Package ‘tkWidgets’

November 3, 2025

Version 1.89.0

Title R based tk widgets

Author J. Zhang <jzhang@jimmy.harvard.edu>
Maintainer J. Zhang <jzhang@jimmy.harvard.edu>

Depends R (>=2.0.0), methods, widgetTools (>= 1.1.7), DynDoc (>=
1.3.0), tools

Suggests Biobase, hgu95av2

Description Widgets to provide user interfaces. tcltk should have
been installed for the widgets to run.

LazyLoad yes

biocViews Infrastructure

Keyword graphics

License Artistic-2.0

git_url https://git.bioconductor.org/packages/tk Widgets
git_branch devel

git_last_commit 827eeaa

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-11-02

Contents

appendSepDir
args2XML . . L e
argsWidget L e e e
collnfo-class e
dataViewer
dbArgsWidget
DPEXplorer e e e e e
eExplorer

A ch

2 appendSepDir
fileBrowser 10
fileWizard 12
getLightTW . . . L L e e e 13
getWvalues e e 14
GUESS.SED « v v v e 16
hasChar e 17
importPhenoData 18
importWizard e e 20
listSelect e 23
objectBrowser L e 24
objNameToList e 25
ODJVIBWET o e e e 26
PEXplorero e 27
pickFiles e 29
pickltems 30
pickObjs e 31
SEtArgsList 32
stdType o o 34
tkMIAME e 35
tkphenoData 37
tkSampleNames 37
values.Widgeto 38
VEXplorer 40
widgetRender L 41
WName e e 43

Index 45

appendSepDir List File and Directories for a Given Path

Description

Takes a path and returns a vector of string with the names of files and directories for the path. The
directory names will have a system dependent path separator (e. g. / for Unix) appended.

Usage

appendSepDir(path)
Arguments

path path character string specifying the path whose contents are to be listed
Value

aracter vector containing file and directory names.

args2XML 3

Author(s)
Jianhua (John) Zhang

See Also

fileBrowser, pickFiles

Examples

File names and directory names are not differentiated
list.files()

Put a separater at the end of directory names
appendSepDir(getwd())

args2XML Converting the formal arguments to a function and converts into an
XML format

Description

This function reads the formal arguments to a given function and converts the content into an XML

format
Usage
args2XML(fun, xml.name = "", full.names = NULL, priority = NULL)
Arguments
fun fun name of the function of interests
xml.name xml.name a character string for the name of the xml file holding the content of
the formal arguments to the function
full.names full.names a vector of character string with full description of each of the
formal arguments to the function. The order of apperance of each description
much correspond to the oreder of their appeerance in the formal argument list
priority priority a vector of integers or character strings indicating the priority of the
arguments.
Details

Priority values are currently used to determine whether the argument will appear on a widget that
has entry boxes for modifying the values of the arguments. Users of args2XML may not have any
concern of the priority values

Value

No value will be returned.

4 argsWidget

Author(s)

Jianhua Zhang

See Also
fileWizard

Examples

fullNames <- c("Full path names”, "Pattern to match”,
"Visiable file names”, "Include path")
args2XML(list.files, "temp.xml”, fullNames, c(1, 2, 2, 2))
readLines("temp.xml")

unlink("temp.xml")

argsWidget Functions to construct a widget that takes inputs from users

Description

Given a argument list, the functions construct a widget to allow users to entry or select values for
arguments defined by the names of the argument list.

Usage
argsWidget(argsList, defaultNames, inst = "")
getPWidget(argsList, PWEnv, inst = "")
formatArg(toFormat)
getSymbol(args)

funcs2Char(args, funcs)
getTrueNullNa(toFormat)

Arguments
argslList argsList a list of arguments with or without default values. The list can be
derived from e.g. formals
PWEnv PWEnv an R environment used object to store data for the argument list
toFormat toFormat element to be formated by formatArg
args args arguments to be formated
funcs funcs a list containing the arguments that are functions

defaultNames defaultNames a vector of character strings of length 2 for two default buttons
to be rendered. The first one is to end the process and the second to abort the
process

inst inst a character string for a short instuction that will appear on the top of a
widget

collnfo-class 5

Details

argsWidget builds a widget with widget elements to allow users to input values for the arguments.
getPWidget instatiates primary widgets that will be used to construct the widget for argements.

formatArg formats the value for a given argument so that the calue can be displayed by a tcltk
widget.

getSymbol filters out functions from the argument list.

funcs2Char converts functions to character representations of the functions.

non

getTrueNullNa converts string "true", "false", "null", and "na" to R primitives for these items.

Value

argsWidget returns a list with user input values for elements of the argument list passed.
getPWidget returns a list of primary widgets.

formatArg returns a list containing the formated values.

getSymbol returns a list containing arguments that are functions.

funcs2Char returns a list containing character representations of functions.

getTrueNullNa returns an R object.

Author(s)

Jianhua Zhang

References

R teltk

Examples

if(interactive()){
argsWidget(list("Entry with default” = "default”,
"Entry without default” = ""))

colInfo-class Class "collnfo" presents column information for a data frame

Description

This class is for keeping information about a data frame to be processed. The class is mainly for
use by importWizard

Objects from the Class

Objects can be created by calls of the form new("colInfo”, ...)

6 dataViewer

Slots

colName: Object of class "character” - a character string for the name of the column

colType: Object of class "character” - a character string for the data type of the column. Can
only be "character" or "numeric"

dropOrNot: Object of class "logical” - a boolean indicationg whether the column will be droped

Methods

colName signature(object = "character”): The get method for slot "colName"
colName<- signature(object = "character”): The set method for slot "colName"
colType signature(object = "character”): The get method for slot "colType"
colType<- signature(object = "character”): The set method for slot "colName"
dropOrNot signature(object = "logical”): The get method for slot "dropOrNot"
dropOrNot signature(object = "logical”): The set method for slot "dropOrNot"

Author(s)

Jianhua Zhang

See Also

importWizard

Examples

newInfo <- new(”colInfo”, colName = "aaaa", colType = "character”,
dropOrNot = FALSE)

dataViewer Function to view a data object passed

Description

This function creates a widget to allow users to view the content of a data frame passed and decide
whether to save the data or not.

Usage
dataViewer(data, caption = "", save = TRUE)
Arguments
data data a data frame (or alike) to be viewed
caption caption a character string for the title of the widget
save save a boolean to indicate whether to have the option to allow users to save the

data

dbArgsWidget 7

Details

Taking a data frame as one of the arguments, this function builds a widget that allows users to view
the content of the data and save the data as a file.

Value

This function does not return any value

Author(s)

Jianhua Zhang

References

R tcltk

See Also

importWizard

Examples

Create matrix
data <- matrix(1:20, ncol = 4)
if(interactive()){
View data using dataViewer
dataViewer(data, "test”, TRUE)

dbArgsWidget Function to build a widget for inputing database arguments

Description
This functions creates a interactive widget to allow users to input arguments for database connection
for Unix.

Usage

dbArgsWidget ()

Details

Database arguments include database name, user name, password, host name, and table name.

8 DPExplorer

Value
The function returns a list containing the following elements:

dbname a charater string for the name of the database

host a character string for the name or IP address of the host machine
user a character string for the name of the user

password a character string for the password

tablename a character string for the name of the database table

Author(s)

Jianhua Zhang

References

Rdbi

See Also

argsWidget

Examples

if(interactive()){
test <- dbArgsWidget()
3

DPExplorer Functions constuct a widget to explore BioC'’s data packages

Description

These functions construct a widget that allow users to visually explore a data package of Biocon-

ductor and read selected elements to R

Usage
DPExplorer(pkgName = "", title = "BioC Data Package Explorer”, getFocus
= TRUE)
getTopLevel(title)
loadDataPkg(pkgName)
Arguments
pkgName pkgName a character string for the name of a Bioconductor’s data package that
has already been loaded
title title a character string for the title of the widget

getFocus getFocus a boolean indicating whether a widget should grab the focus

eExplorer 9

Details

If pkgName is not provided when DPExplorer is called, an entry box is available for users to put a
pkgName in later. In either cases, the data package specified by pkgName should have been loaded.

getTopLevel creates a top level window for the widget.

loadDataPkg filters out valid environment objects from a data package.

