testStatistic,groupStats-method

(groupStats-class), 23
testStatistic,weightCount-method

(weightCount-class), 32
testStatPar (groupStats-class), 23
testStatPar,groupStats-method

(groupStats-class), 23
testStatPar,weightCount-method

(weightCount-class), 32
topDiffGenes (geneList), 18
topGO (topGO-package), 2
topGO-package, 2
topGOdata-class, 28
topGOresult-class, 31

updateGenes (topGOdata-class), 28
updateGenes,topGOdata,factor,missing-method

(topGOdata-class), 28
updateGenes,topGOdata,numeric,function-method

(topGOdata-class), 28
updateGroup (groupStats-class), 23
updateGroup,groupStats,character,character-method

(groupStats-class), 23

updateGroup,parentChild,missing,character-method
(parentChild-class), 25

updateGroup,pC,missing,character-method
(parentChild-class), 25

updateGroup,pC,missing,missing-method
(parentChild-class), 25

updateGroup,weightCount,character,character-method
(weightCount-class), 32

updateTerm<- (topGOdata-class), 28
updateTerm<-,topGOdata,character-method

(topGOdata-class), 28
usedGO (topGOdata-class), 28
usedGO,topGOdata-method

(topGOdata-class), 28

weight01Count-class (elimCount-class),
14

weight01Expr, 15
weight01Expr-class (elimExpr-class), 15
weight01Score-class (elimScore-class),

16
weightCount-class, 32
Weights (weightCount-class), 32
Weights,weightCount,logical-method

(weightCount-class), 32
Weights,weightCount,missing-method

(weightCount-class), 32
Weights,weightCount-method

(weightCount-class), 32
Weights<- (weightCount-class), 32
Weights<-,weightCount-method

(weightCount-class), 32
whichAlgorithms (getSigGroups), 20
whichTests (getSigGroups), 20

	topGO-package
	annFUN
	classicCount-class
	classicExpr-class
	classicScore-class
	Determines the levels of a Directed Acyclic Graph (DAG)
	dignostic-methods
	elimCount-class
	elimExpr-class
	elimScore-class
	Gene set tests statistics
	geneList
	getPvalues
	getSigGroups
	GOdata
	groupGOTerms
	groupStats-class
	inducedGraph
	parentChild-class
	printGraph-methods
	topGOdata-class
	topGOresult-class
	weightCount-class
	Index

