Package ‘scPipe’

November 4, 2025

Title Pipeline for single cell multi-omic data pre-processing
Date 2022-10-12

Version 2.11.0

Type Package

biocViews ImmunoOncology, Software, Sequencing, RNASeq,
GeneExpression, SingleCell, Visualization, SequenceMatching,
Preprocessing, QualityControl, GenomeAnnotation, Datalmport

Description A preprocessing pipeline for single cell RNA-seq/ATAC-
seq data that starts from the fastq files and produces a feature count matrix with associated qual-
ity control information. It can process fastq data generated by CEL-seq, MARS-seq, Drop-
seq, Chromium 10x and SMART-seq protocols.

Depends R (>=4.2.0), SingleCellExperiment
LinkingTo Rcpp, Rhtslib (>=1.13.1), testthat

Imports AnnotationDbi, basilisk, BiocGenerics, biomaRt, Biostrings,
data.table, dplyr, DropletUtils, flexmix, GenomicRanges,
GenomicAlignments, GGally, ggplot2, glue (>= 1.3.0), grDevices,
graphics, hash, IRanges, magrittr, MASS, Matrix (>= 1.5.0),
mclust, methods, MultiAssayExperiment, org.Hs.eg.db,
org.Mm.eg.db, purrr, Repp (>=0.11.3), reshape, reticulate,
Rhtslib, rlang, robustbase, Rsamtools, Rsubread, rtracklayer,
SummarizedExperiment, S4 Vectors, scales, stats, stringr,
tibble, tidyr, tools, utils, vctrs (>= 0.5.2)

SystemRequirements C++11, GNU make
License GPL (>=2)

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation yes
URL https://github.com/LuyiTian/scPipe

BugReports https://github.com/LuyiTian/scPipe

1

https://github.com/LuyiTian/scPipe
https://github.com/LuyiTian/scPipe

Suggests BiocStyle, DT, GenomicFeatures, grid, igraph, kableExtra,
knitr, locStra, plotly, rmarkdown, RColorBrewer, readr,
reshape2, RANN, shiny, scater (>= 1.11.0), testthat, xml2, umap

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/scPipe
git_branch devel

git_last commit fbfb464

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-11-03

Author Luyi Tian [aut],
Shian Su [aut, cre],
Shalin Naik [ctb],
Shani Amarasinghe [aut],
Oliver Voogd [aut],
Phil Yang [aut],
Matthew Ritchie [ctb]

Maintainer Shian Su <su.s@wehi.edu.au>

Contents

.qq_outliers_robust o
ANNO_IMPOIt v v e ottt e e e e
anno_to_saf
calculate_QC_metrics e
cell_barcode_matching,
check_barcode_start_position.
convert_geneid
create_processed_reportl
Create_report v v v vt e e e e
create_sce_by_dir oL
demultiplex_info o
detect_outlier
feature info
feature_type
gene_id_type
get_chromosomes o
GEL_EICC_anmo v e e e e e e e
get_genes_by_ GO.
get_read_str L.
OFZANISIMLSCE .« © . v v v e e e e e e e e e e e e
plot_demultiplex
plot_mapping
plot_QC_pairs
plot_UMI_dup

Contents

Contents

Index

3

QC_MELriCS o o e e e e e e e e e e e e e e 25
read_cells L 26
remove_outliers e e 27
SCPipe . . . e 27
sc_aligning e 28
sc_atac_bam_tagging 29
sc_atac_cell_calling 30
sc_atac_create_cell_qc_metrics L. 32
sc_atac_create_fragments L. L 32
SC_Atac_Create_rePOort v v v vt e e e e e e e e e e e e e e 34
SC_AtAC_CIALE_SCE . » v v v v v o v e v e e e e e e e e e e e e e e e 34
sc_atac_emptydrops_cell_calling o 35
sc_atac_feature_counting 36
sc_atac_filter_cell_calling 38
sc_atac_peak_calling e 39
sc_atac_pipeline 40
sc_atac_pipeline_quick_test 43
sc_atac_plot_cells_per_feature L 43
sc_atac_plot_features_per_cell 44
sc_atac_plot_features_per_cell_ordered L. 44
sc_atac_plot_fragments_cells_per_feature oL 45
sc_atac_plot_fragments_features_per_cell L. 45
sc_atac_plot_fragments_per_cell oo o 46
sc_atac_plot_fragments_per_feature L. 46
sc_atac_remove_duplicates L. e 47
sc_atac_thidf e e 47
sc_atac_trim_barcode, 48
sc_correct_bam_bc e 50
sc_count_aligned_bam 51
sc_demultiplex 53
sc_demultiplex_and_count 54
sc_detect_bC. e e e e e 56
SC_EXONM_MAPPING + . v v v v v v e e e e e e e e e e e e e e e e e e 57
SC_EENE_COUNLING« v v et ittt e e e et e e e e 58
sc_getumap_data. e e e e e e 59
SCUNEEEIAte v o o e e e e e e e e e e e e e e 60
sc_interactive_umap_plot L. 61
sc_mae_plot_umap e e e e e e 61
sc_sample_data L L e 62
SC_SAMPIE_(C . .« v v e e e e e e e e e 63
sc_trim_barcode e 64
TEIDF.custom e e e 65
UMI_duplication e e e e e 66
UMI_dup_info 67
68

4 anno_import

.gq_outliers_robust Detect outliers based on robust linear regression of QQ plot

Description

Detect outliers based on robust linear regression of QQ plot

Usage

.qg_outliers_robust(x, df, conf)

Arguments
X a vector of mahalanobis distance
df degree of freedom for chi-square distribution
conf confidence for linear regression

Value

cell names of outliers

anno_import Import gene annotation

Description

Because of the variations in data format depending on annotation source, this function has only been
tested with human annotation from ENSEMBL, RefSeq and Gencode. If it behaves unexpectedly
with any annotation please submit an issue at www.github.com/LuyiTian/scPipe with details.

Usage

anno_import(filename)

Arguments

filename The name of the annotation gff3 or gtf file. File can be gzipped.

Details

Imports and GFF3 or GTF gene annotation file and transforms it into a SAF formatted data.frame.
SAF described at http://bioinf.wehi.edu.au/featureCounts/. SAF contains positions for exons, strand
and the GenelD they are associated with.

anno_to_saf 5

Value

data.frame containing exon information in SAF format

Examples

ens_chrY <- anno_import(system.file("extdata”, "ensembl_hg38_chrY.gtf.gz", package = "scPipe"))

anno_to_saf Convert annotation from GenomicRanges to Simple Annotation For-
mat (SAF)

Description

This function converts a GRanges object into a data.frame of the SAF format for scPipe’s con-
sumption. The GRanges object should contain a "type" column where at least some features are
annotated as "exon", in addition there should be a gene_id column specifying the gene to which
the exon belongs. In the SAF only the gene ID, chromosome, start, end and strand are recorded,
this is a gene-exon centric format, with all entries containing the same gene ID treated as exons of
that gene. It is possible to count alternative features by setting the gene_id column to an arbitrary
feature name and having alternative features in the SAF table, the main caveat is that the features
are still treated as exons, and the mapping statistics for exon and intron will not reflect biological
exons and introns but rather the annotation features.

Usage

anno_to_saf (anno)

Arguments

anno The GRanges object containing exon information

Details

Convert a GRanges object containing type and gene_id information into a SAF format data.frame.
SAF described at http://bioinf.wehi.edu.au/featureCounts/. SAF contains positions for exons, strand
and the GenelD they are associated with.

Value

data.frame containing exon information in SAF format

calculate_QC_metrics

Examples

Not run:

anno <- system.file("extdata”, "ensembl_hg38_chrY.gtf.gz", package = "scPipe")
saf_chrY <- anno_to_saf(rtracklayer::import(anno))

End(Not run)

calculate_QC_metrics Calculate QC metrics from gene count matrix

Description

Calculate QC metrics from gene count matrix

Usage

calculate_QC_metrics(sce)

Arguments

sce

Details

a SingleCellExperiment object containing gene counts

get QC metrics using gene count matrix. The QC statistics added are

Value

number_of_genes number of genes detected.
total_count_per_cell sum of read number after UMI deduplication.

non_mt_percent 1 - percentage of mitochondrial gene counts. Mitochondrial genes are re-
trived by GO term GO:0005739

non_ERCC_percent ratio of exon counts to ERCC counts

non_ribo_percent 1 - percentage of ribosomal gene counts ribosomal genes are retrived by GO
term GO:0005840.

an SingleCellExperiment with updated QC metrics

Examples

data("sc_sample_data")

data("sc_sample_qgc")

sce <- SingleCellExperiment(assays = list(counts = as.matrix(sc_sample_data)))
organism(sce) <- "mmusculus_gene_ensembl”

gene_id_type(sce) <- "ensembl_gene_id"

QC_metrics(sce) <- sc_sample_qgc

cell_barcode_matching 7

demultiplex_info(sce) <- cell_barcode_matching
UMI_dup_info(sce) <- UMI_duplication

The sample qc data already run through function “calculate_QC_metrics™.

So we delete these columns and run ~calculate_QC_metrics™ to get them again:
colnames(colnames(QC_metrics(sce)))

QC_metrics(sce) <- QC_metrics(sce)[,c("unaligned”,"aligned_unmapped”, "mapped_to_exon")]
sce = calculate_QC_metrics(sce)

colnames(QC_metrics(sce))

cell_barcode_matching cell barcode demultiplex statistics for a small sample scRNA-seq
dataset to demonstrate capabilities of scPipe

Description

This data.frame contains cell barcode demultiplex statistics with several rows:
* barcode_unmatch_ambiguous_mapping is the number of reads that do not match any barcode,
but aligned to the genome and mapped to multiple features.

* barcode_unmatch_mapped_to_intron is the number of reads that do not match any barcode,
but aligned to the genome and mapped to intron.

¢ barcode_match is the number of reads that match the cell barcodes

* barcode_unmatch_unaligned is the number of reads that do not match any barcode, and not
aligned to the genome

* barcode_unmatch_aligned is the number of reads that do not match any barcode, but aligned
to the genome and do not mapped to any feature

* barcode_unmatch_mapped_to_exon is the number of reads that do not match any barcode, but
aligned to the genome and mapped to the exon
Format

a data.frame instance, one row per cell.

Value

NULL, but makes a data frame with cell barcode demultiplex statistics

Author(s)

Luyi Tian

Source

Christin Biben (WEHI). She FACS sorted cells from several immune cell types including B cells,
granulocyte and some early progenitors.