Value

If only one key is selected, DPExplorer returns a vector of one to more elements. If more than one
key is selected, 1oadDataPkg returns a list of vectors.

getTopLevel returns a tkwin object for the top level window.

loadDataPkg returns a vector of character strings for available data environments.

Author(s)

Jianhua Zhang

References

Documents for a Bioconductor data package

Examples

if(interactive() && require("hgu95av2"”, character.only = TRUE)){
DPExplorer("hgu95av2")

3
eExplorer A widget that allows users to explore the example code and help files
of a given R package
Description

Given a valid package name as a character string, eExplorer collects all the example code from
the "R-ex" directory from the R library for that package and then displays the names of the code
examples in a list box. When a name in the list box is clicked, the corresponding code will be
displayed and users are allowed to execute the code or view the help file for the function the example
code is for.

Usage

eExplorer(pkgName, font = "arial 13", getFocus = TRUE)
getExCode (pkgName)
getHelpFile(pkgName, fileName)

10 fileBrowser

Arguments
pkgName pkgName a character string for the name of an R package of interest. The R
package needs to be installed
font font a character string for the font to be used by the widget to display the text.
The default is "arial 13"
fileName fileName a character string for the name of a file in "R-ex" with the ".R" ex-
tension removed. The file contains a chunk of example code and may have a
corrsponding help file in the "help" directory
getFocus getFocus a boolean indicating whether a widget should grab the focus
Details

getExCode and getHelpFile are called by eExplorer to get the code examples or help help files
contained by a given package.
Value

eExplorer does not return anything useful.

Author(s)

Jianhua Zhang

References

Writing R Extension for information on "R-ex" and "help" directories

See Also

vExplorer

Examples

if(interactive()){
require("Biobase”) || stop(”"Does not run without Biobase")
eExplorer("Biobase")

fileBrowser Simple Interface to View and Pick Files

Description

This function provides the widget for users to go up and down a path and view the files. When files
are selected and the "End" button is pressed, the function returns a vector of character strings with
the full paths of the selected files.

fileBrowser 11

Usage
fileBrowser(path="", testFun = function(x) TRUE, prefix = NULL,
suffix = NULL, textToShow = "Select file(s)",
nSelect = -1)
Arguments
path character string for the full path to be view. Defaults to the current working
directory if no path is provided.
testFun function that checks to see if a given file name satisfies predefined requirements.
The default is no checking.
prefix character string for a prefix used to screen out file names that do not have that
prefix as part of their names.
suffix character string for a suffix used to screen out file names that do not have that
suffix as part of their names.
textToShow character string to be shown on the widget to given instructions to users.
nSelect integer indicating the number of files that should be selected. No limitation if
nSelect = -1 as per default.
Details

When a path is viewed, files will be displayed as they are and directories will be displayed with a
system file separator appended (e.g. "/" for Unix systems). Single click on a file name will make
the file selectable when the select button is pressed. Multiple selection is possible by dragging with
mouse button 1 pressed. Double click on a directory name will go into that directory and display its
files. When a file/directory is selected and the "End" button pressed, the full path for the selected
files selected will be returned.

The widget is modal and has to be closed by pressing the "End" button before doing any other oper-
ations. Functions, prefix, and suffix can be specified. Examples of validity functions are hasPrefix
and hasSuffix.

The following is a list of the buttons and their associated behavior:
Up Moves the directory whose content is to be displayed in the box for file names one level up
along the directory tree. No action if already on top of the tree.

Select \>\> When a file or files in the box for file names in a directory have been highlighted by
clicking or dragging mouse button 1 and this button is pushed, the highlighted file(s) will be
displayed in the box for selected file(s) on the right.

\<\< Remove When a file or files in the box for selected files have been highlighted by clicking or
dragging this button is pushed, the highlighted file(s) will be removed from the box.

Clear Clears everything in the box for selected files when pushed.

end Returns a vector containing all the names in the box for selected files or NULL if the box is
empty. The full path will be appended to the file names.

Value

A vector of character strings containing the full path of each file selected.

12 fileWizard

Author(s)

Jianhua (John) Zhang

See Also

pickFiles, hasPrefix, hasSuffix

Examples

The example here is only run interactively since it requires user
interference which may cause problems if not available:
if(interactive()) {

Call the function to view the current directory
flist <- fileBrowser()
flist

To call the function with a path do
fileBrowser(path = "yourPath")

fileWizard A function that import a text file into R

Description

Given a file name, this function imports the text file into R.

Usage

nn

fileWizard(filename = , fun = read.table, file = "file",
basic = c("header”, "sep"), getFocus = TRUE)

Arguments

filename A character string for the name of the text file to be imported

fun An R function that is going to be used to read the file. Default to read. table

file A character string for the name of the argument to fun that defines the name of
the file to be read

basic A vector of character strings for names of the arguments to fun that will have
separate entry boxes on the widget to be produced. Default to "header" and
llsep"

getFocus getFocus a boolean indicating whether a widget should grab the focus

getLightTW 13

Details

This function is only partially finished and will be improved soon. It currently allows uesrs to view
a given file and change the settings for header and sep arguments of read.table. A file will be read
in based on the values of the two arguments and return.

Value

This function returns a data frame for the file read in.

Author(s)

Jianhua Zhang

References

R News Vol. 1/3, September 2001

See Also

fileBrowser

Examples

if(interactive()) {
Only the interface is displyed as no real file is given
fileWizard()

3

getLightTW Function to create a light weight widget showing a text string

Description
Given a text string and coordinations, this function creates a light weight tcltk widget with showing
the text string passed.

Usage

getLightTW(x, y, text)

Arguments
X x an interger for the horizontal position for the widget to appear
y y an integer for the vertical position for the widget to appear

text text a character string to be show in the widget

14 getWvalues

Details
When the function is invoked, a box containing the text will appear at the position specified by x,
and y. Click the widget makes it disappear.

Value

This function does not return any value

Author(s)

Jianhua Zhang

Examples

if(interactive()){
getlLightTw(200, 200, "Click Me!")
3

getWvalues Obtaining values of widgets on a given widget

Description

This function returns a list containing the values for widgets on a widget created by function wid-
getRender. It takes a list defining the widget and returns a named list containing the values for each
of the widgets.

Usage
getWvalues (W)

Arguments

W W a list of lists defining the widgets that are used to make a widget

Details
For a widget containing 3 widgets each with some associated functionalities, the list is defined as
this:
pWI1 <-list(Name="AAA", Value="bbb", toText=function(x) paste(x,collapse=","), fromText=NULL,
canEdit=TRUE, buttonFun = fileBrowser, buttonText = "Browse")
pW2 <- list(Name="BBB", Value="x,y,z", toText=function(x) paste(x, collapse=","), fromText=NULL,
canEdit=TRUE, buttonFun = Is, buttonText = "List")
pW3 <- list(Name="CCC", Value="ccc", toText=function(x) paste(x, collapse =","), fromText=NULL,
canEdit=TRUE, buttonFun=NULL, buttonText=NULL)
widgetl <- list(wList = list(a = pW1, b = pW2, ¢ = pW3), preFun = function() "Hi", postFun =
function() "Bye")

getWvalues 15

widget] will be used to create a widget with 3 entry boxes. When users modify the values through
the widget created, new values will be kept in the list and widgetl will be returned up exist.
getWvalues is useful to capture the values for each widgets on the widget.

