Package ‘podkat’

November 4, 2025
Type Package

Title Position-Dependent Kernel Association Test

Version 1.43.0

Date 2025-09-19

Maintainer Ulrich Bodenhofer <ulrich@bodenhofer.com>

Description This package provides an association test that is capable
of dealing with very rare and even private variants. This is
accomplished by a kernel-based approach that takes the
positions of the variants into account. The test can be used
for pre-processed matrix data, but also directly for variant
data stored in VCF files. Association testing can be performed
whole-genome, whole-exome, or restricted to pre-defined regions
of interest. The test is complemented by tools for analyzing
and visualizing the results.

URL https://github.com/UBod/podkat
License GPL (>=2)
Depends R (>= 3.5.0), methods, Rsamtools (>= 1.99.1), GenomicRanges

Imports Rcpp (>=0.11.1), parallel, stats (>= 4.3.0), graphics,
grDevices, utils, Biobase, BiocGenerics, Matrix, Seqinfo,
IRanges, Biostrings, BSgenome (>= 1.32.0)

Suggests BSgenome.Hsapiens.UCSC.hg38.masked,
TxDb.Hsapiens.UCSC.hg38.knownGene,
BSgenome.Mmusculus.UCSC.mm10.masked, GWASTools (>= 1.13.24),
VariantAnnotation, SummarizedExperiment, knitr

LinkingTo Rcpp, Rhtslib (>=1.15.3)
SystemRequirements GNU make
VignetteBuilder knitr

Collate AllGenerics.R AllClasses.R inputChecks.R sort-methods.R
show-methods.R print-methods.R summary-methods.R
p-adjust-methods.R c-methods.R access-methods.R
coerce-methods.R resampling.R unmaskedRegions.R

1

https://github.com/UBod/podkat

2 Contents

partitionRegions-methods.R genotypeMatrix-methods.R
computeKernel.R computePvalues.R readGenotypeMatrix-methods.R
read VariantInfo-methods.R readSampleNamesFromVcfHeader.R
readRegionsFromBedFile.R weightFuncs.R assocTest-methods.R
nullModel-methods.R gqqplot-methods.R plot-methods.R
filterResult-methods.R split-methods.R computeWeights.R
weights-methods.R

biocViews Genetics, WholeGenome, Annotation, VariantAnnotation,
Sequencing, Datalmport

NeedsCompilation yes

git_url https://git.bioconductor.org/packages/podkat
git_branch devel

git_last_commit d216al7

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-11-03

Author Ulrich Bodenhofer [aut, cre]

Contents
podkat-package L 3
assocTest 4
AssocTestResult-class L 10
AssocTestResultRanges-class L o 11
computeKernel L 14
filterResult-methods L 16
GenotypeMatrix-class e e 18
genotypeMatrix-methods o 20
hgA . 24
nullModel L 25
NullModel-class e 29
p-adjust-methods L 32
partitionRegions-methods 33
Plot . L e 35
print-methods 39
qaplot . . .o e e e 41
readGenotypeMatrix-methods oL 43
readRegionsFromBedFile oo 46
readSampleNamesFromVcfHeader oo 47
readVariantInfo-methods oo o 48
sort-methods 51
splitmethods 53
unmasked-datasets L. 54
unmaskedRegions Lo 56

VariantInfo-class e 58

podkat-package 3

weightFuncs e 59
weights e e e 61
Index 64
podkat-package PODKAT Package
Description

This package provides an association test that is capable of dealing with very rare and even private
variants. This is accomplished by a kernel-based approach that takes the positions of the variants
into account. The test can be used for pre-processed matrix data, but also directly for variant data
stored in VCF files. Association testing can be performed whole-genome, whole-exome, or re-
stricted to pre-defined regions of interest. The test is complemented by tools for analyzing and
visualizing the results.

Details

The central method of this package is assocTest. It provides several different kernel-based asso-
ciation tests, in particular, the position-dependent kernel association test (PODKAT), but also some
variants of the SNP-set kernel association test (SKAT). The test can be run for genotype data given
in (sparse) matrix format as well as directly on genotype data stored in a variant call format (VCF)
file. In any case, the user has to create a null model by the nul1Model function beforehand. Upon
completion of an association test, the package also provides methods for filtering, sorting, multiple
testing correction, and visualization of results.

Author(s)
Ulrich Bodenhofer

References

https://github.com/UBod/podkat

Examples

load genome description
data(hgA)

partition genome into overlapping windows
windows <- partitionRegions(hgA)

load genotype data from VCF file
vcfFile <- system.file("examples/examplel.vcf.gz", package="podkat")
Z <- readGenotypeMatrix(vcfFile)

read phenotype data from CSV file (continuous trait + covariates)
phenoFile <- system.file("examples/examplellin.csv", package="podkat")
pheno <-read.table(phenoFile, header=TRUE, sep=",")

https://github.com/UBod/podkat

4 assocTest

train null model with all covariates in data frame 'pheno’
nm.lin <- nullModel(y ~ ., pheno)

perform association test
res <- assocTest(Z, nm.lin, windows)

display results

print(res)

print(p.adjust(res))

plot(p.adjust(res), which="p.value.adj")

assocTest Perform Association Test

Description

Method for performing a kernel-based association test given a genotype, VCF file, or kernel matrix

Usage

S4 method for signature 'GenotypeMatrix,NullModel'
assocTest(Z, model, ranges,
kernel=c("linear.podkat”, "localsim.podkat”,
"quadratic.podkat”, "linear.SKAT",
"localsim.SKAT", "quadratic.SKAT"),
width=1000, weights=NULL, weightFunc=betaWeights(),
method=NULL, adj=c("automatic”, "none", "force"),
pValuelimit=0.05)
S4 method for signature 'matrix,NullModel'
assocTest(Z, model, method=NULL,
adj=c("automatic”, "none", "force"), pValueLimit=0.05)
S4 method for signature 'TabixFile,NullModel'
assocTest(Z, model, ranges,
kernel=c("linear.podkat”, "localsim.podkat”,
"quadratic.podkat”, "linear.SKAT",
"localsim.SKAT", "quadratic.SKAT"),
cl=NULL, nnodes=1, batchSize=20,
noIndels=TRUE, onlyPass=TRUE, na.limit=1, MAF.limit=1,

na.action=c("impute.major”, "omit"),
MAF.action=c("invert"”, "omit"”, "ignore"),
sex=NULL, weightFunc=betaWeights(), width=1000,
method=NULL, adj=c("automatic”, "none", "force"),

pValueLimit=(@.1 / length(ranges)), tmpdir=tempdir(),
displayProgress=TRUE)