8 check_barcode_start_position

Examples

data("sc_sample_data")

data("sc_sample_qc")

sce = SingleCellExperiment(assays = list(counts =as.matrix(sc_sample_data)))
organism(sce) = "mmusculus_gene_ensembl”

gene_id_type(sce) = "ensembl_gene_id"

QC_metrics(sce) = sc_sample_qgc

demultiplex_info(sce) = cell_barcode_matching

UMI_dup_info(sce) = UMI_duplication

demultiplex_info(sce)

check_barcode_start_position
Check Valid Barcode Start Position

Description

Checks to see if the given barcode start position (bstart) is valid for the fastq file. If the found
barcode percentage is less than the given threshold, a new barcode start position is searched for
by checking every position from the start of each read to 10 bases after the bstart

Usage

check_barcode_start_position(
fastq,
barcode_file,
barcode_file_realname,
bstart,
blength,
search_lines,
threshold

Arguments

fastq file containing reads

barcode_file csv file
barcode_file_realname
the real name of the csv file

bstart the start position for barcodes in the given reads
blength length of each barcode
search_lines the number of fastq lines to use for the check

threshold the minimum percentage of found barcodes to accept for the program to continue

convert_geneid 9

Value

Boolean; TRUE if program can continue execution, FALSE otherwise.

convert_geneid convert the gene ids of a SingleCellExperiment object

Description

convert the gene ids of a SingleCellExperiment object

Usage
convert_geneid(sce, returns = "external_gene_name”, all = TRUE)
Arguments
sce a SingleCellExperiment object
returns the gene id which is set as return. Default to be ‘external_gene_name* A possi-
ble list of attributes can be retrieved using the function listAttributes from
biomaRt package. The commonly used id types are ‘external_gene_name°, ‘en-
sembl_gene_id* or ‘entrezgene’.
all logic. For genes that cannot covert to new gene id, keep them with the old id or
delete them. The default is keep them.
Details

convert the gene id of all datas in the SingleCellExperiment object

Value

sce with converted id

Examples

the gene id in example data are “external_gene_name"

the following example will convert it to “external_gene_name".
data("sc_sample_data")

data("sc_sample_gc")

sce = SingleCellExperiment(assays = list(counts = as.matrix(sc_sample_data)))
organism(sce) = "mmusculus_gene_ensembl”

gene_id_type(sce) = "ensembl_gene_id"

QC_metrics(sce) = sc_sample_qgc

demultiplex_info(sce) = cell_barcode_matching

UMI_dup_info(sce) = UMI_duplication

head(rownames(sce))

sce = convert_geneid(sce, return="external_gene_name")
head(rownames(sce))

10 create_processed_report

create_processed_report
create_processed_report

Description

Create an HTML report summarising pro-processed data. This is an alternative to the more verbose
create_report that requires only the processed counts and stats folders.

Usage
create_processed_report(
outdir = ".",
organism,
gene_id_type,
report_name = "report”
)
Arguments
outdir output folder.
organism the organism of the data. List of possible names can be retrieved using the func-

tion ‘listDatasets ‘from ‘biomaRt‘ package. (e.g. ‘mmusculus_gene_ensembl*
or ‘hsapiens_gene_ensembl).

gene_id_type gene id type of the data A possible list of ids can be retrieved using the func-
tion ‘listAttributes® from ‘biomaRt® package. the commonly used id types are
‘external_gene_name°, ‘ensembl_gene_id‘ or ‘entrezgene’.

report_name the name of the report .Rmd and .html files.

Value

file path of the created compiled document.

Examples

Not run:

create_report(
outdir="output_dir_of_scPipe”,
organism="mmusculus_gene_ensembl”,
gene_id_type="ensembl_gene_id")

End(Not run)

create_report 11

create_report create_report

Description

create an HTML report using data generated by proprocessing step.

Usage

create_report(
sample_name,
outdir,
r1 = "NA",
r2 = "NA",
outfq = "NA",
read_structure = list(bsl = 0, bll = 0, bs2 =0, bl2 =0, us = 0, ul = 0),
filter_settings = list(rmlow = TRUE, rmN = TRUE, ming = 20, numbq = 2),
align_bam = "NA",

genome_index = "NA",
map_bam = "NA",
exon_anno = "NA",
stnd = TRUE,
fix_chr = FALSE,
barcode_anno = "NA",
max_mis = 1,
UMI_cor =1,
gene_f1 = FALSE,
organism,
gene_id_type
)
Arguments
sample_name sample name
outdir output folder
ri file path of readl
r2 file path of read2 default to be NULL
outfq file path of the output of sc_trim_barcode

read_structure alist contains read structure configuration. For more help see ‘?sc_trim_barcode*

filter_settings
a list contains read filter settings for more help see ‘?sc_trim_barcode*

align_bam the aligned bam file
genome_index genome index used for alignment

map_bam the mapped bam file

12 create_report

exon_anno the gff exon annotation used. Can have multiple files
stnd whether to perform strand specific mapping
fix_chr add ‘chr’ to chromosome names, fix inconsistent names.

barcode_anno cell barcode annotation file path.
max_mis maximum mismatch allowed in barcode. Default to be 1

UMI_cor correct UMI sequence error: 0 means no correction, 1 means simple correction
and merge UMI with distance 1.

gene_f1 whether to remove low abundant gene count. Low abundant is defined as only
one copy of one UMI for this gene

organism the organism of the data. List of possible names can be retrieved using the func-
tion ‘listDatasets‘from ‘biomaRt* package. (i.e ‘mmusculus_gene_ensembl‘ or
‘hsapiens_gene_ensembl ‘)

gene_id_type gene id type of the data A possible list of ids can be retrieved using the func-
tion ‘listAttributes‘ from ‘biomaRt‘ package. the commonly used id types are
‘external_gene_name*, ‘ensembl_gene_id* or ‘entrezgene*

Value

no return

Examples

Not run:

create_report(sample_name="sample_001",
outdir="output_dir_of_scPipe”,
ri="readl1.fq",
r2="read2.fq",
outfg="trim.fq",
read_structure=list(bs1=-1, bl1=2, bs2=6, bl2=8, us=0, ul=6),
filter_settings=1ist(rmlow=TRUE, rmN=TRUE, ming=20, numbqg=2),
align_bam="align.bam",
genome_index="mouse.index",
map_bam="aligned.mapped.bam”,
exon_anno="exon_anno.gff3",
stnd=TRUE,
fix_chr=FALSE,
barcode_anno="cell_barcode.csv",
max_mis=1,
UMI_cor=1,
gene_f1=FALSE,
organism="mmusculus_gene_ensembl”,
gene_id_type="ensembl_gene_id")

End(Not run)

create_sce_by_dir 13

create_sce_by_dir create a SingleCellExperiment object from data folder generated by
preprocessing step

Description

after we run sc_gene_counting and finish the preprocessing step. create_sce_by_dir can be
used to generate the SingleCellExperiment object from the folder that contains gene count matrix
and QC statistics. it can also generate the html report based on the gene count and quality control
statistics

Usage

create_sce_by_dir(
datadir,
organism = NULL,
gene_id_type = NULL,
pheno_data = NULL,
report = FALSE

)
Arguments
datadir the directory that contains all the data and ‘stat‘ subfolder.
organism the organism of the data. List of possible names can be retrieved using the func-

tion ‘listDatasets ‘from ‘biomaRt‘ package. (i.e ‘mmusculus_gene_ensembl‘ or
‘hsapiens_gene_ensembl*)

gene_id_type gene id type of the data A possible list of ids can be retrieved using the func-
tion ‘listAttributes® from ‘biomaRt‘ package. the commonly used id types are
‘external_gene_name°, ‘ensembl_gene_id" or ‘entrezgene*

pheno_data the external phenotype data that linked to each single cell. This should be an
AnnotatedDataFrame object
report whether to generate the html report in the data folder
Details

after we run sc_gene_counting and finish the preprocessing step. create_sce_by_dir can be
used to generate the SingleCellExperiment object from the folder that contains gene count matrix
and QC statistics.

Value

a SingleCellExperiment object

14 demultiplex_info

Examples

Not run:

the sce can be created fron the output folder of scPipe

please refer to the vignettes

sce = create_sce_by_dir(datadir="output_dir_of_scPipe”,
organism="mmusculus_gene_ensembl”,
gene_id_type="ensembl_gene_id")

End(Not run)

or directly from the gene count and quality control matrix:
data("sc_sample_data")

data("sc_sample_qgc")

sce = SingleCellExperiment(assays = list(counts = as.matrix(sc_sample_data)))
organism(sce) = "mmusculus_gene_ensembl”

gene_id_type(sce) = "ensembl_gene_id"

QC_metrics(sce) = sc_sample_qgc

demultiplex_info(sce) = cell_barcode_matching
UMI_dup_info(sce) = UMI_duplication

dim(sce)

demultiplex_info demultiplex_info

Description

Get or set cell barcode demultiplex results in a SingleCellExperiment object
Usage

demultiplex_info(object)

demultiplex_info(object) <- value

demultiplex_info.sce(object)

S4 method for signature 'SingleCellExperiment'’
demultiplex_info(object)

S4 replacement method for signature 'SingleCellExperiment'
demultiplex_info(object) <- value

Arguments

object A SingleCellExperiment object.

value Value to be assigned to corresponding object.

detect_outlier 15

Value

a dataframe of cell barcode demultiplex information

A DataFrame of cell barcode demultiplx results.

Author(s)

Luyi Tian

Examples

data("sc_sample_data")

data("sc_sample_qgc")

sce = SingleCellExperiment(assays = list(counts = as.matrix(sc_sample_data)))
organism(sce) = "mmusculus_gene_ensembl”

gene_id_type(sce) = "ensembl_gene_id"

QC_metrics(sce) = sc_sample_qgc

demultiplex_info(sce) = cell_barcode_matching

UMI_dup_info(sce) = UMI_duplication

demultiplex_info(sce)

detect_outlier Detect outliers based on QC metrics

Description

This algorithm will try to find comp number of components in quality control metrics using a Gaus-
sian mixture model. Outlier detection is performed on the component with the most genes detected.
The rest of the components will be considered poor quality cells. More cells will be classified low
quality as you increase comp.

Usage
detect_outlier(
sce,
comp =1,

sel_col = NULL,

type = c("low”, "both”, "high"),
conf = ¢c(0.9, 0.99),

batch = FALSE

16

Arguments

sce

comp

sel_col

type

conf

batch

Details

feature_info

a SingleCellExperiment object containing QC metrics.

the number of component used in GMM. Depending on the quality of the exper-
iment.

a vector of column names which indicate the columns to use for QC. By default
it will be the statistics generated by ‘calculate_QC_metrics()*

only looking at low quality cells (‘low*) or possible doublets (‘high) or both
(‘both®)
confidence interval for linear regression at lower and upper tails.Usually, this is

smaller for lower tail because we hope to pick out more low quality cells than
doublets.

whether to perform quality control separately for each batch. Default is FALSE.
If set to TRUE then you should have a column called ‘batch* in the ‘colData(sce)‘.

detect outlier using Mahalanobis distances

Value

an updated SingleCellExperiment object with an ‘outlier‘ column in colData

Examples

data("sc_sample_data")

data("sc_sample_qgc")

sce = SingleCellExperiment(assays = list(counts = as.matrix(sc_sample_data)))
organism(sce) = "mmusculus_gene_ensembl”

gene_id_type(sce) = "ensembl_gene_id"

QC_metrics(sce)

sc_sample_qgc

demultiplex_info(sce) = cell_barcode_matching

UMI_dup_info(sce) = UMI_duplication

the sample qc data already run through function ~calculate_QC_metrics™
for a new sce please run “calculate_QC_metrics™ before ~detect_outlier=
sce = detect_outlier(sce)

table(QC_metrics(sce)$outliers)

feature_info

Get or set feature_info from a SingleCellExperiment object

Description

Get or set feature_info from a SingleCellExperiment object

feature_type 17

Usage

feature_info(object)
feature_info(object) <- value
feature_info.sce(object)