Value

This function returns a list of:

comp1 Description of ‘compl’

comp2 Description of ‘comp2’

Author(s)

Jianhua Zhang

See Also

widgetRender

Examples

Define the widgets
pW1 <- list(Name="AAA", Value="bbb",

toText=function(x) paste(x,collapse= ","), fromText=NULL,
canEdit=TRUE,
buttonFun = fileBrowser, buttonText = "Browse")

pW2 <- list(Name="BBB", Value="x,y,z",
toText=function(x) paste(x, collapse=","), fromText=NULL,
canEdit=TRUE, buttonFun = ls, buttonText = "List")

pW3 <- list(Name="CCC", Value="ccc",
toText=function(x) paste(x, collapse = ","), fromText=NULL,
canEdit=TRUE, buttonFun=NULL, buttonText=NULL)

widgetl <- list(wList = list(a = pW1, b = pW2, c = pW3),
preFun = function() "Hi",
postFun = function() "Bye")

if(interactive()){
tt <- widgetRender(widget1, "try")
getWvalues(tt)

Yelse{
getWvalues(widget1)

16 guess.sep

guess. sep Automatically determines whether a data file has a header and what
delimiter is used to separate data columns

Description

This function reads a few lines from a data text file and determines whether a header exists, what
the delimiter, and what data type each column is for a given file.

Usage

nn

guess.sep(file.name, numLine = 5, seps = , isFile = TRUE)
guess.header(twolLines, sep)

find.type(file.name, sep, header = FALSE, numLine = 5, isFile = TRUE)
charOrNum(vect)

getRowNames(file.name, sep, header, skip)

Arguments
file.name file.name a character string for the name of the file of interests
numLine n an integer or character indicating the total number of lines to be read from the
file for making the determination
seps seps a vector of characters of potential delimiters to be used to make the deter-
mination. Default delimiters include " ", ",", ";", and "\t". Anything inaddition
to the default will have to be included in seps
twolLines twolLines a vector of character string including the first two lines of a file that
will be used to determine whether the file has a header
sep sep a character for the delimiter used to separate columns in a file
vect vect a vector of character or numeric string
header header a boolean indicating whether a file has headers
isFile isFile a boolean that is TRUE when file.name is a file or FALSE an object
skip skip an integer for the number of lines to be skiped using read.table
Details

guess.sep calls guess. sep and find. type to determine the header, delimiter, and column data type
of afile.

charOrNum determines which elements of a vector are numeric or character.

Value
This function returns a list containing

header TRUE if there is a header and FALSE otherwise
separater A character string indicating the delimiter used

type A vector of character strings that are either character or numeric

hasChar 17

Author(s)

Jianhua Zhang

See Also
fileWizard

Examples

Create a temp file

tempData <- matrix(1:20, ncol = 4)

write.table(tempData, file = "tempData", quote = FALSE, sep =
"\t", row.names = FALSE, col.names = TRUE)

guess.sep("tempData”)

unlink("tempData")

hasChar String Prefix and Suffix Checking

Description

These functions return a function for determining if a given prefix, suffix, or set of characters passed
to this function exists in a character string passed to the returned function.

Usage
hasChar(toCheck, what = "")
hasPrefix(aPrefix)
hasSuffix(aSuffix)
Arguments
aPrefix character string to be used as the prefix to be checked for
aSuffix character string to be used as the suffix to be checked for
toCheck toCheck a character string to be used to check to see if it exists in a character
string passed to the returned function
what what a character string defining whether toCheck will be used as a prefix (what
= "prefix"), suffix (what = "suffix"), or a set of characters (what = "") to check
the character string passed to the returned function
Details

The prefix (or suffix) is passed to hasPrefix (or hasSuffix) and then the returned function can be
used to check for the existence of that prefix (suffix) in a string passed to that function.

hasChar is a more general function that determines the existence of prefix, sufix, or a set of a
characters in a character string passed to the returned function.

18 importPhenoData

Value

A function which itself returns a logical (of length 1) indicating if the prefix/suffix is found (TRUE)
or not.

Author(s)

Jianhua (John) Zhang

See Also

pickFiles

Examples

n

Function for checking for a prefix "xxx" :
chkPfun <- hasChar("xxx", what = "prefix")
Function for checking for a suffix ".tex" :
chkSfun <- hasChar(".tex", what = "suffix")

chkPfun("xxx.tex")
chkPfun(".xxx"
chkSfun("xxx.tex")

chkSfun("yyyyy")
chkSfun("yxxx.text")

importPhenoData Functions to input data for an AnnotatedDataFrame object

Description

This functions allow users to read data from an existing file or an R data.frame object and use the
data frame to construct an AnnotatedDataFrame object.

Usage

importPhenoData(fileName, sampleNames = NULL, from = NULL)
createPData(pdata, varList)

writePDRowNames(pdata, sampleNames)

writePhenoTable(base, textWidget, pdata)
makePhenoData(pdata)

convert2PData(phenolList)

getOBIJWidget (type = NULL)

objExists(name, type = NULL)

getSNCNums (sampleNames)

getCovarDesc(varList)

importPhenoData

Arguments

fileName

sampleNames

pdata

base
textWidget
phenolList
type

name

varList

from

Details

19

a character string for the name of a file that is going to be used to build an
AnnotatedDataFrame object.

a vector of character strings for the names of samples. The length of sampleNames
should be the same as the number of rows of an existing file or data.frame if an
AnnotatedDataFrame object is to be created based on a file or data.frame.

a data.frame for the experimental data.

an RTcl object for the base window a widget resides.

an RTcl object for a text box widget.

a list of lists for tclVar() objects.

a character string for the class of a object e.g. data.frame, AnnotatedDataFrame.
a character string for the name of an object.

a list of characters with names being covariate names and values being short
descriptions of covariate names.

a character string indicating how an AnnotatedDataFrame object will be created.
"file" - create from an existing file, "object" - create from an existing data frame
object, "edit" - create by editing an existing AnnotatedDataFrame object, and
"new" create a new AnnotatedDataFrame object from scratch. NULL or any
other values for from will invoke a widget that allows users to select one of the
four means from an interface.

When import a data.frame or AnnotatedDataFrame object, the object to be imported should have
been stored in .GlobelEnv. All the objects of data.frame or AnnotatedDataFrame will be made
available through a browser.

The main widget if importPhenoData that calls other functions/widgets to have the job done.

Package Biobase is required for importPhenoData but the requirement id not forced as it is the only
time the package is used. Users have to make sure that Biobase is available.

Value

An AnnotatedDataFrame object.

Note

This function is intended for use by function read.phenoData of Biobase

Author(s)

Jianhua Zhang

References

AnnotatedDataFrame class in Biobase

20 importWizard

See Also

AnnotatedDataFrame-class

Examples

if(interactive()){
importPhenoData()
3

importWizard A widget for importing data to R

Description

Functions constructs a widget that allows users to inport data file to R. The imported data will be
returned as an R data frame together with the argument list used to import the data using read.table