S4 method for signature 'character,NullModel'

assocTest(Z, model, ...)

assocTest 5

Arguments

z an object of class GenotypeMatrix, a quadratic kernel matrix, an object of class
TabixFile, or a character string with a file name

model an object of class Nul1Model

ranges an object with genomic regions to be tested; may be an object of class GRanges
or GRangesList. If missing, assocTest takes the whole genotype matrix or the
genotypes in the VCF file as a whole.

kernel determines the kernel that should be used for association testing (see Subsection
9.2 of the package vignette for details)

CLINY3

width tolerance radius parameter for position-dependent kernels “linear.podkat”, “quadratic.podkat”,
and “localsim.podkat”; must be single positive numeric value; ignored for ker-
nels “linear. SKAT”, “quadratic.SKAT”, and “localsim.SKAT” (see Subsection
9.2 of the package vignette for details)

weights for the method with signature GenotypeMatrix,NullModel, it is also possible
to supply weights directly as a numeric vector that is as long as the number
of columns of Z. In this case, the argument weightFunc is ignored. Use NULL
(default) to use automatic weighting with the function supplied as argument
weightFunc. If weightFunc is NULL too, no weighting takes place, i.e. an
unweighted kernel is used.

weightFunc function for computing variant weights from minor allele frequencies (MAFs);
see weightFuncs for weighting and Subsection 9.3 of the package vignette for
functions provided by the podkat package. Use NULL for unweighted kernels.

method identifies the method for computing the p-values. If the null model is of type
“logistic” and small sample correction is applied (see argument adj below),
possible values are “unbiased”, “population”, “sample”, and “SKAT” (see de-
tails below and Subsection 9.5 of the package vignette). If the null model is of
type “linear” or if the null model is of type “logistic” and no small sample cor-
rection is applied, possible values are “davies”, “liu”, and “liu.mod” (see details
below and Subsection 9.1 of the package vignette). If the null model is of type
“bernoulli”, this argument is ignored.

adj whether or not to use small sample correction for logistic models (binary trait
with covariates). The choice “none” turns off small sample correction. If “force”
is chosen, small sample correction is turned on unconditionally. If “automatic”
is chosen (default), small sample correction is turned on if the number of sam-
ples does not exceed 2,000. This argument is ignored for any type of model
except “logistic” and small sample correction is switched off. For details how
to train a null model for small sample correction, see nul1Model and Sections 4
and 9.5 of the package vignette. An adjustment of higher moments is performed
whenever sampled null model residuals are available in the null model model
(slot res.resampled. adj, see Nul1Model).

pValuelLimit if the null model is of type “bernoulli”’, assocTest performs an exact mix-
ture of Bernoulli test. This test uses a combinatorial algorithm to compute
exact p-values and, for the sake of computational efficiency, quits if a pre-
specified p-value threshold is exceeded. This threshold can be specified with the
pValueLimit argument. This argument is ignored for other types of tests/null
models.

assocTest

cl if cl is an object of class SOCKcluster, association testing is carried out in
parallel on the cluster specified by cl. If NULL (default), either no parallelization
is done (if nnodes=1) or assocTest launches a cluster with nnodes R client
processes on localhost. See Subsection 8.5.2 of the package vignette.

nnodes if cl is NULL and nnodes is greater than 1, makePSOCKcluster is called with
nnodes nodes on localhost, i.e. nnodes R slave processes are launched on
which association testing is carried out in parallel. The default is 1. See Subsec-
tion 8.5.2 of the package vignette.

batchSize parameter which determines how many regions of ranges are processed at once.
The larger batchSize, the larger the the batches that are read from the VCF
file Z. A larger batchSize reduces the number of individual read operations,
which improves performance. However, a larger batchSize also requires larger
amounts of memory. A good choice of batchSize, therefore, depends on the
size and sparseness of the VCF file and as well on the available memory. See
Subsection 8.5 of the package vignette.

nolndels if TRUE (default), only single nucleotide variants (SNVs) are considered and
indels in the VCF file Z are skipped.

onlyPass if TRUE (default), only variants are considered whose value in the FILTER column
is “PASS”.

na.limit all variants with a missing value ratio above this threshold in the VCF file Z are
not considered.

MAF.limit all variants with a minor allele frequency (MAF) above this threshold in the VCF

file Z are not considered.

na.action if “impute.major”, all missing values will be imputed by major alleles before
association testing. If “omit”, all columns containing missing values in the VCF
file Z are ignored.

MAF .action if “invert”, all columns with an MAF exceeding 0.5 will be inverted in the sense
that all minor alleles will be replaced by major alleles and vice versa. If “omit”,
all variants in the VCF file with an MAF greater than 0.5 are ignored. If “ig-
nore”, no action is taken and MAFs greater than 0.5 are kept as they are.

sex if NULL, all samples are treated the same without any modifications; if sex is a
factor with levels F (female) and M (male) that is as long as length(model), this
argument is interpreted as the sex of the samples. In this case, the genotypes
corresponding to male samples are doubled before further processing. This is
designed for mixed-sex analyses of the X chromosome outside of the pseudoau-
tosomal regions.

tmpdir if computations are parallelized over multiple client processes (see arguments
nnodes and cl), the exchange of the null model object between the master pro-
cess and the client processes is done via a temporary file. The tmpdir argument
allows to specify into which directory the temporary file should be saved. On
multi-core systems, the default should be sufficient. If the computations are dis-
tributed over a custom cluster, the tmpdir argument needs to be chosen such
that all clients can access it via the same path.

displayProgress
if TRUE (default) and if ranges is a GRangesList, a progress message is printed
upon completion of each list component (typically consisting of regions of one
chromosome); this argument is ignored if ranges is not an object of class GRangesList.

assocTest 7

all other parameters are passed on to the assocTest method with signature
TabixFile,NullModel.

Details

The assocTest method is the main function of the podkat package. For a given genotype and a
null model, it performs the actual association test(s).