S4 method for signature 'SingleCellExperiment'
feature_info(object)

S4 replacement method for signature 'SingleCellExperiment
feature_info(object) <- value

Arguments

object A SingleCellExperiment object.

value Value to be assigned to corresponding object.
Value

a dataframe of feature info for scATAC-seq data

A DataFrame of feature information

Author(s)

Shani Amarasinghe

feature_type Get or set feature_type from a SingleCellExperiment object

Description

Get or set feature_type from a SingleCellExperiment object
Usage

feature_type(object)

feature_type(object) <- value

feature_type.sce(object)

S4 method for signature 'SingleCellExperiment’
feature_type(object)

S4 replacement method for signature 'SingleCellExperiment'
feature_type(object) <- value

18 gene_id_type

Arguments

object A SingleCellExperiment object.

value Value to be assigned to corresponding object.
Value

the feature type used in feature counting for scATAC-Seq data

A string representing the feature type

Author(s)

Shani Amarasinghe

gene_id_type Get or set gene_id_type from a SingleCellExperiment object

Description

Get or set gene_id_type from a SingleCellExperiment object
Usage

gene_id_type(object)

gene_id_type(object) <- value

gene_id_type.sce(object)

S4 method for signature 'SingleCellExperiment'’
gene_id_type(object)

S4 replacement method for signature 'SingleCellExperiment'
gene_id_type(object) <- value

Arguments

object A SingleCellExperiment object.

value Value to be assigned to corresponding object.
Value

the gene id type used by Biomart
gene id type string

Author(s)

Luyi Tian

get_chromosomes 19

Examples

data("sc_sample_data")

data("sc_sample_qgc")

sce = SingleCellExperiment(assays = list(counts = as.matrix(sc_sample_data)))
organism(sce) = "mmusculus_gene_ensembl”

gene_id_type(sce) = "ensembl_gene_id"

QC_metrics(sce) = sc_sample_qgc

demultiplex_info(sce) = cell_barcode_matching

UMI_dup_info(sce) = UMI_duplication

gene_id_type(sce)

get_chromosomes Get Chromosomes

Description

Gets a list of NamedList of chromosomes and the reference length acquired through the bam index
file.

Usage

get_chromosomes(bam, keep_contigs = "*chr")
Arguments

bam file path to the bam file to get data from

keep_contigs regular expression used with grepl to filter reference names

Value

a named list where element names are chromosomes reference names and elements are integer
lengths

get_ercc_anno Get ERCC annotation table

Description

Helper function to retrieve ERCC annotation as a dataframe in SAF format

Usage

get_ercc_anno()

20 get_genes_by_GO

Value

data.frame containing ERCC annotation

Examples

ercc_anno <- get_ercc_anno()

get_genes_by_GO Get genes related to certain GO terms from biomart database

Description

Get genes related to certain GO terms from biomart database

Usage
get_genes_by_GO(
returns = "ensembl_gene_id",
dataset = "mmusculus_gene_ensembl”,
go = NULL
)
Arguments
returns the gene id which is set as return. Default to be ensembl id A possible list
of attributes can be retrieved using the function listAttributes from biomaRt
package. The commonly used id types are ‘external_gene_name*, ‘ensembl_gene_id*
or ‘entrezgene’.
dataset Dataset you want to use. List of possible datasets can be retrieved using the
function 1listDatasets from biomaRt package.
go a vector of GO terms
Details

Get genes related to certain GO terms from biomart database

Value

a vector of gene ids.

Examples

get all genes under GO term GO:0005739 in mouse, return ensembl gene id
get_genes_by_GO(returns="ensembl_gene_id",
dataset="mmusculus_gene_ensembl”,
go=c('G0:0005739"'))

get_read_str 21

get_read_str Get read structure for particular scRNA-seq protocol

Description
The supported protocols are:

* CelSeq

* CelSeq2

* DropSeq

¢ 10x (also called ChromiumV1)

If you know the structure of a specific protocol and would like it supported, please leave a issue
post at www.github.com/luyitian/scPipe.
Usage

get_read_str(protocol)

Arguments

protocol name of the protocol

Value

list of UMI and Barcode locations for use in other scPipe functions

Examples

get_read_str("celseq")

organism.sce Get or set organism from a SingleCellExperiment object

Description

Get or set organism from a SingleCellExperiment object

Usage

organism.sce(object)

S4 method for signature 'SingleCellExperiment’
organism(object)

S4 replacement method for signature 'SingleCellExperiment'
organism(object) <- value

22 plot_demultiplex

Arguments

object A SingleCellExperiment object.

value Value to be assigned to corresponding object.
Value

organism string

Author(s)
Luyi Tian

Examples

data("sc_sample_data")

data("sc_sample_qc")

sce = SingleCellExperiment(assays = list(counts = as.matrix(sc_sample_data)))
organism(sce) = "mmusculus_gene_ensembl”

gene_id_type(sce) = "ensembl_gene_id"

QC_metrics(sce) = sc_sample_qgc

demultiplex_info(sce) = cell_barcode_matching

UMI_dup_info(sce) = UMI_duplication

organism(sce)

plot_demultiplex plot_demultiplex

Description

Plot cell barcode demultiplexing result for the SingleCellExperiment. The barcode demulti-
plexing result is shown using a barplot, with the bars indicating proportions of total reads. Barcode
matches and mismatches are summarised along with whether or not the read mapped to the genome.
High proportion of genome aligned reads with no barcode match may indicate barcode integration
failure.

Usage
plot_demultiplex(sce)

Arguments

sce a SingleCellExperiment object

Value

a ggplot2 bar chart

plot_mapping 23

Examples

data("sc_sample_data")

data("sc_sample_qgc")

sce = SingleCellExperiment(assays = list(counts = as.matrix(sc_sample_data)))
organism(sce) = "mmusculus_gene_ensembl”

gene_id_type(sce) = "ensembl_gene_id"

QC_metrics(sce) = sc_sample_qgc

demultiplex_info(sce) = cell_barcode_matching

UMI_dup_info(sce) = UMI_duplication

plot_demultiplex(sce)

plot_mapping Plot mapping statistics for SingleCellExperiment object.

Description

Plot mapping statistics for SingleCellExperiment object.

Usage
plot_mapping(sce, sel_col = NULL, percentage = FALSE, dataname = "")
Arguments
sce a SingleCellExperiment object
sel_col a vector of column names, indicating the columns to use for plot. by default it
will be the mapping result.
percentage TRUE to convert the number of reads to percentage
dataname the name of this dataset, used as plot title
Value
a ggplot2 object
Examples

data("sc_sample_data")

data("sc_sample_gc")

sce = SingleCellExperiment(assays = list(counts = as.matrix(sc_sample_data)))
organism(sce) = "mmusculus_gene_ensembl”

gene_id_type(sce) = "ensembl_gene_id"

QC_metrics(sce) = sc_sample_qgc

demultiplex_info(sce) = cell_barcode_matching

UMI_dup_info(sce) = UMI_duplication

plot_mapping(sce,percentage=TRUE,dataname="sc_sample")

24

plot_UMI_dup

plot_QC_pairs Plot GGAlly pairs plot of QC statistics from SingleCellExperiment

object

Description

Plot GGAlly pairs plot of QC statistics from SingleCellExperiment object

Usage

plot_QC_pairs(sce, sel_col = NULL)

Arguments
sce a SingleCellExperiment object
sel_col a vector of column names which indicate the columns to use for plot. By default
it will be the statistics generated by ‘calculate_QC_metrics()*
Value
a ggplot2 object
Examples

data("sc_sample_data")
data("sc_sample_qc")

sce = SingleCellExperiment(assays = list(counts = as.matrix(sc_sample_data)))

organism(sce) = "mmusculus_gene_ensembl”
gene_id_type(sce) = "ensembl_gene_id"
QC_metrics(sce) = sc_sample_qgc
demultiplex_info(sce) = cell_barcode_matching
UMI_dup_info(sce) = UMI_duplication

sce = detect_outlier(sce)

plot_QC_pairs(sce)

plot_UMI_dup Plot UMI duplication frequency

Description

Plot the UMI duplication frequency.

Usage

plot_UMI_dup(sce, logl@_x = TRUE)

QC_metrics 25

Arguments
sce a SingleCellExperiment object
log10_x whether to use log10 scale for x axis
Value

a line chart of the UMI duplication frequency

Examples

data("sc_sample_data")

data("sc_sample_gc")

sce = SingleCellExperiment(assays = list(counts = as.matrix(sc_sample_data)))
organism(sce) = "mmusculus_gene_ensembl”

gene_id_type(sce) = "ensembl_gene_id"

QC_metrics(sce) = sc_sample_qgc

demultiplex_info(sce) = cell_barcode_matching

UMI_dup_info(sce) = UMI_duplication

plot_UMI_dup(sce)

QC_metrics Get or set quality control metrics in a SingleCellExperiment object

Description

Get or set quality control metrics in a SingleCellExperiment object

Usage

QC_metrics(object)
QC_metrics(object) <- value
QC_metrics.sce(object)

S4 method for signature 'SingleCellExperiment'’
QC_metrics(object)

S4 replacement method for signature 'SingleCellExperiment
QC_metrics(object) <- value
Arguments

object A SingleCellExperiment object.

value Value to be assigned to corresponding object.

26 read_cells

Value

a dataframe of quality control matrics

A DataFrame of quality control metrics.

Author(s)

Luyi Tian

Examples

data("sc_sample_data")

data("sc_sample_qgc")

sce = SingleCellExperiment(assays = list(counts = as.matrix(sc_sample_data)))
QC_metrics(sce) = sc_sample_qc

head(QC_metrics(sce))

read_cells Read Cell barcode file

Description

Read Cell barcode file

Usage

read_cells(cells)

Arguments
cells the file path to the barcode file. Assumes one barcode per line or barcode csv.
Or, cells can be a comma delimited string of barcodes
Value

a character vector of the provided barcodes

remove_outliers 27

remove_outliers Remove outliers in SingleCellExperiment

Description

Removes outliers flagged by detect_outliers()

Usage

remove_outliers(sce)

Arguments

sce a SingleCellExperiment object

Value

a SingleCellExperiment object without outliers

Examples

data("sc_sample_data")

data("sc_sample_qgc")

sce = SingleCellExperiment(assays = list(counts = as.matrix(sc_sample_data)))
organism(sce) = "mmusculus_gene_ensembl”

gene_id_type(sce) = "ensembl_gene_id"

QC_metrics(sce) = sc_sample_qgc

demultiplex_info(sce) = cell_barcode_matching

UMI_dup_info(sce) = UMI_duplication

sce = detect_outlier(sce)

dim(sce)
sce = remove_outliers(sce)
dim(sce)
scPipe scPipe - single cell RNA-seq pipeline
Description

The scPipe will do cell barcode demultiplexing, UMI deduplication and quality control on fastq
data generated from all protocols

Author(s)

Luyi Tian <tian.l@wehi.edu.au>; Shian Su <su.s@wehi.edu.au>

28

sc_aligning

sc_aligning

aligning the demultiplexed FASTQ reads using the Rsubread:align()

Description

after we run the sc_trim_barcode or sc_atac_trim_barcode to demultiplex the fastq files, we
are using this function to align those fastq files to a known reference.