Usage

importWizard(filename = "", maxRow = 400)
initImportWizard(env)

getTopCan(base, env)

getAFrame(base, env)

finish(env)

getStatelFrame(base, env)

setStatelBFrame(frame, env)

setStatelTFrame(frame, viewer, delims, env, startList)
showData4Statel(widget, env)

setStateIMFrame(frame, env, dataViewer)
getState2Frame(base, env, state = "state2”, reset = FALSE)
setState2MFrame(frame,env)

setSepRadios(frame, env, state = "state2")
setQuotelList(frame, env)

setQuote(listBox, env, state = "state2")
setState2BFrame(frame, env)
showData4State2(canvas, env, state = "state2")

getState3Frame(base, env)

setState3TFrame(frame, env)

setState3BFrame(frame, env)

getName4Data(filename, objType)
writeCol4Matrix(tempFrame, dataFile, colInfos, env)
popStartLine(startList, env)
readFileByLines(filename)

importWizard 21

Arguments

filename filename a character string for the name of the file to be imported. The default
is an empty string and users have to click a browse button to get the file name
through fileBrowser

maxRow maxRow an integer for the maximum number of rows of the data file to be im-
ported to be shown on the widget. The default is 200 rows

env env an R environment object for storing the required information

base base a tcltk window to hold a canvas on the top and frames in the bottom

frame frame a tcktl frame

viewer viewer a tkwin object for a widget

delims delims a character string for a file separater

widget widget a tcltk widget

state state a character string for the state of importing process

listBox listBox a tcltk list box

canvas canvas a tcltk canvas

tempFrame tempFrame a tcltk frame that will be used to hold widget elements

dataFile dataFile a data matrix holding data to be displayed

colInfos colInfos an object of class collnfo with a name, type, and drop slot

reset reset a boolean that is TRUE when the window needs to be reset

dataViewer dataViewer a tkwin object for a list box

objType objType a character string indicating the data type of an object to be saved.
Defaulted to "object"

startList startList a tk text box object

Details

importWizard mimics the interface of MS Excel and collects arguments for the function read. table.
Due to performace concern, a maximum number of rows (maxRow) set by users will be displayed.
Overly long data set may cause slow response of the system.

initImportWizard initializes the interface for importWizard by creating a widget with an empty
top canvas and bottom frame filled with four buttons.

getTopCan Creates a canvas that is going to be filled by a frame created by other functions depend-
ing on the state of the importing process.

getAFrame Gets a frame for the canvas created by initImportWizard based on the current state of
importing process.

finish Finishes the importing process and returns a data frame read from a file using read. table.

getStatelFrame Returns a tcltk frame containing a list box to show a data file read by readLines
and widgets for user imports.

setState1BFrame Fills the bottom frame of the frame created by getStatel1Frame with a list box.

setStatelTFrame Fills the top frame of the frame created by getState1Frame with a list box.

22

importWizard

showData4Statel Populates a tcltk list or text widget with data read using readLines.
setStateTMFrame Fills the mid frame of the frame created by getStatel1Frame.

getState2Frame Returns a tcltk frame containing a canvas to show a data file read by read. table
and widgets for user imports.

setState2MFrame Fills the mid frame of the frame created by getState2Frame.
setSepRadios Renders radio buttons for options of file separators in the frame created by setState2MFrame.

setQuotelList Renders the selection list for the quote used by a data file in the frame created by
setState2MFrame.

setQuote Sets the value when a user has selected the quote used by a data file.
setState2BFrame Fills the bottom frame of the frame created by getState2Frame with a canvas.
showData4State2 Populates the canvas created by setState2BFrame using data read by read. table.

getState3Frame Returns a tcltk frame containing a canvas to show a data file read by read. table
and widgets for user imports.

setState3TFrame Fills the top frame of the frame created by getState3Frame.
setState3BFrame Fills the bottom frame of the frame created by getState3Frame.
getName4Data Takes user input for a file name using a widget.

writeCol4Matrix Creates a tcltk frame with list boxes as columns displaying data of a data matrix.

Value

getTopCan returns a tcltk canvas.

getAFrame returns a tcltk frame.

finish returns a data.frame.

getStatelFrame returns a tcltk frame with several widgets.
setState1BFrame returns the tkwin object of list box.
getState2Frame returns a tcltk frame with several widgets.
getState3Frame returns a tcltk frame with several widgets.

getName4Data returns a character string for the name of a file to be saved.

Author(s)

Jianhua Zhang

See Also

fileBrowser, argsWidget

Examples

if(interactive()){
importWizard()
}

listSelect 23

listSelect Utilities Creating a Widget With Selection Boxes

Description

These functions create a widget with selection boxes allowing users to view and make selections of
items shown on the interface.

Usage

listSelect(aList, topLbl = "Select Elements From The Following List"”,
typeFun = stdType, valueFun = stdView)
writeSelBox(baseW, alList, typeFun = NULL, valueFun = NULL)
writeBut(baseW, butList, butWidth = 6)
writelLabel (baseW, typeFun, valueFun)

Arguments
aList list with names and object pairs (e. g. a = "AAA").
topLbl character string for the text to be shown as a title.
typeFun function that takes an R object as an arguement and returns a description of the
object.
valueFun function that takes an R object as an argument and shows the content of the ob-
ject. The function should get the representation of the object and calls objViewer
to have the representation rendered in a widget.
baseW a window widget to which the selection boxes will be put.
butList a list with names and function pairs that define the name and behavior of buttons
to be put on the widget to be generated
butWidth numerical value specifying the width of buttons to be created.
Details

Both typeFun and valueFun have to take an argument (the R object to be shown). It works well
for the valueFun function to call objViewer () with whatever to be shown passed to objViewer as
an argument.

Value
listSelect() returns a list with the names of the R objects in the original list associated with TRUE
(selected) or FALSE (deselected).

Author(s)

Jianhua Zhang

24 objectBrowser

See Also

objViewer

Examples

alist <- list(a = "AAA", b = c(123, 456, 789),
c = as.data.frame(matrix(1:10, ncol = 2)),
d = stdType)
Since user interference is required, the example code does not run
automatically
if(interactive())
listSelect(alList)

objectBrowser View the Objects in the Workspace

Description
This widget allows uers to view and select objects from the workspace. When the End button is
pressed, the selected objects will be returned as a list.

Usage

objectBrowser(env = .GlobalEnv, fun = noAuto, textToShow = "Select object(s)"”, nSelect = -1)

Arguments
fun function to test whether certain conditions are met by the objects. Only objects
that meet the conditions will be displayed.
textToShow character with the message to be shown on the widget as an instruction.
nSelect integer indicating the number of objects to select. No limitation if nSelect = -1
as per default.
env env a default environment object to start object Browser
Details

This function will return a list of lists with a "name" and "obj" pair for each object selected. The
"name" will be the name of the object and "obj" will be the value of the object. If the object is a
package, a description of the contents of the package will be the value. If the selected object is a
function, a text string of the original code will be the value. A function can be passed to impose
a filtering mechanisms on the objects to be displayed. See function isCharacter for an example of
writing a filtering function for objectBrowser.

The buttons and their expected behavior are

Up Moves one level up along the search list and displays the content in the box for object names on
the left of the widget.

objNameToList 25

Select \>\> When objects in the box for object names have been highlighted by clicking or click-

ing/dragging, this button will display the highlighted object names in the box for selected
objects on the right.

Reset Moves back to .GlobalEnv which is the default starting point of the system.

\<\< Remove When object names in the box for selected objects have been highlighted by clicking
or clicking/dragging and this button is pressed, the highlighted object names will be removed
from the display.

Clear Removes all the object names from the box for selected objects.
Cancel Exits the widget and returns NULL when pressed.

End Returns a 1list of lists with names of the objects in the box for selected objects and their
corresponding values or NULL if nothing exists in the box.
Value

A list of lists with a name and value pair for each object.

Author(s)
Jianhua (John) Zhang

Examples

The example here is only run interactively since it requires user
interference which may cause problems if not available:
if(interactive()) {

Call the function with the isCharacter function.
r <- objectBrowser()
str(r) # show what we've got

}

objNameTolList Convert Object Names to List of Lists with (name, object) Pairs

Description

This function supports objectBrowser by converting a vector of selected object names to a list of
lists with object names and the corresponding objects.

Usage

objNameToList (objNames, env)

Arguments

objNames character vector giving the names of objects.

env an R environment where R objects are stored

26 objViewer

Details

Each list in the list that is going to be returned contains a name for the object and the real value
of the object. If the object name is a package name, the contents of the package will be the value
associated with the package name.

Value

A list of lists each with a name and an obj component.