For null models of types “linear” and “logistic” (see Nul1Model and nullModel), a variance com-
ponent score test is used (see Subsection 9.1 of the package vignette for details). The test relies
on the choice of a particular kernel to measure the pairwise similarities of genotypes. The choice
of the kernel can be made with the kernel argument (see computeKernel and Subsection 9.2 of
the package vignette for more details). For null models of type “linear”, the test statistic follows
a mixture of chi-squares distribution. For models of typ “logistic”, the test statistic approximately
follows a mixture of chi-squares distribution. The computation of p-values for a given mixture of
chi-squares can be done according to Davies (1980) (which is the default), according to Liu et al.
(2009), or using a modified method similar to the one suggested by Liu et al. (2009) as implemented
in the SKAT package, too. Which method is used can be controlled using the method argument.
If method according to Davies (1980) fails, assocTest resorts to the method by Liu et al. (2009).
See also Subsection 9.1 of the package vignette for more details.

For null models of type “logistic”, the assocTest method also offers the small sample correction
suggested by Lee et al. (2012). Whether small sample correction is applied, is controlled by the
adj argument. The additional adjustment of higher moments as suggested by Lee et al. (2012)
is performed whenever resampled null model residuals are available in the null model model (slot
res.resampled.adj, see Nul1lModel). In this case, the method argument controls how the excess
kurtosis of test statistics sampled from the null distribution are computed. The default setting “unbi-
ased” computes unbiased estimates by using the exact expected value determined from the mixture
components. The settings “population” and “sample” use almost unbiased and biased sample statis-
tics, respectively. The choice “SKAT” uses the same method as implemented in the SKAT package.
See Subsection 9.5 of the package vignette for more details.

If the null model is of type “bernoulli”, the test statistic follows a mixture of Bernoulli distributions.
In this case, an exact p-value is determined that is computed as the probability to observe a test
statistic for random Bernoulli-distributed traits (under the null hypothesis) that is at least as large as
the observed test statistic. For reasons of computational complexity, this option is limited to sample
numbers not larger than 100. See Subsection 9.1 of the package vignette for more details.

The podkat package offers multiple interfaces for association testing all of which require the second
argument model to be a Nul1Model object. The simplest method is to call assocTest for an object
of class GenotypeMatrix as first argument Z. If the ranges argument is not supplied, a single
association test is performed using the entire genotype matrix contained in Z and an object of class
AssocTestResult is returned. In this case, all variants need to reside on the same chromosome
(compare with computeKernel). If the ranges argument is specified, each region in ranges is
tested separately and the result is returned as an AssocTestResultRanges object.

As said, the simplest method is to store the entire genotype in a GenotypeMatrix object and to
call assocTest as described above. This approach has the shortcoming that the entire genotype
must be read (e.g. from a VCF file) and kept in memory as a whole. For large studies, in particular,
whole-genome studies, this is not feasible. In order to be able to cope with large studies, the podkat
package offers an interface that allows for reading from a VCF file piece by piece without the need
to read and store the entire genotype at once. If Z is a TabixFile object or the name of a VCF file,

8 assocTest

assocTest reads from the file in batches of batchSize regions, performs the association tests for
these regions, and returns the results as an AssocTestResultRanges object. This sequential batch
processing can also be parallelized. The user can either set up a cluster him-/herself and pass the
SOCKcluster object as cl argument. If the cl is NULL, users can leave the setup of the cluster to
assocTest. In this case, the only thing necessary is to determine the number of R client processes
by the nnodes argument. The variant with the VCF interface supports the same pre-processing and
filter arguments as readGenotypeMatrix to control which variants are actually taken into account
and how to handle variants with MAFs greater than 50%.

If the argument Z is a numeric matrix, Z is interpreted as a kernel matrix K. Then a single association
test is performed as described above and the result is returned as an AssocTestResult object. This
allows the user to use a custom kernel not currently implemented in the podkat package. The
assocTest function assumes that row and column objects in the kernel matrix are in the same
order. It does not perform any check whether row and column names are the same or whether the
kernel matrix is actually positive semi-definite. Users should be aware that running the function for
invalid kernels matrices, i.e. for a matrix that is not positive semi-definite, produces meaningless
results and may even lead to unexpected errors.

Finally, note that the samples in the null model model and in the genotype (GenotypeMatrix object
or VCF file) need not be aligned to each other. If both the samples in model and in the genotype are
named (i.e. row names are defined for Z if it is a GenotypeMatrix object; VCF files always contain
sample names anyway), assocTest checks if all samples in model are present in the genotype. If
so, it selects only those samples from the genotype that occur in the null model. If not, it quits
with an error. If either the samples in the null model or the genotypes are not named, assocTest
assumes that the samples are aligned to each other. This applies only if the number of samples
in the null model and the number of genotypes are the same or if the number of genotypes equals
the number of samples in the null model plus the number of samples that were omitted from the
null model when it was trained (see Nul1Model and nullModel). Otherwise, the function quits
with an error. An analogous procedure is applied if the kernel matrix interface is used (signature
matrix,NullModel).

Value

an object of class AssocTestResult or AssocTestResultRanges (see details above)

Author(s)
Ulrich Bodenhofer

References

https://github.com/UBod/podkat

Wu, M. C,, Lee, S., Cai, T., Li, Y., Boehnke, M., and Lin, X. (2011) Rare-variant association testing
for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89, 82-93. DOI:
doi:10.1016/j.ajhg.2011.05.029.

Lee, S., Emond, M. J., Bamshad, M. J., Barnes, K. C., Rieder, M. J., Nickerson, D. A., NHLBI
Exome Sequencing Project - ESP Lung Project Team, Christiani, D. C., Wurfel, M. M., and Lin,
X. (2012) Optimal unified approach for rare-variant association testing with application to small-
sample case-control whole-exome sequencing studies. Am. J. Hum. Genet. 91, 224-237. DOI:
doi:10.1016/j.ajhg.2012.06.007.

https://github.com/UBod/podkat
https://doi.org/10.1016/j.ajhg.2011.05.029
https://doi.org/10.1016/j.ajhg.2012.06.007

assocTest 9

Davies, R. B. (1980) The distribution of a linear combination of y? random variables. J. R. Stat.
Soc. Ser. C-Appl. Stat. 29, 323-333.

Liu, H., Tang, Y., and Zhang, H. (2009) A new chi-square approximation to the distribution of non-
negative definite quadratic forms in non-central normal variables. Comput. Stat. Data Anal. 53,
853-856.