Usage

sc_aligning(
R1,
R2 = NULL,
tech = "atac”

’

index_path = NULL,

ref = NULL,
output_folder
output_file =

= NULL,
NULL,

input_format = "FASTQ",

output_format
type = "dna”,
nthreads = 1

Arguments

R1

R2

tech

index_path

ref
output_folder
output_file

input_format
output_format
type

nthreads

- HBAMH’

a mandatory character vector including names of files that include sequence
reads to be aligned. For paired-end reads, this gives the list of files including
first reads in each library. File format is FASTQ/FASTA by default.

a character vector, the second fastq file, which is required if the data is paired-
end

a character string giving the sequencing technology. Possible value includes
llataCH Or llmall

character string specifying the path/basename of the index files, if the Rsubread
genome build is available

a character string specifying the path to reference genome file (.fasta, .fa format)
a character string, the name of the output folder

a character vector specifying names of output files. By default, names of output
files are set as the file names provided in R1 added with an suffix string

a string indicating the input format
a string indicating the output format
type of sequencing data (‘RNA‘ or ‘DNA)

numeric value giving the number of threads used for mapping.

sc_atac_bam_tagging

Value

the file path of the output aligned BAM file

Examples

Not run:
sc_aligning(index_path,
tech = 'atac',

R1,
R2,
nthreads = 6)

End(Not run)

29

sc_atac_bam_tagging BAM tagging

Description

Demultiplexes the reads

Usage

sc_atac_bam_tagging(
inbam,
output_folder = NULL,
bc_length = NULL,

bam_tags = list(bc = "CB", mb = "0X"),

nthreads = 1

The length of the cellular barcodes

)
Arguments
inbam The input BAM file
output_folder The path of the output folder
bc_length
bam_tags The BAM tags
nthreads The number of threads
Details

sc_atac_bam_tagging()

Value

file path of the resultant demmultiplexed BAM file.

30 sc_atac_cell_calling

Examples

r1 <- system.file("extdata”, "small_chr21_R1.fastq.gz", package="scPipe")

r2 <- system.file("extdata”, "small_chr21_R3.fastq.gz", package="scPipe")
barcode_fastq <- system.file("extdata”, "small_chr21_R2.fastq.gz", package="scPipe")
out <- tempdir()

sc_atac_trim_barcode(ri1=r1, r2=r2, bc_file=barcode_fastq, output_folder=out)

demux_r1 <- file.path(out, "demux_completematch_small_chr21_R1.fastq.gz")
demux_r2 <- file.path(out, "demux_completematch_small_chr21_R3.fastq.gz")
reference <- system.file("extdata”, "small_chr21.fa”, package="scPipe")

aligned_bam <- sc_aligning(ref=reference, R1=demux_r1, R2=demux_r2, nthreads=6, output_folder=out)

out_bam <- sc_atac_bam_tagging(
inbam = aligned_bam,
output_folder = out,
nthreads = 6)

sc_atac_cell_calling identifying true vs empty cells

Description

the methods to call true cells are of various ways. implement (i.e. filtering from scATAC-Pro as
default

Usage

sc_atac_cell_calling(
mat,
cell_calling = "filter"”,
output_folder,
genome_size = NULL,
cell_gc_metrics_file = NULL,
lower = NULL,
min_unig_frags = 3000,
max_unig_frags = 50000,
min_frac_peak = 0.3,
min_frac_tss = 0,
min_frac_enhancer = 0,
min_frac_promoter = 0.1,
max_frac_mito = 0.15

sc_atac_cell_calling

Arguments

mat

cell_calling

output_folder

genome_size

31

the feature by cell matrix.

the cell calling approach, possible options were "emptydrops" , "cellranger" and
"filter". But we opten to using "filter" as it was most robust. "emptydrops" is
still an opition for data with large umber of cells.

output directory for the cell called matrix.

genome size for the data in feature by cell matrix.

cell_qgc_metrics_file

lower

min_uniq_frags

max_uniqg_frags

min_frac_peak

min_frac_tss

quality per barcode file for the barcodes in the matrix if using the cellranger
or filter options.

the lower threshold for the data if using the emptydrops function for cell calling.

The minimum number of required unique fragments required for a cell (used for
filter cell calling)

The maximum number of required unique fragments required for a cell (used
for filter cell calling)

The minimum proportion of fragments in a cell to overlap with a peak (used for
filter cell calling)

The minimum proportion of fragments in a cell to overlap with a tss (used for
filter cell calling)

min_frac_enhancer

The minimum proportion of fragments in a cell to overlap with a enhancer se-
quence (used for filter cell calling)

min_frac_promoter

max_frac_mito

Examples

Not run:

The minimum proportion of fragments in a cell to overlap with a promoter se-
quence (used for filter cell calling)

The maximum proportion of fragments in a cell that are mitochondrial (used for
filter cell calling)

sc_atac_cell_calling <- function(mat,

cell_calling,
output_folder,
genome_size

NULL,

cell_qgc_metrics_file = NULL,

lower

End(Not run)

= NULL)

32 sc_atac_create_fragments

sc_atac_create_cell_qc_metrics
generating a file useful for producing the gc plots

Description

uses the peak file and annotation files for features

Usage
sc_atac_create_cell_qc_metrics(
frags_file,
peaks_file,
promoters_file,
tss_file,
enhs_file,
output_folder
)
Arguments
frags_file The fragment file
peaks_file The peak file
promoters_file The path of the promoter annotation file
tss_file The path of the tss annotation file
enhs_file The path of the enhs annotation file

output_folder The path of the output folder for resultant files

Value

Nothing (Invisible "NULL")

sc_atac_create_fragments
Generating the popular fragments for scATAC-Seq data

Description

Takes in a tagged and sorted BAM file and outputs the associated fragments in a .bed file

sc_atac_create_fragments 33

Usage

sc_atac_create_fragments(
inbam,
output_folder = "",
min_mapq = 30,

nproc = 1,

cellbarcode = "CB",
chromosomes = "“chr”,
readname_barcode = NULL,
cells = NULL,

max_distance = 5000,
min_distance = 10,
chunksize = 5e+05

)
Arguments
inbam The tagged, sorted and duplicate-free input BAM file
output_folder The path of the output folder
min_mapq : int Minimum MAPQ to retain fragment
nproc : int, optional Number of processors to use. Default is 1.
cellbarcode : str Tag used for cell barcode. Default is CB (used by cellranger)
chromosomes : str, optional Regular expression used to match chromosome names to include

in the output file. Default is "(?i) chr" (starts with "chr", case-insensitive). If
None, use all chromosomes in the BAM file.

readname_barcode
: str, optional Regular expression used to match cell barocde stored in read name.
If None (default), use read tags instead. Use "[*:]*" to match all characters
before the first colon (":").

cells : str File containing list of cell barcodes to retain. If None (default), use all cell
barcodes found in the BAM file.

max_distance : int, optional Maximum distance between integration sites for the fragment to
be retained. Allows filtering of implausible fragments that likely result from
incorrect mapping positions. Default is 5000 bp.

min_distance : int, optional Minimum distance between integration sites for the fragment to be
retained. Allows filtering implausible fragments that likely result from incorrect
mapping positions. Default is 10 bp.

chunksize : int Number of BAM entries to read through before collapsing and writing
fragments to disk. Higher chunksize will use more memory but will be faster.

Value

returns NULL

34 sc_atac_create_sce

sc_atac_create_report HTML report generation

Description

Generates a HTML report using the output folder produced by the pipeline

Usage

sc_atac_create_report(
input_folder,
output_folder = NULL,
organism = NULL,
sample_name = NULL,
feature_type = NULL,
n_barcode_subset = 500

Arguments

input_folder The path of the folder produced by the pipeline
output_folder The path of the output folder to store the HTML report in
organism A string indicating the name of the organism being analysed
sample_name A string indicating the name of the sample

feature_type A string indicating the type of the feature (‘genome_bin‘ or ‘peak*)

n_barcode_subset
if you require only to visualise stats for a sample of barcodes to improve pro-
cessing time (integer)

Value

the path of the output file

sc_atac_create_sce sc_atac_create_sce()

Description

sc_atac_create_sce()

sc_atac_emptydrops_cell_calling

Usage

sc_atac_create_sce(

input_folder
organism =
sample_name
feature_type

= NULL,
NULL,

NULL,

= NULL,
NULL,

pheno_data
report = FALSE
)
Arguments

input_folder
organism
sample_name
feature_type
pheno_data

report

Value

The output folder produced by the pipeline

The type of the organism

The name of the sample

The type of the feature

The pheno data

Whether or not a HTML report should be produced

a SingleCellExperiment object created from the scATAC-Seq data provided

Examples

Not run:

sc_atac_create_sce(
input_folder = input_folder,

organism = "hg38",
feature_type = "peak”,
report = TRUE)

End(Not run)

35

sc_atac_emptydrops_cell_calling

empty drops cell calling

Description

The empty drops cell calling method

Usage

sc_atac_emptydrops_cell_calling(mat, output_folder, lower = NULL)

36

Arguments

mat The input matrix

output_folder The path of the output folder

sc_atac_feature_counting

lower The lower threshold for the data if using the emptydrops function for cell call-

ing.

sc_atac_feature_counting

generating the feature by cell matrix

Description

feature matrix is created using a given demultiplexed BAM file and a selected feature type

Usage

sc_atac_feature_counting(
fragment_file,
feature_input = NULL,

bam_tags = list(bc = "CB", mb = "0X"),

feature_type = "peak”,
organism = "hg38",
cell_calling = "filter",
sample_name = "",
genome_size = NULL,
promoters_file = NULL,
tss_file = NULL,

enhs_file = NULL,
gene_anno_file = NULL,
pheno_data = NULL,

bin_size = NULL,

yieldsize = 1e+06,
n_filter_cell_counts = 200,
n_filter_feature_counts = 10,
exclude_regions = FALSE,

excluded_regions_filename = NULL,

output_folder = NULL,
fix_chr = "none”,

lower = NULL,
min_uniq_frags = 3000,
max_unig_frags = 50000,
min_frac_peak = 0.3,
min_frac_tss = 0,
min_frac_enhancer = 0,
min_frac_promoter = 0.1,
max_frac_mito = 0.15,

sc_atac_feature_counting 37

create_report = FALSE

)

Arguments

fragment_file
feature_input
bam_tags
feature_type
organism
cell_calling
sample_name
genome_size

promoters_file

tss_file
enhs_file
gene_anno_file
pheno_data
bin_size

yieldsize

The fragment file

The feature input data e.g. the .narrowPeak file for peaks of a bed file format
The BAM tags

The type of feature

The organism type (contains hg19, hg38, mm10)

The desired cell calling method; either cellranger, emptydrops or filter.
The sample name to identify which is the data is analysed for.

The size of the genome (used for the cellranger cell calling method)

The path of the promoter annotation file (if the specified organism isn’t recog-
nised).

The path of the tss annotation file (if the specified organism isn’t recognised).
The path of the enhs annotation file (if the specified organism isn’t recognised).
The path of the gene annotation file (gtf or gff3 format).

The phenotypic data as a data frame

The size of the bins

The yield size

n_filter_cell_counts

An integer value to filter the feature matrix on the number of reads per cell
(default = 200)

n_filter_feature_counts

exclude_regions

An integer value to filter the feature matrix on the number of reads per feature
(default = 10).