Author(s)
Jianhua (John) Zhang

See Also

objectBrowser

Examples

Create two R objects
objl <- c("aaa", "bbb", "ccc")
envl <- new.env(parent = baseenv())

Get a list containing the two objects
nl <- objNameTolList(c("obj1", "env1"), parent.frame())
str(nl)

objViewer Show the Content of an R Object in a Widget

Description

This function takes an R object and shows the content in a list box on a widget.

Usage
objViewer(toView, width = 40, height = 10)

Arguments

toView R object whose content is to be viewed

width, height positive values specifying the width and height of the widget.

Details

The function makes no check of the R object passed and will show whatever the object will be
shown when the name is type at an R prompt. Formatting is required before passing the R object to
the function.

pExplorer

Value

This function does not return any value

Author(s)

Jianhua Zhang

See Also

listSelect

Examples

Since user interference is required, the example code only runs

interactively
if(interactive())

objViewer("Just to show that the content gets posted”)

27

pExplorer A widget to explore R packages

Description

This widget allows users to explore R packages in the R library and try the example code.

Usage

pExplorer(pkgName = "" pkgPath = "",
TRUE)

getPkgContents(pkgName, exclude
getFileContents(path, fileName)
getExclude()

getRPkgs (pkgPath)
hasDesc(pkgPath)
procRda(fileName)
procHelp(fileName)

procPDF (fileName)

procHTML (fileName)

Arguments

getExclude())

getExclude(), getFocus

pkgPath pkgPath a character string for the path where R packages are loacted

path path a character string for the path of a given file

pkgName pkgName a character string for the name (including path) of an R package to be

explored

fileName fileName a character string for the name (including path) of a file of interest

28 pExplorer

exclude exclude a vector of character strings containing the directory or file names that
will not be available for explorering. Package names have to have a system file
separator appanded to the end (e. g. "/" under Unix)

getFocus getFocus a boolean indicating whether a widget should grab the focus

Details

With or without a package name, the widget will have all the installed R package names in a drop-
down list for user to select. As the default, the first element from 1list.files will be selected and
the contents displayed if no package name is given.

getPkgContents gets the contents of a given R package and getFileContents gets the contents
of a givan file.

getRPkgs, hasDesc, procRda, procHelp, procPDF, and procHTML are functions called by pExplorer
to process different file or directory types.

Value

The widget returns invisiable()

Author(s)

Jianhua Zhang

References

Documentation on R packages

See Also

eExplorer

Examples

require("tkWidgets"”) || stop("tkWidgets not available™”)
getPkgContents(.libPaths(), "tkWidgets")
getFileContents(file.path(path.package("tkWidgets"”), "help"),
list.files(file.path(path.package("tkWidgets”), "help”))[1])
if(interactive()){
pExplorer()
}

pickFiles 29

pickFiles Pick Elements From Vector of Strings

Description
Takes a vector of strings and then checks to see if the predefined conditions are met for each element.
Elements that meet the conditions will be included in the vector returned and the others not.
Usage

pickFiles(fileNames, fun = function(x) TRUE,
prefix = NULL, suffix = NULL, exclude = .Platform$file.sep)

Arguments

fileNames vector of strings that will be checked.

fun function to be used to check the strings. Default is no checking.

prefix character used to check to see if strings in the vector have the prefix.

suffix character used to check to see if strings in the vector have the suffix.

exclude character string with which strings in the vector will be excluded form the check-

ing. The default is to exclude all the directory names and always return them.

Details

The function fun will be used only when both prefix and suffix are NULL. If a prefix is not NULL,
that prefix will be checked. A suffix is going to be checked when prefix is NULL.

Value

Character vector of file names satisfying the conditions.

Author(s)

Jianhua Zhang

See Also

fileBrowser, hasPrefix, hasSuffix

Examples

Return every thing from the current directory
pickFiles(list.files())

Create a temp file
file.create("myFile")

30 pickltems

Returns subdirectory names and file names with a prefix of "my"
pickFiles(list.files(), prefix = "my")

create another temp file
file.create("temp.tex")

Return subdirectory names and file names with a suffix of ".tex"
pickFiles(list.files(), suffix = ".tex")

clearn up
unlink("myFile")
unlink("temp.tex")

pickItems Function that builds a widget to allow users to select items from avail-
able sources

Description

Given a vector of characters, this function creates a widget containing list box to allow users to
visually select elements from the vector.

Usage

pickItems(items, titlel = "Items to pick”, title2 = "Picked items")

Arguments
items items a vector for the available source elements to be selected
titlel title1 a character string for the title of the list box that shows the list of items
to be selected from
title2 title2 a character string for the title of the list box that shows the items that
have been selected
Details

This function is to provide visual support to other functions and thus may not have much use other-
wise.

Value

This function returns a vector of select items.

Author(s)

Jianhua Zhang

pickObjs 31

References

R tcltk

See Also

dataViewer

Examples

options <- paste(”Option”, 1:10, sep = "")
if(interactive()){

pickItems(options)
3

pickObjs Determine What to Be Sent to a Widget

Description

This function takes a vector of object names and determines what will be sent to (e.g. the objectBrowser)
widget for display based on the default and user input requirements.

Usage
pickObjs(objNames, fun = noAuto)
noAuto(x)
Arguments
objNames objNames character vector with object names to be processed
fun fun function checking the object names for satisfaction of certain requirement
X x a character string for the name of an object
Details

Packages and environments are always displayed.

Value

Character vector of object names that satisfy the requirements.

Author(s)
Jianhua (John) Zhang

See Also

objectBrowser

32 setArgsList

Examples

Returns names of package and environment objects in the search path.
pickObjs(search())

setArgsList Functions to support importWizard

Description

The functions are to support importWizard and may not have much practical use otherwise.

Usage

setArgsList(filename, env, isFile = TRUE, init = TRUE)
whatDeli(delimiter)

getMoreArgs()

assignArgs(value, env)

getArgs(env)

assignShowNum(value, env)

getShowNum(env)

assignCState(value, env)

getCState(env)

assignColInfo(value, env)

getColInfo(env)

setColInfos(types, env)

changeState(canvas, backBut, nextBut, env, forward = TRUE, endBut, viewBut)
setNewState(env, backBut, nextBut, forward = TRUE, endBut, viewBut)
addArgs(env)

dropArgs(env)

setSkip(widget, env, state = "statel")

moreArgs(env)

dropColumn(index, env)

setColName(index, entryBox, env)

setColType(index, entryBox, env)
assignlLineData(lineData, env)

getLineData(env)
Arguments
filename filename a character string for the full name of a file
env env an R environment object for storing information
delimiter delimiter a character string for the delimiter whose letter representation is
sought
value value a character or numerical value to be assigned to a variable

backBut backBut a tkwin object for the button that shifts back to the previous state

setArgsList 33

nextBut nextBut a tkwin object for the button that shifts to the next state
forward forward a boolean indicating the direction of state change
widget widget a tcltl widget

state state a character string for the state of importing process

index index an integer for the index of the list for column information
entryBox entryBox

a tcltk entry box.

canvas canvas a tcltk canvas
types types a vecter of string indicating the types of data columns
lineData lineData a vector of character strings read in using readLines
endBut endBut a tkwin object for the button that ends the process when pressed
viewBut viewBut a tkwin object for the button that refresh the window when pressed
init init a boolean that is TRUE when the widget is first set up and FALSE other-
wise
isFile isFile a boolean that is TRUE if fileName is a file
Details

setArgsList calls function guess. sep to figure out the the header, sep, and data type of a file and
sets the values for argument list and collnfo.

whatDeli gets the word representation of delimiters (e.g. tab for "\t").

getMoreArgs generates a widget using widgetTools to collect some of the arguments for read.table.
assignArgs updates "argsList" stored in a predefined environment.

getArgs Gets "argsList" from a predefined environment.

assignShowNum Updates the value for "showNum" (number of rows to show in the interface.
getShowNum Gets the value for "showNum" (number of rows to show in the interface.

link{assignCState} Updates the value of "currentState" that is stored in a predefined environ-
ment.

getCState Gets the vlaue of "currentState" that is stored in a predefined environment.

assignColInfo Updates the values of "collnfos" (column information) that is stroed in a predefined
environment.

getColInfo Gets the values of "collnfos" (column information) that is stroed in a predefined envi-
ronment.

setColInfos Creates collnfo objects and sets the value of ’collnfos’ list.
changeState changes the state and thus the interface of a widget.
setNewState sets the state of a importing process.

addArgs adds a new state to the argument list for states.

dropArgs removes a state from the argument list for states.

setSkip Sets the value for the number of lines to skip when readling a data file.