See Also

AssocTestResult, AssocTestResultRanges, nul1lModel, NullModel, computeKernel, weightFuncs,
readGenotypeMatrix, GenotypeMatrix, plot, qgplot, p.adjust, filterResult

Examples

load genome description
data(hgA)

partition genome into overlapping windows
windows <- partitionRegions(hgA)

load genotype data from VCF file
vcfFile <- system.file("examples/examplel.vcf.gz", package="podkat")
Z <- readGenotypeMatrix(vcfFile)

read phenotype data from CSV file (continuous trait + covariates)
phenoFile <- system.file("examples/examplellin.csv", package="podkat")
pheno.c <- read.table(phenoFile, header=TRUE, sep=",")

train null model with all covariates in data frame 'pheno’
model.c <- nullModel(y ~ ., pheno.c)

perform association test
res <- assocTest(Z, model.c, windows)
print(res)

perform association test using the VCF interface
res <- assocTest(vcfFile, model.c, windows, batchSize=100)
print(res)

create Manhattan plot of adjusted p-values
plot(p.adjust(res), which="p.value.adj")

read phenotype data from CSV file (binary trait + covariates)
phenoFile <- system.file("examples/examplellog.csv"”, package="podkat")
pheno.b <-read.table(phenoFile, header=TRUE, sep=",")

train null model with all covariates in data frame 'pheno’
model.b <- nullModel(y ~ ., pheno.b)

perform association test
res <- assocTest(Z, model.b, windows)
print(res)

10 AssocTestResult-class

create Manhattan plot of adjusted p-values
plot(p.adjust(res), which="p.value.adj")

AssocTestResult-class Class AssocTestResult

Description

S4 class for storing the result of an association test for a single genomic region

Objects

Objects of this class are created by calling assocTest for a single genomic region.

Slots

The following slots are defined for AssocTestResult objects:

type: type of null model on which the association test was based

samples: character vector with sample names (if available, otherwise empty)
kernel: kernel that was used for the association test

dim: dimensions of genotype matrix that was tested

weights: weight vector that was used; empty if no weighting was performed
width: tolerance radius parameter that was used for position-dependent kernels

method: method(s) used to compute p-values; a single character string if no resampling was done,
otherwise a list with two components specifying the p-value computation method for the test’s
p-value and the resampled p-values separately.

correction: alogical vector indicating whether the small sample correction was carried out (first
component exact is TRUE) and/or higher moment correction was carried out (second compo-
nent resampling is TRUE).

Q: test statistic

p.value: the test’s p-value

Q.resampling: test statistics for sampled null model residuals
p.value.resampling: p-values for sampled null model residuals

p.value.resampled: estimated p-value computed as the relative frequency of p-values of sampled
residuals that are at least as significant as the test’s p-value

call: the matched call with which the object was created

Methods

show signature(object="AssocTestResult”): displays the test statistic and the p-value along
with the type of the null model, the number of samples, the number of SNVs, and the kernel
that was used to carry out the test.

AssocTestResultRanges-class

Author(s)
Ulrich Bodenhofer

References

https://github.com/UBod/podkat

See Also

assocTest

Examples

load genome description
data(hgA)

load genotype data from VCF file
vcfFile <- system.file("examples/examplel.vcf.gz", package="podkat")
Z <- readGenotypeMatrix(vcfFile)

read phenotype data from CSV file (continuous trait + covariates)
phenoFile <- system.file("examples/examplellin.csv", package="podkat")
pheno <-read.table(phenoFile, header=TRUE, sep=",")

train null model with all covariates in data frame 'pheno’
nm.lin <- nullModel(y ~ ., pheno)

perform association test for entire genotype matrix
res <- assocTest(Z, nm.lin)
show(res)

perform association test for subset of genotype matrix
res <- assocTest(Z[, 50:100], nm.lin)
show(res)

11

AssocTestResultRanges-class
Class AssocTestResultRanges

Description

S4 class for storing the result of an association test performed on multiple genomic regions

Objects

Objects of this class are created by calling assocTest with a non-empty ranges argument.

https://github.com/UBod/podkat

12 AssocTestResultRanges-class

Slots

This class extends the class GRanges directly and therefore inherits all its slots and methods. The
following slots are defined for AssocTestResultRanges objects additionally:

type: type of null model on which the association test was based

samples: character vector with sample names (if available, otherwise empty)

kernel: kernel that was used for the association test

weights: weight vector or weighting function that was used; NULL if no weighting was performed
width: tolerance radius parameter that was used for position-dependent kernels

adj.method: which method for multiple testing correction has been applied (if any)

vcfParams: list of parameters that were used for reading genotypes from VCEF file

sex: factor with sex information (if any)

call: the matched call with which the object was created

Apart from these additional slots, all AssocTestResultRanges objects have particular metadata
columns (accessible via mcols or elementMetadata):

n: number of variants tested in each region; a zero does not necessarily mean that there were no
variants in this region, it only means that no variants were used for testing. Variants are
omitted from the test if they do not show any variation or if they do not satisfy other filter
criteria applied by assocTest. This metadata column is always present.

Q: test statistic for each region that was tested. This metadata column is always present.
p.value: p-value of test for each region that was tested. This metadata column is always present.

p.value.adj: adjusted p-value of test for each region that was tested. This metadata column is
only present if multiple testing correction has been applied (see p.adjust).

p.value.resampled: estimated p-value computed as the relative frequency of p-values of sampled
residuals that are at least as significant as the test’s p-value in each region. This metadata
column is only present if resampling has been applied, i.e. if assocTest has been called with
n.resampling greater than zero.

p.value.resampled.adj: adjusted empirical p-value (see above). This metadata column is only
present if resampling and multiple testing correction has been applied.

Methods

¢ signature(object="AssocTestResultRanges"): allows for concatenating two or more AssocTestResultRanges

objects; this is only meaningful if the different tests have been performed on the same sam-
ples, on the same genome, with the same kernel, and with the same VCF reading parameters
(in case that the association test has been performed directly on a VCF file). All these condi-
tions are checked and if any of them is not fulfilled, the method quits with an error. Merging
association test results that were computed with different sex parameters is possible, but the
sex component is omitted and a warning is issued. Note that multiple testing correction (see
p.adjust) should not be carried out on parts, but only on the entire set of all tests. That is
why c strips off all adjusted p-values.

p.adjust signature(object="AssocTestResultRanges"): multiple testing correction, see p.adjust.