Whether or not the regions (specified in the file) should be excluded

excluded_regions_filename

output_folder
fix_chr
lower

min_unig_frags

max_uniq_frags

min_frac_peak

min_frac_tss

The filename of the file containing the regions to be excluded

The output folder

Whether chr should be fixed or not

the lower threshold for the data if using the emptydrops function for cell calling

The minimum number of required unique fragments required for a cell (used for
filter cell calling)

The maximum number of required unique fragments required for a cell (used
for filter cell calling)

The minimum proportion of fragments in a cell to overlap with a peak (used for
filter cell calling)

The minimum proportion of fragments in a cell to overlap with a tss (used for
filter cell calling)

38 sc_atac_filter_cell_calling

min_frac_enhancer
The minimum proportion of fragments in a cell to overlap with a enhancer se-
quence (used for filter cell calling)

min_frac_promoter
The minimum proportion of fragments in a cell to overlap with a promoter se-
quence (used for filter cell calling)

max_frac_mito The maximum proportion of fragments in a cell that are mitochondrial (used for
filter cell calling)

create_report Logical value to say whether to create the report or not (default = TRUE).

Value

None (invisible ‘NULL*)

Examples

Not run:

sc_atac_feature_counting(
fragment_file = fragment_file,
cell_calling = "filter",
exclude_regions = TRUE,
feature_input = feature_file)

End(Not run)

sc_atac_filter_cell_calling
filter cell calling

Description

specify various qc cutoffs to select the desired cells

Usage

sc_atac_filter_cell_calling(
mtx,
cell_gc_metrics_file,
min_uniqg_frags = 0,
max_unig_frags = 50000,
min_frac_peak = 0.05,
min_frac_tss = 0,
min_frac_enhancer = 0,
min_frac_promoter = 0,
max_frac_mito = 0.2

sc_atac_peak_calling 39

Arguments

mtx The input matrix
cell_qgc_metrics_file

A file containing qc statistics for each cell
min_unig_frags The minimum number of required unique fragments required for a cell
max_unig_frags The maximum number of required unique fragments required for a cell
min_frac_peak The minimum proportion of fragments in a cell to overlap with a peak

min_frac_tss The minimum proportion of fragments in a cell to overlap with a tss
min_frac_enhancer
The minimum proportion of fragments in a cell to overlap with a enhancer se-
quence
min_frac_promoter
The minimum proportion of fragments in a cell to overlap with a promoter se-
quence

max_frac_mito The maximum proportion of fragments in a cell that are mitochondrial

sc_atac_peak_calling sc_atac_peak_calling()

Description

sc_atac_peak_calling()

Usage

sc_atac_peak_calling(
inbam,
ref = NULL,
genome_size = NULL,
output_folder = NULL

)
Arguments
inbam The input tagged, sorted, duplicate-free input BAM file
ref The reference genome file
genome_size The size of the genome

output_folder The path of the output folder

Value

None (invisible ‘NULL")

40 sc_atac_pipeline

Examples

Not run:
sc_atac_peak_calling(
inbam,
reference)

End(Not run)

sc_atac_pipeline A convenient function for running the entire pipeline

Description

A convenient function for running the entire pipeline

Usage
sc_atac_pipeline(

ri,
r2,
bc_file,
valid_barcode_file = ""
id1_st = -0,
id1_len = 16,
id2_st = 0,
id2_len = 16,
rmN = TRUE,
rmlow = TRUE,

organism = NULL,

reference = NULL,
feature_type = NULL,
remove_duplicates = FALSE,
samtools_path = NULL,
genome_size = NULL,
bin_size = NULL,

yieldsize = 1e+06,
exclude_regions = TRUE,
excluded_regions_filename = NULL,
fix_chr = "none”,

lower = NULL,

cell_calling = "filter",
promoters_file = NULL,
tss_file = NULL,

enhs_file = NULL,
gene_anno_file = NULL,
min_uniqg_frags = 3000,
max_uniqg_frags = 50000,

sc_atac_pipeline 41

min_frac_peak = 0.3,
min_frac_tss = 0,
min_frac_enhancer = 0,
min_frac_promoter = 0.1,
max_frac_mito = 0.15,
report = TRUE,

nthreads = 12,
output_folder = NULL

)
Arguments
ri The first read fastq file
r2 The second read fastq file
bc_file the barcode information, can be either in a fastq format (e.g. from 10x-ATAC)

or from a .csv file (here the barcode is expected to be on the second column).
Currently, for the fastq approach, this can be a list of barcode files.
valid_barcode_file

optional file path of the valid (expected) barcode sequences to be found in the
bc_file (.txt, can be txt.gz). Must contain one barcode per line on the second
column separated by a comma (default =""). If given, each barcode from bc_file
is matched against the barcode of best fit (allowing a hamming distance of 1).
If a FASTQ bc_file is provided, barcodes with a higher mapping quality, as
given by the fastq reads quality score are prioritised.

id1_st barcode start position (0-indexed) for read 1, which is an extra parameter that is
needed if the bc_file isin a . csv format.

id1_len barcode length for read 1, which is an extra parameter that is needed if the
bc_fileisina .csv format.

id2_st barcode start position (0-indexed) for read 2, which is an extra parameter that is
needed if the bc_fileisin a .csv format.

id2_len barcode length for read 2, which is an extra parameter that is needed if the
bc_fileisina .csv format.

rmN ogical, whether to remove reads that contains N in UMI or cell barcode.

rmlow logical, whether to remove reads that have low quality barcode sequences.

organism The name of the organism e.g. hg38

reference The reference genome file

feature_type The feature type (either ‘genome_bin‘ or ‘peak‘)
remove_duplicates
Whether or not to remove duplicates (samtools is required)

samtools_path A custom path of samtools to use for duplicate removal
genome_size The size of the genome (used for the cellranger cell calling method)
bin_size The size of the bins for feature counting with the ‘genome_bin‘ feature type

yieldsize The number of reads to read in for feature counting

42 sc_atac_pipeline

exclude_regions

Whether or not the regions should be excluded
excluded_regions_filename

The filename of the file containing the regions to be excluded

fix_chr Specify ‘none°, ‘exclude_regions®, ‘feature‘ or ‘both‘ to prepend the string "chr"
to the start of the associated file

lower the lower threshold for the data if using the emptydrops function for cell calling.
cell_calling The desired cell calling method either cellranger, emptydrops or filter

promoters_file The path of the promoter annotation file (if the specified organism isn’t recog-

nised)
tss_file The path of the tss annotation file (if the specified organism isn’t recognised)
enhs_file The path of the enhs annotation file (if the specified organism isn’t recognised)

gene_anno_file The path of the gene annotation file (gtf or gff3 format)

min_uniqg_frags The minimum number of required unique fragments required for a cell (used for
filter cell calling)

max_unig_frags The maximum number of required unique fragments required for a cell (used
for filter cell calling)

min_frac_peak The minimum proportion of fragments in a cell to overlap with a peak (used for
filter cell calling)

min_frac_tss The minimum proportion of fragments in a cell to overlap with a tss (used for
filter cell calling)

min_frac_enhancer

The minimum proportion of fragments in a cell to overlap with a enhancer se-
quence (used for filter cell calling)

min_frac_promoter

The minimum proportion of fragments in a cell to overlap with a promoter se-
quence (used for filter cell calling)

max_frac_mito The maximum proportion of fragments in a cell that are mitochondrial (used for
filter cell calling)

report Whether or not a HTML report should be produced
nthreads The number of threads to use for alignment (sc_align) and demultiplexing (sc_atac_bam_tagging)

output_folder The path of the output folder

Value

None (invisible ‘NULL")

Examples
data.folder <- system.file("extdata”, package = "scPipe", mustWork = TRUE)
ri <- file.path(data.folder, "small_chr21_R1.fastq.gz")
r2 <- file.path(data.folder, "small_chr21_R3.fastq.gz")

Using a barcode fastq file:

sc_atac_pipeline_quick_test 43

barcodes in fastq format

barcode_fastq <- file.path(data.folder, "small_chr21_R2.fastq.gz")
Not run:
sc_atac_pipeline(
rt =ril,
r2 =r2,
bc_file = barcode_fastq
)

End(Not run)

sc_atac_pipeline_quick_test

A function that tests the pipeline on a small test sample (without du-
plicate removal)

Description

A function that tests the pipeline on a small test sample (without duplicate removal)

Usage

sc_atac_pipeline_quick_test()

Value

None (invisible ‘NULL*)

sc_atac_plot_cells_per_feature
A histogram of the log-number of cells per feature

Description

A histogram of the log-number of cells per feature

Usage

sc_atac_plot_cells_per_feature(sce)

Arguments

sce The SingleExperimentObject produced by the sc_atac_create_sce function at
the end of the pipeline

44 sc_atac_plot_features_per_cell_ordered

Value

returns NULL

sc_atac_plot_features_per_cell
A histogram of the log-number of features per cell

Description

A histogram of the log-number of features per cell

Usage

sc_atac_plot_features_per_cell(sce)

Arguments
sce The SingleExperimentObject produced by the sc_atac_create_sce function at
the end of the pipeline
Value
returns NULL

sc_atac_plot_features_per_cell_ordered
Plot showing the number of features per cell in ascending order

Description

Plot showing the number of features per cell in ascending order

Usage

sc_atac_plot_features_per_cell_ordered(sce)

Arguments
sce The SingleExperimentObject produced by the sc_atac_create_sce function at
the end of the pipeline
Value

returns NULL

sc_atac_plot_fragments_cells_per_feature 45

sc_atac_plot_fragments_cells_per_feature
A scatter plot of the log-number of fragments and log-number of cells
per feature

Description

A scatter plot of the log-number of fragments and log-number of cells per feature

Usage

sc_atac_plot_fragments_cells_per_feature(sce)

Arguments
sce The SingleExperimentObject produced by the sc_atac_create_sce function at
the end of the pipeline
Value
returns NULL

sc_atac_plot_fragments_features_per_cell
A scatter plot of the log-number of fragments and log-number of fea-
tures per cell

Description

A scatter plot of the log-number of fragments and log-number of features per cell

Usage

sc_atac_plot_fragments_features_per_cell(sce)

Arguments
sce The SingleExperimentObject produced by the sc_atac_create_sce function at
the end of the pipeline
Value

returns NULL

46 sc_atac_plot_fragments_per_feature

sc_atac_plot_fragments_per_cell
A histogram of the log-number of fragments per cell

Description

A histogram of the log-number of fragments per cell

Usage

sc_atac_plot_fragments_per_cell(sce)

Arguments
sce The SingleExperimentObject produced by the sc_atac_create_sce function at
the end of the pipeline
Value
returns NULL

sc_atac_plot_fragments_per_feature
A histogram of the log-number of fragments per feature

Description

A histogram of the log-number of fragments per feature

Usage

sc_atac_plot_fragments_per_feature(sce)

Arguments
sce The SingleExperimentObject produced by the sc_atac_create_sce function at
the end of the pipeline
Value

returns NULL

sc_atac_remove_duplicates 47

sc_atac_remove_duplicates
Removing PCR duplicates using samtools

Description
Takes in a BAM file and removes the PCR duplicates using the samtools markdup function. Re-
quires samtools 1.10 or newer for statistics to be generated.