34 stdType

moreArgs Gets some of the arguments for importing data using read. table.

dropColumn Sets the index values for data columns that are going to be droped when read using
read.table.

setColName Sets the column names for a data file by getting column names from correct entry
boxes.

setColType Sets the column type for a data file by getting column type information from correct
entry boxes.

Value

whatDeli returns a character string.

getMoreArgs returns a list of arguments.

getArgs returns a list of the arguments for read.table.
getShowNum returns an integer for the number of rows to show.
getCState returns a character string for the current state.

getColInfo returns a collnfo object contains column information.

Author(s)

Jianhua Zhang

See Also

importWizard

Examples

No example is given as functions require the set up of the working
environment.

stdType Provide Default Behavior for listSelect Helper Functions

Description

The function listSelect takes two functions which define how the type information and con-
tent of R objects will be shown on the widget created by listSelect. Functions stdType() and
stdView() provide the default behavior.

Usage

stdType(toCheck)
stdView(toView)

tkMIAME 35

Arguments

toCheck, toView arbitrary R object.

Details

These functions can be viewed as exmaples of defining functions for the typeFun and valueFun
arguments of the listSelect function.

Value

stdType() returns a character string describing the type of the R object.
stdView()

Author(s)

Jianhua Zhang

See Also

listSelect

Examples

stdType(123)
stdType("What am I")

str(mydf <- data.frame(x = 2:8, ch = letters[1:7]))
stdType(mydf)# "list”
stdType(stdType)

if(interactive()) {## stdView() needs UI:
stdView(1:10)
stdView(mydf)

3

tkMIAME Simple Interface to enter experimental design information

Description

This function provides a widget for users to enter experimental design MIAME information.

Usage

tkMIAME ()

36 tkMIAME

Details

This widget provides an interface to enter experimental information following the MIAME (Mini-
mum Information About a Microarray Experiment) standard.

A draft of the latest document (v. 1.1) is http://www.mged.org/Workgroups/MIAME/miame_1.
1.html

Brazma et al. divide the MIAME into 6 sections 1. Experimental design, 2. Array design, 3.
Samples, 4. Hybridizations, 5. Measurements, and 6. Normalization controls This widget is for the
first section. We ask for the user to enter: experimenter name, laboratory, contact information, a
single-sentence experiment title, an abstract describing the experiment, URLs. This slot could also
include a formal statistical description of the experimental design (e.g. using factors). Some of this
info is already stored in AnnotatedDataFrame or elsewhere.

The function returns a list that is intended for the creation of an object of class MTAME. However, we
return a list so that the function can work independently of the Biobase package.

Value

A list containing entries:

ExperimentName character string

LabName character string
ContactInfo character string
ExperimentTitle

character string

Description character string
URL character string
Author(s)
Majnu John
References

“Minimum information about a microarray experiment (MIAME)-toward standards for microarray
data”, A. Brazma, et al., Nature Genetics, vol. 29 (December 2001), pp. 365-371, http://www.
mged.org/Workgroups/MIAME/miame_1.1.html

See Also

MIAME

http://www.mged.org/Workgroups/MIAME/miame_1.1.html
http://www.mged.org/Workgroups/MIAME/miame_1.1.html
http://www.mged.org/Workgroups/MIAME/miame_1.1.html
http://www.mged.org/Workgroups/MIAME/miame_1.1.html

tkphenoData 37

tkphenoData Simple interface to enter AnnotatedDataFrame

Description

This widget provides an interface to create AnnotatedDataFrame-class instances.

Usage

tkphenoData(sampleNames)

Arguments

sampleNames sampleNames for which we will enter phenotypic data.

Details

The function returns a list of character matrices intended to be used as the pData and varLabels
slots of an instance of AnnotatedDataFrame-class.

Value

A list of two matrices

pData a character matrix containing phenotypic data.
varLabels a character vector with covariate description.
Author(s)
Majnu John
See Also

AnnotatedDataFrame-class

tkSampleNames Simple interface to associate sample names with files

Description
This widget provides an interface to enter names to be associated with files containing array expres-
sion information related to a particular sample.

Usage

tkSampleNames(..., filenames = character(@))

38 values. Widget

Arguments
the filenames to be associated with a sample name, supplied individually and/or
as a character vector
filenames a character vector of filenames to be associated with a sample name.
Details

AnnotatedDataFrame-class objects will use sample names as row names for its pData. The col-
names of the expression matrices in ExpressionSet-class use this as well. Many times, each of
these columns are obtained from a file. Rather than use the, sometimes ugly, filename we can use
the sample names that this interface associates with each file.

The function returns a character matrix intended to be used to create sample names in Annotated-
DataFrame and ExpressionSet. However, the function can be used independently of the Biobase
package.

Value
A character matrix with the first column the filenames the second column the sample names to
associate.

Author(s)

Majnu John

See Also

AnnotatedDataFrame-class

values.Widget Deal with Names and Values of Widget Created by widgetRender()

Description

Functions in this group print or list the names or/and values of the widget elements on a widget
created by widgetRender ().

Usage

values.Widget(x)

Arguments

X A list (print.pWidget) or list of lists(print. Widget, values.Widget) that represent-
ing a widget element (list) on a widget or a widget (list of lists) generated by
using the function widgetRender.

values. Widget 39

Details

print.pWidget takes a list defining a widget element on a widget generated by using the function
widgetREnder. An example of a valid list will be:

pW1 <-list(Name="AAA", Value="bbb", toText=function(x) paste(x,collapse =","), fromText=NULL,
canEdit=TRUE, buttonFun = fileBrowser, buttonText = "Browse")

print. Widget and values.Widget take a list of lists defining all the widget elements on a widget
generated using the function widgetRender. An example of a valid list will be:

pW1 <-list(Name="AAA", Value="bbb", toText=function(x) paste(x,collapse =","), fromText=NULL,
canEdit=TRUE, buttonFun = fileBrowser, buttonText = "Browse")

pW2 <- list(Name="BBB", Value="x,y,z", toText=function(x) paste(x, sep=","), fromText=NULL,
canEdit=TRUE, buttonFun = Is, buttonText = "List")

pW3 <-list(Name="CCC", Value="ccc", toText=function(x) paste(x, collapse =","), fromText=NULL,
canEdit=TRUE, buttonFun=NULL, buttonText=NULL)

widget] <- list(wList = list(a = pW1, b = pW2, ¢ = pW3), preFun = function() "Hi", postFun =
function() "Bye")
Value

returnList values.Widget returns a list of lists each with the name and value of an entry box
on the widget created.