AssocTestResultRanges-class 13

filterResult signature(object="AssocTestResultRanges"): apply filtering to p-values or ad-
justed p-values. For more details, see filterResult.

sort signature(object="AssocTestResultRanges"): sort AssocTestResultRanges object ac-
cording to specified sorting criterion. See sort for more details.

plot signature(object="AssocTestResultRanges"): make a Manhattan plot of the association
test result. See plot for more details.

qgplot signature(object="AssocTestResultRanges"): make quantile-quantile (Q-Q) plot of
association test result. See qgplot for more details.

show signature(object="AssocTestResultRanges"): displays some general information about
the result of the association test, such as, the number of samples, the number of regions tested,
the number of regions without variants, the average number of variants in the tested regions,
the genome, the kernel that was applied, and the type of multiple testing correction (if any).

print signature(x="AssocTestResultRanges"): allows for displaying more information about
the object than show. See print for more details.
Accessors and subsetting

As mentioned above, the AssocTestResultRanges inherits all methods from the GRanges class.

Author(s)
Ulrich Bodenhofer

References

https://github.com/UBod/podkat

See Also

assocTest

Examples

load genome description
data(hgA)

partition genome into overlapping windows
windows <- partitionRegions(hgA)

load genotype data from VCF file
vcfFile <- system.file("examples/examplel.vcf.gz", package="podkat")
Z <- readGenotypeMatrix(vcfFile)

read phenotype data from CSV file (continuous trait + covariates)
phenoFile <- system.file("examples/examplellin.csv", package="podkat")
pheno <-read.table(phenoFile, header=TRUE, sep=",")

train null model with all covariates in data frame 'pheno'
nm.lin <- nullModel(y ~ ., pheno)

https://github.com/UBod/podkat

14 computeKernel

perform association test for multiple regions
res <- assocTest(Z, nm.lin, windows)

perform multiple testing correction
res.adj <- p.adjust(res)
print(res.adj)

show sorted results
as(sort(res.adj), "GRanges")

show filtered result
print(filterResult(res.adj, cutoff=0.05, filterBy="p.value.adj"))

make a Manhattan plot
plot(res.adj, which="p.value.adj")

computeKernel Compute Kernel Matrix

Description

Computes kernel matrix for a given genotype matrix

Usage
computeKernel (Z, kernel=c("linear.podkat”, "quadratic.podkat”,
"localsim.podkat”, "linear.SKAT"”, "quadratic.SKAT",
"localsim.SKAT"), weights=NULL, pos=NULL, width=1000)
Arguments
yA a matrix or an object of class Matrix (note that the latter also includes objects
of class GenotypeMatrix)
kernel type of kernel to use
weights numeric vector with variant weights; must be as long as the number of columns
of Z. Use NULL for unweighted kernels.
pos numeric vector with positions of variants; must be as long as the number of
columns of Z. This argument is mandatory for the position-dependent kernels
“linear.podkat”, “quadratic.podkat”, and “localsim.podkat”; ignored for kernels
“linear.SKAT”, “quadratic.SKAT”, and “localsim.SKAT”.
width tolerance radius parameter for position-dependent kernels “linear.podkat”, “quadratic.podkat”,

and “localsim.podkat” (see details below); must be single positive numeric value.
Ignored for kernels “linear.SKAT”, “quadratic.SKAT”, and “localsim.SKAT”.

computeKernel 15

Details

This function computes a kernel matrix for a given genotype matrix Z and a given kernel. It
supposes that Z is a matrix-like object (a numeric matrix, a sparse matrix, or an object of class
GenotypeMatrix) in which rows correspond to samples and columns correspond to variants. There
are six different kernels available: “linear.podkat”, “quadratic.podkat”, “localsim.podkat”, “lin-
ear.SKAT”, “quadratic.SKAT”, and “localsim.SKAT”. All of these kernels can be used with or
without weights. The weights can be specified with the weights argument which must be a nu-
meric vector with as many elements as the matrix Z has columns. If no weighting should be used,
weights must be set to NULL.

9

The position-dependent kernels “linear.podkat”, “quadratic.podkat”, and “localsim.podkat” require
the positions of the variants in Z. So, if any of these three kernels is selected, the argument pos is
mandatory and must be a numeric vector with as many elements as the matrix Z has columns.

If the pos argument is NULL and Z is a GenotypeMatrix object, the positions in variantInfo(Z)
are taken. In this case, all variants need to reside on the same chromosome. If the variants in
variantInfo(Z) are from multiple chromosomes, computeKernel quits with an error. As said,
this only happens if pos is NULL, otherwise the pos argument has priority over the information
stored in variantInfo(Z).

For details on how the kernels compute the pairwise similarities of genotypes, see Subsection 9.2
of the package vignette.

Value

a positive semi-definite kernel matrix with as many rows and columns as Z has rows

Author(s)
Ulrich Bodenhofer

References

https://github.com/UBod/podkat

Wu, M. C,, Lee, S., Cai, T., Li, Y., Boehnke, M., and Lin, X. (2011) Rare-variant association testing
for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89, 82-93. DOI:
doi:10.1016/j.ajhg.2011.05.029.

See Also

GenotypeMatrix

Examples

create a toy example
A <- matrix(rbinom(50, 2, prob=0.2), 5, 10)
pos <- sort(sample(1:10000, ncol(A)))

compute some unweighted kernels
computeKernel (A, kernel="linear.podkat”, pos=pos, width=100)
computeKernel (A, kernel="localsim.podkat"”, pos=pos, width=100)

https://github.com/UBod/podkat
https://doi.org/10.1016/j.ajhg.2011.05.029

16 filterResult-methods

computeKernel (A, kernel="linear.SKAT")

compute some weighted kernels

MAF <- colSums(A) / (2 *x nrow(A))

weights <- betaWeights(MAF)

computeKernel (A, kernel="linear.podkat”, pos=pos, weights=weights)
computeKernel (A, kernel="linear.SKAT", weights=weights)
computeKernel (A, kernel="localsim.SKAT", weights=weights)

filterResult-methods Filter Association Test Results According to p-Values or Variants’
Contributions

Description

Given an AssocTestResultRanges object, this method filters regions according to p-values or
variants’ contributions.

Usage

S4 method for signature 'AssocTestResultRanges'

filterResult(object, cutoff=0.05,
filterBy=c("p.value”, "p.value.adj", "p.value.resampled”,
"p.value.resampled.adj"))

S4 method for signature 'GRanges'

filterResult(object, cutoff=0.1)

S4 method for signature 'GRangeslList'

filterResult(object, cutoff=0.1)

Arguments

object object of class AssocTestResultRanges, GRanges, or GRangesList

cutoff threshold

filterBy according to which p-value column filtering should be done; the default is “p.value”.
Details

If called for an AssocTestResultRanges object as first argument, this method strips off all regions
the p-values of which exceed the threshold cutoff. By default, this filtering is applied to raw p-
values (metadata column “p.value”). The filterBy argument allows for performing filtering on
any of the other three p-value metadata columns (if available, otherwise the method quits with an
error).