Usage

sc_atac_remove_duplicates(inbam, samtools_path = NULL, output_folder = NULL)

Arguments

inbam The tagged, sorted and duplicate-free input BAM file
samtools_path The path of the samtools executable (if a custom installation is to be specified)

output_folder The path of the output folder

Value

file path to a bam file created from samtools markdup

sc_atac_tfidf generating the UMAPs for sc-ATAC-Seq preprocessed data

Description
Takes the binary matrix and generate a TF-IDF so the clutering can take place on the reduced
dimentions.

Usage

sc_atac_tfidf(binary.mat, output_folder = NULL)

Arguments

binary.mat The final, filtered feature matrix in binary format

output_folder The path of the output folder

Value

None (invisible ‘NULL*)

48 sc_atac_trim_barcode

Examples

Not run:
sc_atac_tfidf(binary.mat = final_binary_matrix)

End(Not run)

sc_atac_trim_barcode demultiplex raw single-cell ATAC-Seq fastq reads

Description

single-cell data need to be demultiplexed in order to retain the information of the cell barcodes the
data belong to. Here we reformat fastq files so barcode/s (and if available the UMI sequences) are
moved from the sequence into the read name. Since scATAC-Seq data are mostly paired-end, both
‘r1‘ and ‘r2° are demultiplexed in this function.

Usage

sc_atac_trim_barcode(
ri,
r2,
bc_file = NULL,
valid_barcode_file = "",
output_folder = "",
umi_start = 0,
umi_length = 0,
umi_in = "both",
rmN = FALSE,
rmlow = FALSE,
min_qual = 20,
num_below_min = 2,

id1_st = -0,
id1_len = 16,
id2_st = 0,
id2_len = 16,
no_reverse_complement = FALSE
)
Arguments
ri read one for pair-end reads.
r2 read two for pair-end reads, NULL if single read.
bc_file the barcode information, can be either in a fastq format (e.g. from 10x-ATAC)

or from a .csv file (here the barcode is expected to be on the second column).
Currently, for the fastq approach, this can be a list of barcode files.

sc_atac_trim_barcode

49

valid_barcode_file

output_folder

umi_start
umi_length
umi_in

rmN

rmlow
min_qual
num_below_min

id1_st

id1_len

id2_st

id2_len

optional file path of the valid (expected) barcode sequences to be found in the
bc_file (.txt, can be txt.gz). Must contain one barcode per line on the second
column separated by a comma (default =""). If given, each barcode from bc_file
is matched against the barcode of best fit (allowing a hamming distance of 1).
If a FASTQ bc_file is provided, barcodes with a higher mapping quality, as
given by the fastq reads quality score are prioritised.

the output dir for the demultiplexed fastq file, which will contain fastq files with
reformatted barcode and UMI into the read name. Files ending in .gz will be
automatically compressed.

if available, the start position of the molecular identifier.

if available, the start position of the molecular identifier.

umi_in

logical, whether to remove reads that contains N in UMI or cell barcode.
logical, whether to remove reads that have low quality barcode sequences
the minimum base pair quality that is allowed (default = 20).

the maximum number of base pairs below the quality threshold.

barcode start position (0-indexed) for read 1, which is an extra parameter that is
needed if the bc_file isina .csv format.

barcode length for read 1, which is an extra parameter that is needed if the
bc_fileisina .csv format.

barcode start position (0-indexed) for read 2, which is an extra parameter that is
needed if the bc_file isina .csv format.

barcode length for read 2, which is an extra parameter that is needed if the
bc_fileisina .csv format.

no_reverse_complement

Value

specifies if the reverse complement of the barcode sequence should be used for
barcode error correction (only when barcode sequences are provided as fastq
files). FALSE (default) lets the function decide whether to use reverse comple-
ment, and TRUE forces the function to use the forward barcode sequences.

None (invisible ‘NULL*)

Examples

data.folder <- system.file("extdata”, package = "scPipe", mustWork = TRUE)
ri <- file.path(data.folder, "small_chr21_R1.fastq.gz")
r2 <- file.path(data.folder, "small_chr21_R3.fastq.gz")

Using a barcode fastq file:

barcodes in fastqg format

barcode_fastq

<- file.path(data.folder, "small_chr21_R2.fastq.gz")

50

sc_correct_bam_bc

sc_atac_trim_barcode (

ri =rl,

r2 =r2,

bc_file = barcode_fastq,
rmN = TRUE,

rmlow = TRUE,

output_folder = tempdir())

Using a barcode csv file:

barcodes in .csv format

barcode_1000 <- file.path(data.folder, "chr21_modified_barcode_1000.csv")
Not run:

sc_atac_trim_barcode (

ri =ri,

r2 =r2,

bc_file = barcode_1000,

id1_st =0,

rmN = TRUE,

rmlow = TRUE,

output_folder = tempdir())

End(Not run)

sc_correct_bam_bc sc_correct_bam_bc

Description

update the cell barcode tag in bam file with corrected barcode output to a new bam file. the function
will be useful for methods that use the cell barcode information from bam file, such as ‘Demuxlet*

Usage

sc_correct_bam_bc(

inbam,

outbam,

bc_anno,

max_mis = 1,

bam_tags = list(am = "YE", ge = "GE", bc = "BC", mb = "0X"),
mito = "MT",

nthreads = 1

Arguments

inbam input bam file. This should be the output of sc_exon_mapping

outbam output bam file with updated cell barcode

sc_count_aligned_bam 51

bc_anno barcode annotation, first column is cell id, second column is cell barcode se-
quence

max_mis maximum mismatch allowed in barcode. (default: 1)

bam_tags list defining BAM tags where mapping information is stored.

* "am": mapping status tag

* "ge": gene id

e "bc": cell barcode tag

* "mb": molecular barcode tag

mito mitochondrial chromosome name. This should be consistent with the chromo-
some names in the bam file.

nthreads number of threads to use. (default: 1)
Value
no return
Examples
data_dir="celseq2_demo"”
barcode_annotation_fn = system.file("extdata”, "barcode_anno.csv",
package = "scPipe")
Not run:

refer to the vignettes for the complete workflow
sc_correct_bam_bc(file.path(data_dir, "out.map.bam"),

file.path(data_dir, "out.map.clean.bam"),
barcode_annotation_fn)

End(Not run)

sc_count_aligned_bam sc_count_aligned_bam

Description

Wrapper to run sc_exon_mapping, sc_demultiplex and sc_gene_counting with a single com-
mand

Usage

sc_count_aligned_bam(
inbam,
outbam,
annofn,

52 sc_count_aligned_bam
bam_tags = list(am = "YE", ge = "GE", bc = "BC", mb = "0X"),
bc_len = 8,

UMI_len = 6,
stnd = TRUE,
fix_chr = FALSE,
outdir,

bc_anno,

max_mis = 1,
mito = "MT",
has_UMI = TRUE,
UMI_cor =1,
gene_fl = FALSE,
keep_mapped_bam = TRUE,
nthreads = 1

)

Arguments

inbam input aligned bam file. can have multiple files as input

outbam output bam filename

annofn single string or vector of gff3 annotation filenames, data.frame in SAF format
or GRanges object containing complete gene_id metadata column.

bam_tags list defining BAM tags where mapping information is stored.

* "am": mapping status tag

o "ge": geneid

* "bc": cell barcode tag

* "mb": molecular barcode tag

bc_len total barcode length

UMI_len UMI length

stnd TRUE to perform strand specific mapping. (default: TRUE)

fix_chr TRUE to add ‘chr‘ to chromosome names, MT to chrM. (default: FALSE)

outdir output folder

bc_anno barcode annotation, first column is cell id, second column is cell barcode se-
quence

max_mis maximum mismatch allowed in barcode. (default: 1)

mito mitochondrial chromosome name. This should be consistent with the chromo-
some names in the bam file.

has_UMI whether the protocol contains UMI (default: TRUE)

UMI_cor correct UMI sequencing error: 0 means no correction, 1 means simple correction
and merge UMI with distance 1. 2 means merge on both UMI alignment position
match.

gene_f1 whether to remove low abundance genes. A gene is considered to have low

keep_mapped_bam

nthreads

abundance if only one copy of one UMI is associated with it.

TRUE if feature mapped bam file should be retained.
number of threads to use. (default: 1)

sc_demultiplex 53

Value
no return
Examples
Not run:
sc_count_aligned_bam(
inbam = "aligned.bam”,
outbam = "mapped.bam”,
annofn = c("MusMusculus-GRCm38p4-UCSC.gff3", "ERCC92_anno.gff3"),
outdir = "output”,
bc_anno = "barcodes.csv"
)

End(Not run)

sc_demultiplex sc_demultiplex

Description

Process bam file by cell barcode, output to outdir/count/[cell_id].csv. the output contains informa-
tion for all reads that can be mapped to exons. including the gene id, UMI of that read and the
distance to transcript end position.

Usage

sc_demultiplex(

inbam,
outdir

’

bc_anno,
max_mis = 1,
bam_tags = list(am = "YE", ge = "GE", bc = "BC", mb = "0X"),

mito =

HMTH ,

has_UMI = TRUE,
nthreads = 1

Arguments

inbam
outdir

bc_anno

max_mis

bam_tags

input bam file. This should be the output of sc_exon_mapping
output folder

barcode annotation, first column is cell id, second column is cell barcode se-
quence

maximum mismatch allowed in barcode. (default: 1)

list defining BAM tags where mapping information is stored.

sc_demultiplex_and_count

e "am": mapping status tag

* "ge": geneid

e "bc": cell barcode tag

* "mb": molecular barcode tag

mito mitochondrial chromosome name. This should be consistent with the chromo-
some names in the bam file.
has_UMI whether the protocol contains UMI (default: TRUE)
nthreads number of threads to use. (default: 1)
Value
no return
Examples
data_dir="celseq2_demo"”
barcode_annotation_fn = system.file("extdata”, "barcode_anno.csv”,
package = "scPipe")
Not run:

refer to the vignettes for the complete workflow
sc_demultiplex(file.path(data_dir, "out.map.bam"),

data_dir,
barcode_annotation_fn,has_UMI=FALSE)

End(Not run)

sc_demultiplex_and_count
sc_demultiplex_and_count

Description

Wrapper to run sc_demultiplex and sc_gene_counting with a single command

Usage

sc_demultiplex_and_count(
inbam,
outdir,
bc_anno,
max_mis = 1,
bam_tags = list(am = "YE", ge = "GE", bc = "BC", mb = "0OX"),
mito = "MT",
has_UMI = TRUE,

sc_demultiplex_and_count 55

UMI_cor =1,
gene_f1l = FALSE,
nthreads = 1

)