Author(s)
Jianhua (John) Zhang

See Also

widgetRender

Examples

Create the lists and list of lists
pW1 <- list(Name="AAA", Value="bbb",
toText=function(x) paste(x,collapse = ","),
fromText=NULL, canEdit=TRUE, buttonFun = fileBrowser,
buttonText = "Browse")

non

pW2 <- list(Name="BBB", Value="x,y,z", toText=function(x) paste(x, sep=","),
fromText=NULL, canEdit=TRUE, buttonFun = ls,
buttonText = "List")

pW3 <- list(Name="CCC", Value="ccc",
toText=function(x) paste(x, collapse = ","),
fromText=NULL, canEdit=TRUE, buttonFun=NULL,
buttonText=NULL)

widgetl <- list(wList = list(a = pW1, b = pW2, c = pW3),
preFun = function() "Hi",

40 vExplorer

postFun = function() "Bye")

Define the classes
class(pW1) <- c("pWidget”, "textbox")
class(widget1) <- "Widget"”

Call the funcitons
print.pWidget(pW1)
print.Widget(widget1)
values.Widget(widget1)

vExplorer An interface to interact with vignette code chunks

Description

This function provides a widget for viewing, editing, and executing code chunks of vignettes.

Usage
vExplorer(title = "BioC Vignettes Explorer"”, pkgName = "", font =
ifelse(.Platform$0S.type == "unix"”, "arial 14", "arial 11"))

viewVignette(title, packName, vigPath, font = "arial 11")

Arguments
title character string for the name to be displayed as the title of the widget to interact
with code chunks.
pkgName vector (of length 1 for pkgName) of character strings for names of Bioconductor
packages the code chunks of whose vignettes will be explored.
packName same as pkgName
vigPath character string for the full qualified name of a vignette to be explored.
font a character string for the name and size of the font to be used for text rendered
on the widgets (e. g. "arial 11")
Details

By default, packNames = "", all the installed packages will be examined and those that have vi-
gnettes will be listed to allow users to choose from.

Value

This function does not return any useful value.

Note

This function is part of the Bioconductor project at Dana-Faber Cancer Institute to provide Bioin-
formatics functionalities through R.

widgetRender 41

Author(s)

Jianhua Zhang

References

http://www.bioconductor.org

Examples

if(interactive()){
require("DynDoc”, character.only = TRUE)
require(”tools”, character.only = TRUE)
require("widgetTools”, character.only = TRUE)
vExplorer()
path <- path.package("widgetTools")
viglist <- pkgVignettes("widgetTools")

viewVignette(”"BioC VignetteBrowser"”, "widgetTools"”, viglList$docs)
3
widgetRender Render a Tk Widget from Given Specifications
Description

This function takes a list that specifies the appearance and behavior of a Tk widget and renders the
widget accordingly.

Usage

widgetRender(iWidget, tkTitle)

Arguments
iWidget list of lists that specifies the appearance and behavior of the widget to be ren-
dered.
tkTitle character string for the text to appear in the title bar of the widget to be rendered.
Details

The widget to be rendered normally consists of frames with three widgets arranged in a row. The
first widget is normally a label for the name of the second widget. The second widget can be any
type of widgets. The third widget is a button widget that defines some behavior to be associated
with the second widget. For example, a button that will cause something to be displayed in the
second widget when pressed. The third widget can be missing if no such association is required.

The widget to be rendered also has two buttons at the bottom part of the widgets. The followings
are the name and behavior of the buttons:

http://www.bioconductor.org

42 widgetRender

Cancel - The unmodified list passed to the function at the time of invocation will be returned when
pressed.

End - A modified version of the iWidget argument will be returned when pressed. The returned
list has the same number of elements as the original one but with the values modified based
on the entries in corresponding widgets items.

Value

A list of lists with the original values of the passed modified or unmodified depending on whether
the cancel or end button pressed.

Author(s)
Jianhua (John) Zhang

References
Peter Dalgaard (2001) A Primer on the R-Tcl/Tk Package; R News 1 (3), 27-31 http://CRAN.
R-project.org/doc/Rnews/

See Also

fileBrowser, objectBrowser.

Examples

Create the list to be passed
pW1 <- list(Name="AAA", Value="bbb",

toText=function(x) paste(x,collapse= ","), fromText=NULL,
canEdit=TRUE,
buttonFun = fileBrowser, buttonText = "Browse")

pW2 <- list(Name="BBB", Value="x,y,z",
toText=function(x) paste(x, collapse=","), fromText=NULL,
canEdit=TRUE, buttonFun = ls, buttonText = "List")

pW3 <- list(Name="CCC", Value="ccc",
toText=function(x) paste(x, collapse = ","), fromText=NULL,
canEdit=TRUE, buttonFun=NULL, buttonText=NULL)

widgetl <- list(wList = list(a = pW1, b = pW2, c = pW3),
preFun = function() "Hi",
postFun = function() "Bye")

Call the function

if(interactive()){
X <- widgetRender(widget1, "Test Widget")
str(x)

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

WName 43

WName Accessors for Primitive Widget Objects

Description

Currently primitive widget objects (pwidgets) are implemented as lists, but this will change.
Users should only rely on these accessors functions, not the implementation.

Usage

WName (x)

WValue(x)

WValue(x) <- value
WtoText (x)
WfromText (x)
WcanEdit(x)
WbouttonText(x)
WbuttonFun(x)
WwList(x)

WwList(x) <- value
WLValue(x, index)
WLValue(x, index) <- value

WRButtons(x)
WpreFun(x)
WpostFun(x)
WENnd(x)
Arguments
X list of lists with a Name, Value, toText, fromText, canEdit, buttonText, button-
Fun, preFun, postFun element.
index integer or character string as an index or name for the list in the first list of a list
of lists for a widget.
value An R data type that is going to be used to update the value.
Details

WName (x) returns the Name element of x. Walue(x) returns the Value element of x. WValue(x)
<- value will change the Value element of x to value.

WtoText(x) returns the toText element of x. WfromText (x) returns the fromText element of x.
WcanEdit (x) returns the canEdit element of x.

WbuttonText(x) returns the buttonText element of x. WbuttonFun(x) returns the buttonFun
element of x. WwList(x) returns the wList element of x. WwList <- value will update the wList
element of a Widget list with value.

WLValue(x, index) returns a list indicated by the index in the wList of a widget list. WLValue(x,
index) <- value will update indicated by the index in the wList of a widget list with the value.

44 WName

WpreFun(x) returns the preFun element of x. WpostFun(x) returns the post element of x. WEnd (x)
returns the end element of x.
Value

A character string or R function represented by the element of the list whose value is to be retrieved.

Author(s)
Jianhua (John) Zhang

See Also

widgetRender for references etc.

Examples

Create the list of lists
pW1 <- list(Name="AAA", Value="bbb",

toText = function(x) paste(x,collapse = ","),
fromText = NULL, canEdit = TRUE,
buttonFun = 1s, buttonText = "Browse")

widgetl <- list(wList = list(a = pW1),
preFun = function() "Hi",
postFun = function() "Bye")

Call the functions

WName (pW1)

WValue(pW1)

WValue(pW1) <- "111"

WtoText(pW1)

WfromText (pW1)

WcanEdit (pW1)

WbuttonText (pW1)

WbuttonFun(pW1)

WwList(widget1)

WwList(widgetl) <- list(Name = "New list”, Value = "New value")
WLValue(widget1, 1)
WLValue(widget1, 1) <- "New value”
WpreFun(widget1)

WpostFun(widget1)

WEnd(widget1)

Index

* classes addArgs (setArgsList), 32
colInfo-class, 5 AnnotatedDataFrame, 36

x interface appendSepDir, 2
argsWidget, 4 args2XML, 3
dataViewer, 6 argsWidget, 4, 5, 8, 22
dbArgsWidget, 7 assignArgs, 33
DPExplorer, 8 assignArgs (setArgslList), 32
eExplorer, 9 assignCollInfo, 33
fileBrowser, 10 assignColInfo (setArgslList), 32
fileWizard, 12 assignCState (setArgsList), 32
getlLightTw, 13 assignlLineData (setArgslList), 32
importPhenoData, 18 assignShowNum, 33
importWizard, 20 assignShowNum (setArgslList), 32
listSelect, 23
objectBrowser, 24 changeState, 33
objViewer, 26 changeState (setArgsList), 32
pExplorer, 27 charOrNum, /16
pickItems, 30 charOrNum (guess.sep), 16
tkMIAME, 35 colInfo (colInfo-class), 5
tkphenoData, 37 colInfo-class, 5
tkSampleNames, 37 colName (colInfo-class), 5
vExplorer, 40 colName, colInfo-method (colInfo-class),
widgetRender, 41 5