If called for a GRanges object as first argument, this method checks if the first argument object
has a metadata column named “weight.contribution”. If it exists, it returns a GRanges object with
the elements of object that have a value greater than cutoff in the “weight.contribution” metadata
column. If this metadata column does not exist, the method quits with an error.

filterResult-methods 17

If called for a GRangesList object as first argument object, this method applies the filterResult
method for each of its list components and returns a GRangesList object. If any of the components
of object does not have a metadata column named “weight.contribution”, the method quits with
an error.

Value

an object of class AssocTestResultRanges, GRanges, or GRangesList (see details above)

Author(s)
Ulrich Bodenhofer

References

https://github.com/UBod/podkat

See Also

AssocTestResultRanges, p.adjust

Examples

load genome description
data(hgA)

partition genome into overlapping windows
windows <- partitionRegions(hgA)

load genotype data from VCF file
vcfFile <- system.file("examples/examplel.vcf.gz", package="podkat")
Z <- readGenotypeMatrix(vcfFile)

read phenotype data from CSV file (continuous trait + covariates)
phenoFile <- system.file("examples/examplellin.csv", package="podkat")
pheno <-read.table(phenoFile, header=TRUE, sep=",")

train null model with all covariates in data frame 'pheno'
nm.lin <- nullModel(y ~ ., pheno)

perform association test for multiple regions
res <- assocTest(Z, nm.lin, windows)
res.adj <- p.adjust(res, method="BH")

show filtered results

res.f <- filterResult(res.adj)

print(res.f)

res.f <- filterResult(res.adj, filterBy="p.value.adj")
print(res.f)

compute contributions
contrib <- weights(res.f, Z, nm.lin)

https://github.com/UBod/podkat

18 GenotypeMatrix-class

contrib

extract most indicative variants
filterResult(contrib[[1]1])
filterResult(contrib)

GenotypeMatrix-class Class GenotypeMatrix

Description

S4 class for storing genotypes efficiently as column-oriented sparse matrices along with variant info

Details

This class stores genotypes as a column-oriented sparse numeric matrix, where rows correspond
to samples and columns correspond to variants. This is accomplished by extending the dgCMatrix
class from which this class inherits all slots. Information about variants is stored in an additional slot
named variantInfo. This slot must be of class VariantInfo and have exactly as many elements
as the genotype matrix has columns. The variantInfo slot has a dedicated metadata column
named “MAF” that contains the minor allele frequencies (MAFs) of the variants. For convenience,
accessor functions variantInfo and MAF are available (see below).

Objects of this class should only be created and manipulated by the constructors and accessors de-
scribed below, as only these methods ensure the integrity of the created objects. Direct modification
of object slots is strongly discouraged!

Constructors

See help pages genotypeMatrix and readGenotypeMatrix.

Methods

show signature(object="GenotypeMatrix"): displays the matrix dimensions (i.e. the number
of samples and variants) along with some basic statistics of the minor allele frequency (MAF).

Accessors

variantInfo signature(object="GenotypeMatrix"): returns variant information as a VariantInfo
object.

MAF signature(object="GenotypeMatrix"): returns a numeric vector with the minor allele
frequencies (MAFs).

Row and column names can be set and get as usual for matrix-like objects with rownames and
colnames, respectively. When setting the column names of a GenotypeMatrix object, both the
names of the variant info (slot variantInfo) and the column names of the matrix are set.

GenotypeMatrix-class 19

Subsetting

In the following code snippets, x is a GenotypeMatrix object.

x[i,] returns a GenotypeMatrix object that only contains the samples selected by the index vec-
tor 1

x[, j] returns a GenotypeMatrix object that only contains the variants selected by the index vector
J

x[i, j] returns a GenotypeMatrix object that only contains the samples selected by the index
vector i and the variants selected by the index vector j

None of these subsetting functions support a drop argument. As soon as a drop argument is sup-
plied, no matter whether TRUE or FALSE, all variant information is stripped off and a dgCMatrix
object is returned.

By default, MAFs are not altered by subsetting samples. However, if the optional argument recomputeMAF

is set to TRUE (the default is FALSE), MAFs are recomputed for the resulting subsetted genotype ma-
trix as described in genotypeMatrix. The ploidy for computing MAFs can be controlled by the
optional ploidy argument (the default is 2).

Author(s)
Ulrich Bodenhofer

References

https://github.com/UBod/podkat

See Also

dgCMatrix, VariantInfo, genotypeMatrix, readGenotypeMatrix

Examples

create a toy example

A <- matrix(rbinom(50, 2, prob=0.2), 5, 10)
sA <- as(A, "dgCMatrix")

pos <- sort(sample(1:10000, ncol(A)))
seqgname <- "chr1”

variant with 'GRanges' object

gr <- GRanges(seqgnames=segname, ranges=IRanges(start=pos, width=1))
gtm <- genotypeMatrix(A, gr)

gtm

as.matrix(gtm)

variantInfo(gtm)

MAF (gtm)

variant with 'pos' and 'segnames' object
genotypeMatrix(sA, pos, seqname)

variant with 'seqname:pos' strings passed through 'pos' argument

https://github.com/UBod/podkat

20 genotypeMatrix-methods

spos <- paste(segname, pos, sep=":")
spos
genotypeMatrix(sA, spos)

read data from VCF file using 'readVcf()' from the 'VariantAnnotation'
package
if (require(VariantAnnotation))
{
vcfFile <- system.file("examples/examplel.vcf.gz", package="podkat")
sp <- ScanVcfParam(info=NA, genome="GT", fixed=c("ALT", "FILTER"))
vcf <- readVcf(vcfFile, genome="hgA", param=sp)
rowRanges(vcf)

call constructor for 'VCF' object
gtm <- genotypeMatrix(vcf)

gtm

variantInfo(gtm)

alternatively, extract information from 'VCF' object and use

variant with character matrix and 'GRanges' positions

note that, in 'VCF' objects, rows correspond to variants and

columns correspond to samples, therefore, we have to transpose the
genotype

gt <- t(geno(vcf)$GT)

gt[1:5, 1:5]

gr <- rowRanges(vcf)

gtm <- genotypeMatrix(gt, gr)

as.matrix(gtm[1:20, 1:5, recomputeMAF=TRUE])

genotypeMatrix-methods
Constructors for Creating GenotypeMatrix Objects

Description

Create GenotypeMatrix object from (sparse) matrix object and positions of variants

Usage

S4 method for signature 'ANY,GRanges,missing'

genotypeMatrix(Z, pos, segnames,
ploidy=2, na.string=NULL, na.limit=1, MAF.limit=1,
na.action=c("impute.major”, "omit", "fail"),
MAF.action=c("invert"”, "omit", "ignore", "fail"),
sex=NULL)

S4 method for signature 'ANY,numeric,character’

genotypeMatrix(Z, pos, segnames, ...)