Arguments
inbam input bam file. This should be the output of sc_exon_mapping
outdir output folder
bc_anno barcode annotation, first column is cell id, second column is cell barcode se-
quence
max_mis maximum mismatch allowed in barcode. (default: 1)
bam_tags list defining BAM tags where mapping information is stored.
e "am": mapping status tag
* "ge": gene id
e "bc": cell barcode tag
* "mb": molecular barcode tag
mito mitochondrial chromosome name. This should be consistent with the chromo-
some names in the bam file.
has_UMI whether the protocol contains UMI (default: TRUE)
UMI_cor correct UMI sequencing error: 0 means no correction, 1 means simple correction
and merge UMI with distance 1. 2 means merge on both UMI alignment position
match.
gene_f1l whether to remove low abundance genes. A gene is considered to have low
abundance if only one copy of one UMI is associated with it.
nthreads number of threads to use. (default: 1)
Value

no return
Examples

Not run:

refer to the vignettes for the complete workflow, replace demultiplex and
count with single command:

sc_demultiplex_and_count(
file.path(data_dir, "out.map.bam"),
data_dir,
barcode_annotation_fn,
has_UMI = FALSE

End(Not run)

56

sc_detect_bc

sc_detect_bc

sc_detect_bc

Description

Detect cell barcode and generate the barcode annotation

Usage

sc_detect_bc(

infq,
outcsv,

prefix = "CELL_",

bc_len,

max_reads = 1e+06,
min_count = 10,

number_of_cells

10000,

max_mismatch = 1,
white_list_file = NULL

Arguments
infq
outcsv
prefix
bc_len
max_reads

min_count

number_of_cells

max_mismatch

white_list_file

Value

no return

input fastq file, should be the output file of sc_trim_barcode

output barcode annotation

the prefix of cell name (default: ‘CELL_)

the length of cell barcode, should be consistent with bl1+bl2 in sc_trim_barcode
the maximum of reads processed (default: 1,000,000)

minimum counts to keep, barcode will be discarded if it has lower count. Default
value is 10. This should be set according to max_reads.

number of cells kept in result. (default: 10000)

the maximum mismatch allowed. Barcodes within this number will be consid-
ered as sequence error and merged. (default: 1)

a file that list all the possible barcodes each row is a barcode sequence. the list
for 10x can be found at: https://community.10xgenomics.com/t5/Data-Sharing/List-
of-valid-cellular-barcodes/td-p/527 (default: NULL)

sc_exon_mapping 57

Examples

Not run:

~sc_detect_bc " should run before “sc_demultiplex” for

Drop-seq or 10X protocols

sc_detect_bc("input.fastq”, "output.cell_index.csv"”,bc_len=8)
sc_demultiplex(...,"output.cell_index.csv")

End(Not run)

sc_exon_mapping SC_exon_mapping

Description

Map aligned reads to exon annotation. The result will be written into optional fields in bam
file with different tags. Following this link for more information regarding to bam file format:
http://samtools.github.io/hts-specs

The function can accept multiple bam file as input, if multiple bam file is provided and the ‘bc_len*
is zero, then the function will use the barcode in the ‘barcode_vector* to insert into the ‘bc‘ bam tag.
So the length of ‘barcode_vector® and the length of ‘inbam*‘ should be the same If this is the case
then the ‘max_mis® argument in ‘sc_demultiplex‘ should be zero. If ‘be_len® is larger than zero,
then the function will still seek for barcode in fastq headers with given length. In this case each bam
file is not treated as from a single cell.

Usage

sc_exon_mapping(
inbam,
outbam,
annofn,
bam_tags = list(am = "YE", ge = "GE", bc = "BC", mb = "0X"),
bc_len = 8,
barcode_vector = "",
UMI_len = 6,
stnd = TRUE,
fix_chr = FALSE,
nthreads = 1

)
Arguments
inbam input aligned bam file. can have multiple files as input
outbam output bam filename
annofn single string or vector of gff3 annotation filenames, data.frame in SAF format

or GRanges object containing complete gene_id metadata column.

58 sc_gene_counting

bam_tags list defining BAM tags where mapping information is stored.
* "am": mapping status tag
* "ge": gene id
e "bc": cell barcode tag
* "mb": molecular barcode tag

bc_len total barcode length

barcode_vector a list of barcode if each individual bam is a single cell. (default: NULL). The
barcode should be of the same length for each cell.

UMI_len UMI length
stnd TRUE to perform strand specific mapping. (default: TRUE)
fix_chr TRUE to add ‘chr‘ to chromosome names, MT to chrM. (default: FALSE)
nthreads number of threads to use. (default: 1)
Value

generates a bam file with exons assigned

Examples

data_dir="celseq2_demo"

ERCCanno_fn = system.file("extdata”, "ERCC92_anno.gff3",
package = "scPipe")

Not run:

for the complete workflow, refer to the vignettes

sc_exon_mapping(file.path(data_dir, "out.aln.bam"),

file.path(data_dir, "out.map.bam"),
ERCCanno_fn)

End(Not run)

sc_gene_counting Sc_gene_counting

Description

Generate gene counts matrix with UMI deduplication

Usage

sc_gene_counting(outdir, bc_anno, UMI_cor = 2, gene_fl = FALSE)

sc_get_umap_data 59

Arguments
outdir output folder containing sc_demultiplex output
bc_anno barcode annotation comma-separated-values, first column is cell id, second col-
umn is cell barcode sequence
UMI_cor correct UMI sequencing error: 0 means no correction, 1 means simple correction
and merge UMI with distance 1. 2 means merge on both UMI alignment position
match.
gene_f1l whether to remove low abundance genes. A gene is considered to have low
abundance if only one copy of one UMI is associated with it.
Value
no return
Examples
data_dir="celseq2_demo"
barcode_annotation_fn = system.file("extdata"”, "barcode_anno.csv”,
package = "scPipe")
Not run:

refer to the vignettes for the complete workflow

sc_gene_counting(data_dir, barcode_annotation_fn)

End(Not run)

sc_get_umap_data Generates UMAP data from sce object

Description
Produces a DataFrame containing the UMAP dimensions, as well as all the colData of the sce object
for each cell

Usage

sc_get_umap_data(sce, n_neighbours = 30)

Arguments

sce The SingleCellExperiment object
n_neighbours No. of neighbours for KNN

Value

A dataframe containing the UM AP dimensions, as well as all the colData of the sce object for each
cell

60 sc_integrate

sc_integrate Integrate multi-omic scRNA-Seq and scATAC-Seq data into a MultiAs-
sayExperiment

Description

Generates an integrated SCE object with scRNA-Seq and scATAC-Seq data produced by the scPipe
pipelines

Usage

sc_integrate(
sce_list,
barcode_match_file = NULL,
sce_column_to_barcode_files = NULL,
rev_comp = NULL,
cell_line_info = NULL,
output_folder = NULL

Arguments

sce_list A list of SCE objects, named with the corresponding technologies
barcode_match_file
A .csv file with columns corresponding to the barcodes for each tech

sce_column_to_barcode_files
A list of files containing the barcodes for each tech (if not needed then give a
‘NULLS entry)

rev_comp A named list of technologies and logical flags specifying if reverse complements
should be applyed for sequences (if not needed then provide a ‘NULL* entry)

cell_line_info A list of files, each of which contains 2 columns corresponding to the barcode
and cell line for each tech (if not needed then provide a ‘NULL" entry)

output_folder The path to the output folder

Value

Returns a MultiAssayExperiment containing the scRNA-Seq and scATAC-Seq data produced by
the scPipe pipelines

Examples

Not run:
sc_integrate(
sce_list = list("RNA" = sce.rna, "ATAC" = sce.atac),
barcode_match_file = bc_match_file,
sce_column_to_barcode_files = list("RNA" = rna_bc_anno, "ATAC" = NULL),

sc_interactive_umap_plot 61

rev_comp = list("RNA” = FALSE, "ATAC" = TRUE),

cell_line_info = list("RNA"” = rna_cell_line_info, "ATAC" = atac_cell_line_info,)
output_folder = output_folder

)

End(Not run)

sc_interactive_umap_plot
Produces an interactive UMAP plot via Shiny

Description

Can colour the UMAP by any of the colData columns in the SCE object

Usage

sc_interactive_umap_plot(sce)

Arguments

sce The SingleCellExperiment object

Value

A shiny object which represents the app. Printing the object or passing it to ‘shiny::runApp(...)‘ will
run the app.

sc_mae_plot_umap Generates UMAP of multiomic data

Description

Uses feature count data from multiple experiment objects to produce UMAPs for each assay and
then overlay them on the same pair of axes

Usage
sc_mae_plot_umap(mae, by = NULL, output_file = NULL)

Arguments
mae The MultiAssayExperiment object
by What to colour the points by. Needs to be in colData of all experiments.

output_file The path of the output file

62 sc_sample_data

Value

A ggplot2 object representing the UMAP plot

sc_sample_data a small sample scRNA-seq counts dataset to demonstrate capabilities
of scPipe

Description

This data set contains counts for high variable genes for 100 cells. The cells have different cell
types. The data contains raw read counts. The cells are chosen randomly from 384 cells and they
did not go through quality controls. The rows names are Ensembl gene ids and the columns are cell
names, which is the wall position in the 384 plates.

Format

a matrix instance, one row per gene.

Value

NULL, but makes a matrix of count data

Author(s)

Luyi Tian

Source

Christin Biben (WEHI). She FACS sorted cells from several immune cell types including B cells,
granulocyte and some early progenitors.

Examples

use the example dataset to perform quality control

data("sc_sample_data")

data("sc_sample_qgc")

sce = SingleCellExperiment(assays = list(counts = as.matrix(sc_sample_data)))
organism(sce) = "mmusculus_gene_ensembl”

gene_id_type(sce) = "ensembl_gene_id"

QC_metrics(sce) = sc_sample_qgc

demultiplex_info(sce) = cell_barcode_matching

UMI_dup_info(sce) = UMI_duplication

sce = detect_outlier(sce)

plot_QC_pairs(sce)

sc_sample_qgc 63

sc_sample_qgc quality control information for a small sample scRNA-seq dataset to

demonstrate capabilities of scPipe.

Description

This data.frame contains cell quality control information for the 100 cells. For each cell it has:

Format

unaligned the number of unaligned reads.

aligned_unmapped the number of reads that aligned to genome but fail to map to any features.
mapped_to_exon is the number of reads that mapped to exon.

mapped_to_intron is the number of reads that mapped to intron.

ambiguous_mapping is the number of reads that mapped to multiple features. They are not
considered in the following analysis.

mapped_to_ERCC is the number of reads that mapped to ERCC spike-in controls.
mapped_to_MT is the number of reads that mapped to mitochondrial genes.

total_count_per_cell is the number of reads that mapped to exon after UMI deduplication. In
contrast, ‘mapped_to_exon‘ is the number of reads mapped to exon before UMI deduplication.

number_of_genes is the number of genes detected for each cells
non_ERCC_percent is 1 - (percentage of ERCC reads). Reads are UMI deduplicated.
non_mt_percent is 1 - (percentage of mitochondrial reads). Reads are UMI deduplicated.

non_ribo_percent is 1- (percentage of ribosomal reads). Reads are UMI deduplicated.

a data.frame instance, one row per cell.

Value

NULL, but makes a data frame with cell quality control data.frame

Author(s)

Luyi Tian

Source

Christin Biben (WEHI). She FACS sorted cells from several immune cell types including B cells,
granulocyte and some early progenitors.