* manip colName<- (colInfo-class), 5
appendSepDir, 2 colName<-,colInfo-method
hasChar, 17 (colInfo-class), 5
objNameTolList, 25 colType (colInfo-class), 5
pickFiles, 29 colType, colInfo-method (colInfo-class),
pickObjs, 31 5
values.Widget, 38 colType<- (colInfo-class), 5
WName, 43 colType<-,colInfo-method

* misc (colInfo-class), 5
args2XML, 3 convert2PData (importPhenoData), 18
getWvalues, 14 createPData (importPhenoData), 18
guess.sep, 16
setArgsList, 32 dataViewer, 6, 31
stdType, 34 dbArgsWidget, 7

.GlobalEnv, 25 DPExplorer, 8, 9

dropArgs, 33
addArgs, 33 dropArgs (setArgslList), 32

45

46

dropColumn, 34

dropColumn (setArgslList), 32

dropOrNot (colInfo-class), 5

dropOrNot,colInfo-method
(colInfo-class), 5

dropOrNot<- (colInfo-class), 5

dropOrNot<-,colInfo-method
(colInfo-class), 5

eExplorer, 9,9, 10, 28

fileBrowser, 3, 10, 13, 21, 22, 29, 42
fileWizard, 4, 12, 17

find. type, 16

find. type (guess.sep), 16
finish, 21, 22

finish (importWizard), 20
formals, 4

formatArg, 4, 5

formatArg (argsWidget), 4
funcs2Char, 5

funcs2Char (argsWidget), 4

getAFrame, 21, 22

getAFrame (importWizard), 20
getArgs, 33, 34

getArgs (setArgslList), 32
getColInfo, 33, 34

getColInfo (setArgsList), 32
getCovarDesc (importPhenoData), 18
getCState, 33, 34

getCState (setArgsList), 32
getExclude (pExplorer), 27
getExCode, 10

getExCode (eExplorer), 9
getFileContents, 28
getFileContents (pExplorer), 27
getHelpFile, 10

getHelpFile (eExplorer), 9
getLightTw, 13

getLineData (setArgslList), 32
getMoreArgs, 33, 34

getMoreArgs (setArgsList), 32
getName4Data, 22

getName4Data (importWizard), 20
getOBIWidget (importPhenoData), 18
getPkgContents, 28
getPkgContents (pExplorer), 27
getPWidget, 5

getPWidget (argsWidget), 4
getRowNames (guess.sep), 16
getRPkgs, 28

getRPkgs (pExplorer), 27
getShowNum, 33, 34

getShowNum (setArgslList), 32
getSNCNums (importPhenoData), 18
getStatelFrame, 21, 22
getStatelFrame (importWizard), 20
getState2Frame, 22
getState2Frame (importWizard), 20
getState3Frame, 22
getState3Frame (importWizard), 20
getSymbol, 5

getSymbol (argsWidget), 4
getTopCan, 21, 22

getTopCan (importWizard), 20
getToplLevel, 9

getTopLevel (DPExplorer), 8
getTrueNullNa, 5

getTrueNullNa (argsWidget), 4
getWvalues, 14

guess.header (guess.sep), 16
guess.sep, 16, 16, 33

hasChar, 17
hasDesc, 28

hasDesc (pExplorer), 27
hasPrefix, 11, 12,29
hasPrefix (hasChar), 17
hasSuffix, 11, 12,29
hasSuffix (hasChar), 17

importPhenoData, 18
importWizard, 5-7, 20, 21, 34
initImportWizard, 21

INDEX

initImportWizard (importWizard), 20

list, 25,42, 43
list.files, 28
listSelect, 23, 27, 34, 35
loadDataPkg, 9

loadDataPkg (DPExplorer), 8

makePhenoData (importPhenoData), 18

MIAME, 36
moreArgs, 34
moreArgs (setArgsList), 32

noAuto (pickObjs), 31

INDEX

objectBrowser, 24, 25, 26, 31, 42
objExists (importPhenoData), 18
objNameTolist, 25
objViewer, 23, 24, 26

pExplorer, 27, 28
pickFiles, 3,12, 18,29
pickItems, 30

pickObjs, 31

popStartLine (importWizard), 20
print.pWidget (values.Widget), 38
print.Widget (values.Widget), 38
procHelp, 28

procHelp (pExplorer), 27
procHTML, 28

procHTML (pExplorer), 27
procPDF, 28

procPDF (pExplorer), 27
procRda, 28

procRda (pExplorer), 27

read.table, 12, 16, 21, 22, 34
readFileBylLines (importWizard), 20
readLines, 21, 33

setArgslList, 32, 33

setColInfos, 33

setColInfos (setArgslList), 32
setColName, 34

setColName (setArgslList), 32
setColType, 34

setColType (setArgslList), 32
setNewState, 33

setNewState (setArgslList), 32
setQuote, 22

setQuote (importWizard), 20
setQuotelist, 22

setQuotelList (importWizard), 20
setSepRadios, 22

setSepRadios (importWizard), 20
setSkip, 33

setSkip (setArgsList), 32
setState1BFrame, 21, 22
setStatelBFrame (importWizard), 20
setState1MFrame, 22
setStatelMFrame (importWizard), 20
setStatel1TFrame, 2/
setStatelTFrame (importWizard), 20
setState2BFrame, 22

setState2BFrame (importWizard), 20
setState2MFrame, 22
setState2MFrame (importWizard), 20
setState3BFrame, 22
setState3BFrame (importWizard), 20
setState3TFrame, 22
setState3TFrame (importWizard), 20
showData4Statel, 22
showData4Statel (importWizard), 20
showData4State2, 22
showData4State2 (importWizard), 20
stdType, 34

stdView (stdType), 34

tkMIAME, 35
tkphenoData, 37
tkSampleNames, 37
TRUE, 18

values.Widget, 38
vExplorer, 10, 40
viewVignette (vExplorer), 40

WbuttonFun (WName), 43
WbuttonText (WName), 43
WcanEdit (WName), 43

WEnd (WName), 43

WfromText (WName), 43
whatDeli, 33, 34

whatDeli (setArgslList), 32
widgetRender, 15, 38, 39, 41, 44
WLValue (WName), 43

WLValue<- (WName), 43
WName, 43

WpostFun (WName), 43

WpreFun (WName), 43

WRButtons (WName), 43
writeBut (listSelect), 23
writeCol4Matrix, 22
writeCol4Matrix (importWizard), 20
writelLabel (1listSelect), 23

writePDRowNames (importPhenoData), 18
writePhenoTable (importPhenoData), 18

writeSelBox (listSelect), 23
WtoText (WName), 43

WValue (WName), 43

WValue<- (WName), 43

WwList (WName), 43

WwList<- (WName), 43

47

	appendSepDir
	args2XML
	argsWidget
	colInfo-class
	dataViewer
	dbArgsWidget
	DPExplorer
	eExplorer
	fileBrowser
	fileWizard
	getLightTW
	getWvalues
	guess.sep
	hasChar
	importPhenoData
	importWizard
	listSelect
	objectBrowser
	objNameToList
	objViewer
	pExplorer
	pickFiles
	pickItems
	pickObjs
	setArgsList
	stdType
	tkMIAME
	tkphenoData
	tkSampleNames
	values.Widget
	vExplorer
	widgetRender
	WName
	Index