S4 method for signature 'ANY,character,missing'’

genotypeMatrix-methods 21

genotypeMatrix(Z, pos, segnames, ...)
S4 method for signature 'ANY,missing,missing'’
genotypeMatrix(Z, pos, segnames, subset,

noIndels=TRUE, onlyPass=TRUE, sex=NULL, ...)

S4 method for signature 'eSet,numeric,character’

genotypeMatrix(Z, pos, segnames, ...)

S4 method for signature 'eSet,character,missing'

genotypeMatrix(Z, pos, segnames, ...)

S4 method for signature 'eSet,character,character’

genotypeMatrix(Z, pos, segnames, ...)

Arguments

z an object of class dgCMatrix, a numeric matrix, a character matrix, an object of
class VCF, or an object of class eSet (see details below)

pos an object of class GRanges, a numeric vector, or a character vector (see details
below)

seqgnames a character vector (see details below)

ploidy determines the ploidy of the genome for the computation of minor allele fre-
quencies (MAFs) and the possible inversion of columns with an MAF exceeding
0.5; the elements of Z may not exceed this value.

subset a numeric vector with indices or a character vector with names of samples to
restrict to

na.limit all columns with a missing value ratio above this threshold will be omitted from
the output object.

MAF.limit all columns with an MAF above this threshold will be omitted from the output
object.

na.action if “impute.major”, all missing values will be imputed by major alleles in the
output object. If “omit”, all columns containing missing values will be omitted
in the output object. If “fail”, the function stops with an error if Z contains any
missing values.

MAF .action if “invert”, all columns with an MAF exceeding 0.5 will be inverted in the sense
that all minor alleles will be replaced by major alleles and vice versa. For nu-
merical Z, this is accomplished by subtracting the column from the ploidy value.
If “omit”, all columns with an MAF greater than 0.5 are omitted in the output
object. If “ignore”, no action is taken and MAFs greater than 0.5 are kept as
they are. If “fail”, the function stops with an error if Z contains any column with
an MAF greater than 0.5.

nolndels if TRUE (default), only single nucleotide variants (SNVs) are considered and
indels are skipped; only works if the ALT column is present in the VCF object Z,
otherwise a warning is shown and the noIndels argument is ignored.

onlyPass if TRUE (default), only variants are considered whose value in the FILTER column
is “PASS”; only works if the FILTER column is present in the VCF object Z,
otherwise a warning is shown and the onlyPass argument is ignored.

na.string if not NULL, all “.” entries in the character matrix or VCF genotype are replaced

with this string before parsing the matrix.

22

genotypeMatrix-methods

sex if NULL, all rows of Z are treated the same without any modifications; if sex
is a factor with levels F (female) and M (male) that is as long as Z has rows,
this argument is interpreted as the sex of the samples. In this case, the rows
corresponding to male samples are doubled before further processing. This is
designed for mixed-sex analyses of the X chromosome outside of the pseudoau-
tosomal regions.

all additional arguments are passed on internally to the genotypeMatrix method
with signature ANY, GRanges,missing.

Details

This method provides different ways of constructing an object of class GenotypeMatrix from other
types of objects. The typical case is when a matrix object is combined with positional information.
The first three variants listed above work with Z being a dgCMatrix object, a numeric matrix, or a
character matrix.

If Z is a dgCMatrix object or a matrix, rows are interpreted as samples and columns are interpreted
as variants. For dgCMatrix objects and numeric matrices, matrix entries are interpreted as the num-
bers of minor alleles (with 0 meaning only major alleles). In this case, minor allele frequencies
(MAFs) are computed as column sums divided by the number of alleles, i.e. the number of sam-
ples/rows multiplied by the ploidy parameter. If Z is a character matrix, the matrix entries need
to comply to the format of the “GT” field in VCF files. MAFs are computed as the actual relative
frequency of minor alleles among all alleles in a column. For a diploid genome, therefore, this
results in the same MAF estimate as mentioned above. However, some VCF readers, most impor-
tantly readVcf from the VariantAnnotation package, replace missing genotypes by a single “.”
even for non-haploid genomes, which would result in a wrong MAF estimate. To correct for this,
the na.string parameter is available. If not NULL, all “.” entries in the matrix are replaced by
na.string before parsing the matrix. The correct setting for a diploid genome would be “./.”.

Positional information can be passed to the function in three different ways:

* by supplying a GRanges object as pos argument and omitting the segnames argument,

* by supplying a numeric vector of positions as pos argument and sequence/chromosome names
as segnames argument, or

* by supplying a character vector with entries of the format “seqname:pos” as pos argument and
omitting the segnames argument.

In all three cases, the lengths of the arguments pos and seqnames (if not omitted) must match the
number of columns of Z.

If the arguments pos and segnames are not specified, argument Z can (and must) be an object
of class VCF (cf. package VariantAnnotation). In this case, the genotypeMatrix method extracts
both the genotype matrix and positional information directly from the VCF object. Consequently, the
VCF object Z must contain genotype information. If so, the genotype matrix is parsed and converted
as described above for character matrices. Moreover, indels and variants that did not pass all quality
filters can be skipped (see description of arguments noIndels and onlyPass above).