64 sc_trim_barcode

Examples

data("sc_sample_data")

data("sc_sample_qgc")

sce = SingleCellExperiment(assays = list(counts = as.matrix(sc_sample_data)))
organism(sce) = "mmusculus_gene_ensembl”

gene_id_type(sce) = "ensembl_gene_id"

QC_metrics(sce) = sc_sample_qgc

head(QC_metrics(sce))

plot_mapping(sce,percentage=TRUE,dataname="sc_sample”)

sc_trim_barcode sc_trim_barcode

Description

Reformat fastq files so barcode and UMI sequences are moved from the sequence into the read
name.

Usage

sc_trim_barcode(
outfq,
ri,
r2 = NULL,
read_structure = list(bs1 = -1, bl1 = 0, bs2 = 6, bl2 =8, us =0, ul = 6),
filter_settings = list(rmlow = TRUE, rmN = TRUE, ming = 20, numbg = 2)

Arguments
outfq the output fastq file, which reformat the barcode and UMI into the read name.
Files ending in . gz will be automatically compressed.
ri read one for pair-end reads. This read should contain the transcript.
r2 read two for pair-end reads, NULL if single read. (default: NULL)

read_structure a list containing the read structure configuration:

* bsl: starting position of barcode in read one. -1 if no barcode in read one.

* bll: length of barcode in read one, if there is no barcode in read one this
number is used for trimming beginning of read one.

* bs2: starting position of barcode in read two
* bl2: length of barcode in read two
* us: starting position of UMI
e ul: length of UMI
filter_settings
A list contains read filter settings:

TEIDEFE. custom 65

* rmlow whether to remove the low quality reads.
e rmN whether to remove reads that contains N in UMI or cell barcode.
* minq the minimum base pair quality that we allowed

* numbq the maximum number of base pair that have quality below numbg

Details

Positions used in this function are 0-indexed, so they start from O rather than 1. The default read
structure in this function represents CEL-seq paired-ended reads. This contains a transcript in the
first read, a UMI in the first 6bp of the second read followed by a 8bp barcode. So the read structure
will be : 1list(bs1=-1, bl11=0, bs2=6, b12=8, us=0, ul=6). bs1=-1, b11=0 indicates negative
start position and zero length for the barcode on read one, this is used to denote "no barcode" on
read one. bs2=6, b12=8 indicates there is a barcode in read two that starts at the 7th base with
length 8bp. us=0, ul=6 indicates a UMI from first base of read two and the length in 6bp.

For a typical Drop-seq experiment the read structure will be 1ist (bs1=-1, b11=0, bs2=0, b12=12,
us=12, ul=8), which means the read one only contains transcript, the first 12bp in read two are cell
barcode, followed by a 8bp UML.

Value

generates a trimmed fastq file named outfq

Examples

data_dir="celseq2_demo"”
Not run:
for the complete workflow, refer to the vignettes

sc_trim_barcode(file.path(data_dir, "combined.fastq"),

file.path(data_dir, "simu_R1.fastq"),
file.path(data_dir, "simu_R2.fastq"))

End(Not run)

TF.IDF.custom Returns the TF-IDF normalised version of a binary matrix

Description

Returns the TF-IDF normalised version of a binary matrix

Usage

TF.IDF.custom(binary.mat, verbose = TRUE)

66 UMI_duplication

Arguments

binary.mat The binary matrix

verbose boolean flag to print status messages
Value

Returns the TF-IDF normalised version of a binary matrix

UMI_duplication UMI duplication statistics for a small sample scRNA-seq dataset to
demonstrate capabilities of scPipe

Description

This data.frame contains UMI duplication statistics, where the first column is the number of dupli-
cation, and the second column is the count of UMIs.

Format

a data.frame instance, one row per cell.

Value

NULL, but makes a data frame with UMI dulication statistics

Author(s)

Luyi Tian

Source

Christin Biben (WEHI). She FACS sorted cells from several immune cell types including B cells,
granulocyte and some early progenitors.

Examples

data("sc_sample_data")

data("sc_sample_qgc")

sce = SingleCellExperiment(assays = list(counts =as.matrix(sc_sample_data)))
organism(sce) = "mmusculus_gene_ensembl”

gene_id_type(sce) = "ensembl_gene_id"

QC_metrics(sce) = sc_sample_qgc

demultiplex_info(sce) = cell_barcode_matching

UMI_dup_info(sce) = UMI_duplication

head (UMI_dup_info(sce))

UMI_dup_info

67

UMI_dup_info Get or set UMI duplication results in a SingleCellExperiment object

Description

Get or set UMI duplication results in a SingleCellExperiment object

Usage
UMI_dup_info(object)

UMI_dup_info(object) <- value
UMI_dup_info.sce(object)

S4 method for signature 'SingleCellExperiment'’
UMI_dup_info(object)

S4 replacement method for signature 'SingleCellExperiment'
UMI_dup_info(object) <- value

Arguments

object A SingleCellExperiment object.

value Value to be assigned to corresponding object.
Value

a dataframe of cell UMI duplication information
A DataFrame of UMI duplication results.

Author(s)
Luyi Tian

Examples

data("sc_sample_data")

data("sc_sample_qgc")

sce = SingleCellExperiment(assays = list(counts = as.matrix(sc_sample_data)))
organism(sce) = "mmusculus_gene_ensembl”

gene_id_type(sce) = "ensembl_gene_id"

QC_metrics(sce) = sc_sample_qgc

demultiplex_info(sce) = cell_barcode_matching

UMI_dup_info(sce) = UMI_duplication

head (UMI_dup_info(sce))

Index

.qg_outliers_robust, 4

anno_import, 4
anno_to_saf, 5

calculate_QC_metrics, 6
cell_barcode_matching, 7
check_barcode_start_position, 8
convert_geneid, 9
create_processed_report, 10
create_report, 11
create_sce_by_dir, 13

demultiplex_info, 14

demultiplex_info,SingleCellExperiment-method

(demultiplex_info), 14
demultiplex_info.sce
(demultiplex_info), 14
demultiplex_info<- (demultiplex_info),
14

gene_id_type,SingleCellExperiment-method
(gene_id_type), 18

gene_id_type.sce (gene_id_type), 18

gene_id_type<- (gene_id_type), 18

gene_id_type<-,SingleCellExperiment-method
(gene_id_type), 18

get_chromosomes, 19

get_ercc_anno, 19

get_genes_by_GO, 20

get_read_str, 21

organism (organism.sce), 21
organism,SingleCellExperiment-method
(organism.sce), 21
organism.sce, 21
organism<-,SingleCellExperiment-method
(organism.sce), 21

plot_demultiplex, 22
plot_mapping, 23

demultiplex_inf‘o<—,SingleCellExperiment—methoBIOt—QC—pairs’24

(demultiplex_info), 14
detect_outlier, 15

feature_info, 16

feature_info,SingleCellExperiment-method
(feature_info), 16

feature_info.sce (feature_info), 16

feature_info<- (feature_info), 16

feature_info<-,SingleCellExperiment-method
(feature_info), 16

feature_type, 17

feature_type,SingleCellExperiment-method
(feature_type), 17

feature_type.sce (feature_type), 17

feature_type<- (feature_type), 17

feature_type<-,SingleCellExperiment-method
(feature_type), 17

gene_id_type, 18

68

plot_UMI_dup, 24

QC_metrics, 25

QC_metrics,SingleCellExperiment-method
(QC_metrics), 25

QC_metrics.sce (QC_metrics), 25

QC_metrics<- (QC_metrics), 25

QC_metrics<-,SingleCellExperiment-method
(QC_metrics), 25

read_cells, 26
remove_outliers, 27

sc_aligning, 28
sc_atac_bam_tagging, 29
sc_atac_cell_calling, 30
sc_atac_create_cell_gc_metrics, 32
sc_atac_create_fragments, 32
sc_atac_create_report, 34
sc_atac_create_sce, 34

INDEX

sc_atac_emptydrops_cell_calling, 35
sc_atac_feature_counting, 36
sc_atac_filter_cell_calling, 38
sc_atac_peak_calling, 39
sc_atac_pipeline, 40
sc_atac_pipeline_quick_test, 43
sc_atac_plot_cells_per_feature, 43
sc_atac_plot_features_per_cell, 44
sc_atac_plot_features_per_cell_ordered,

44
sc_atac_plot_fragments_cells_per_feature
45
sc_atac_plot_fragments_features_per_cell
45

sc_atac_plot_fragments_per_cell, 46
sc_atac_plot_fragments_per_feature, 46
sc_atac_remove_duplicates, 47
sc_atac_tfidf, 47
sc_atac_trim_barcode, 48
sc_correct_bam_bc, 50
sc_count_aligned_bam, 51
sc_demultiplex, 51, 53, 54
sc_demultiplex_and_count, 54
sc_detect_bc, 56
sc_exon_mapping, 51, 57
sc_gene_counting, 51, 54, 58
sc_get_umap_data, 59
sc_integrate, 60
sc_interactive_umap_plot, 61
sc_mae_plot_umap, 61
sc_sample_data, 62
sc_sample_qc, 63
sc_trim_barcode, 64
scPipe, 27
scPipe-package (scPipe), 27
SingleCellExperiment, 13, 14,17, 18, 22,
25,67

TF.IDF.custom, 65

UMI_dup_info, 67
UMI_dup_info,SingleCellExperiment-method
(UMI_dup_info), 67
UMI_dup_info.sce (UMI_dup_info), 67
UMI_dup_info<- (UMI_dup_info), 67

UMI_dup_info<-,SingleCellExperiment-method

(UMI_dup_info), 67
UMI_duplication, 66

69

	.qq_outliers_robust
	anno_import
	anno_to_saf
	calculate_QC_metrics
	cell_barcode_matching
	check_barcode_start_position
	convert_geneid
	create_processed_report
	create_report
	create_sce_by_dir
	demultiplex_info
	detect_outlier
	feature_info
	feature_type
	gene_id_type
	get_chromosomes
	get_ercc_anno
	get_genes_by_GO
	get_read_str
	organism.sce
	plot_demultiplex
	plot_mapping
	plot_QC_pairs
	plot_UMI_dup
	QC_metrics
	read_cells
	remove_outliers
	scPipe
	sc_aligning
	sc_atac_bam_tagging
	sc_atac_cell_calling
	sc_atac_create_cell_qc_metrics
	sc_atac_create_fragments
	sc_atac_create_report
	sc_atac_create_sce
	sc_atac_emptydrops_cell_calling
	sc_atac_feature_counting
	sc_atac_filter_cell_calling
	sc_atac_peak_calling
	sc_atac_pipeline
	sc_atac_pipeline_quick_test
	sc_atac_plot_cells_per_feature
	sc_atac_plot_features_per_cell
	sc_atac_plot_features_per_cell_ordered
	sc_atac_plot_fragments_cells_per_feature
	sc_atac_plot_fragments_features_per_cell
	sc_atac_plot_fragments_per_cell
	sc_atac_plot_fragments_per_feature
	sc_atac_remove_duplicates
	sc_atac_tfidf
	sc_atac_trim_barcode
	sc_correct_bam_bc
	sc_count_aligned_bam
	sc_demultiplex
	sc_demultiplex_and_count
	sc_detect_bc
	sc_exon_mapping
	sc_gene_counting
	sc_get_umap_data
	sc_integrate
	sc_interactive_umap_plot
	sc_mae_plot_umap
	sc_sample_data
	sc_sample_qc
	sc_trim_barcode
	TF.IDF.custom
	UMI_duplication
	UMI_dup_info
	Index