For all variants, filters in terms of missing values and MAFs can be applied. Moreover, variants
with MAFs greater than 0.5 can filtered out or inverted. For details, see descriptions of parameters
na.limit, MAF.limit, na.action, and MAF.action above.

genotypeMatrix-methods 23

For convenience, genotypeMatrix also allows for converting SNP genotype matrices stored in
eSet objects, e.g. SnpSet objects or SnpSetIllumina objects (cf. package beadarraySNP). If
genotypeMatrix is called with an eSet object as first argument Z, the method first checks whether
there is a slot call in assayData(Z) and whether it is a matrix. If so, this matrix is interpreted
as follows: 1 corresponds to genotype “AA”, 2 corresponds to the genotype “Aa”, and 3 corre-
sponds to the genotype “aa”, where “A” is the major allele and “a” is the minor allele. If pos is
a numeric vector and segnames is a character vector or if pos is a character vector and segnames
is missing, then these two arguments are interpreted as described above. However, if pos and
seqnames are both single strings (character vectors of length 1), then pos is interpreted as the name
of the feature data column that contains positional information and seqnames is interpreted as the
feature data column that contains the chromosome on which each variant is located. Correspond-
ingly, featureData(Z)[[pos]] must be available and must be a numeric vector. Correspondingly,
featureData(Z)[[seqnames]] must be available and must be a character vector (or a data type
that can be cast to a character vector).

Value

returns an object of class GenotypeMatrix

Author(s)
Ulrich Bodenhofer

References

https://github.com/UBod/podkat
https://github.com/samtools/hts-specs

Obenchain, V., Lawrence, M., Carey, V., Gogarten, S., Shannon, P., and Morgan, M. (2014) Vari-
antAnnotation: a Bioconductor package for exploration and annotation of genetic variants. Bioin-
formatics 30, 2076-2078. DOI: doi:10.1093/bioinformatics/btul68.

See Also

GenotypeMatrix, dgCMatrix, GRanges

Examples

create a toy example

A <- matrix(rbinom(50, 2, prob=0.2), 5, 10)
sA <- as(A, "dgCMatrix")

pos <- sort(sample(1:10000, ncol(A)))
segname <- "chri1”

variant with 'GRanges' object

gr <- GRanges(segnames=segname, ranges=IRanges(start=pos, width=1))
gtm <- genotypeMatrix(A, gr)

gtm

as.matrix(gtm)

variantInfo(gtm)

MAF (gtm)

https://github.com/UBod/podkat
https://github.com/samtools/hts-specs
https://doi.org/10.1093/bioinformatics/btu168

24 hgA

variant with 'pos' and 'segnames' object
genotypeMatrix(sA, pos, segname)

variant with 'seqgname:pos' strings passed through 'pos' argument
spos <- paste(segname, pos, sep=":")

spos

genotypeMatrix(sA, spos)

read data from VCF file using 'readVcf()' from the 'VariantAnnotation'
package
if (require(VariantAnnotation))
{
vcfFile <- system.file("examples/examplel.vcf.gz", package="podkat")
sp <- ScanVcfParam(info=NA, genome="GT", fixed=c("ALT", "FILTER"))
vcf <- readVcf(vcfFile, genome="hgA", param=sp)
rowRanges(vcf)

call constructor for 'VCF' object
gtm <- genotypeMatrix(vcf)

gtm

variantInfo(gtm)

alternatively, extract information from 'VCF' object and use

variant with character matrix and 'GRanges' positions

note that, in 'VCF' objects, rows correspond to variants and

columns correspond to samples, therefore, we have to transpose the
genotype

gt <- t(geno(vcf)$GT)

gt[1:5, 1:5]

gr <- rowRanges(vcf)

gtm <- genotypeMatrix(gt, gr)

as.matrix(gtm[1:20, 1:5, recomputeMAF=TRUE])

hgA Artificial Human Chromosome for Testing Purposes

Description

A GRanges object defining a minimalistic artificial human chromosome with 200,000 bp length

Usage
hgA

Format

Real human genome-based examples would require the supply of massive data and would require
lengthy computation times. Therefore, the examples supplied with this package are based on a

nullModel 25

small single-chromosome artificial genome. The GRanges object hgA provides a description of this

artificial genome that can be used for further processing, e.g. by the partitionRegions function.
Author(s)

Ulrich Bodenhofer

References

https://github.com/UBod/podkat

See Also

GRanges, partitionRegions

Examples

load data set
data(hgA)

display hgA
show(hgA)
genome (hgA)

partition hgA into overlapping regions of length 10,000 bp
partitionRegions(hgA, width=10000)

nullModel Create Null Model for Association Test

Description

Method for creating a null model that can be used for association testing using assocTest

Usage

S4 method for signature 'formula,data.frame’
nullModel (X, y, data,

type=c("automatic”, "logistic"”, "linear”, "bernoulli"),
n.resampling=0,
type.resampling=c("bootstrap”, "permutation"),

adj=c("automatic”, "none", "force"), adjExact=FALSE,
n.resampling.adj=10000, checkData=TRUE)

S4 method for signature 'formula,missing'

nullModel (X, y, data,

type=c("automatic”, "logistic"”, "linear”, "bernoulli"),
n.resampling=0,
type.resampling=c("bootstrap”, "permutation”),

adj=c("automatic”, "none", "force"), adjExact=FALSE,

https://github.com/UBod/podkat

n.resampling.adj=10000, checkData=TRUE)
S4 method for signature 'matrix,numeric'
nullModel(X, v,
type=c("automatic”, "logistic”, "linear"), ...)
S4 method for signature 'matrix,factor'
nullModel(X, vy,
type=c("automatic”, "logistic"”, "linear"), ...)
S4 method for signature 'missing,numeric'
nullModel(X, vy,
type=c("automatic”, "logistic"”, "linear”, "bernoulli"),
)
S4 method for signature 'missing,factor'’
nullModel(X, vy,

nullModel

type=c("automatic”, "logistic”, "linear”, "bernoulli"),
.2
Arguments

X a formula or matrix

y if the formula interface is used, y can be used to pass a data frame with the
table in which both covariates and traits are contained (alternatively, the data
argument can be used for that purpose). The other methods (if X is not a formula)
expect y to be the trait vector. Trait vectors can either be numeric vectors or a
factor with two levels (see details below).

data for consistency with standard R methods from the stats package, the data frame
can also be passed to nullModel via the data argument. In this case, the y must
be empty. If y is specified, data is ignored.

type type of model to train (see details below)

n.resampling

type.resampling

adj

adjExact

number of null model residuals to sample; set to zero (default) to turn resampling
off; resampling is not supported for plain trait vectors without covariates

method how to sample null model residuals; the choice “permutation” refers
to simple random permutations of the model’s residuals. If “bootstrap” is cho-
sen (default), the following strategy is applied for linear models (continuous
trait): residuals are sampled as normally distributed values with mean O and
the same standard deviation as the model’s residuals. For logistic models (bi-
nary trait), the choice “bootstrap” selects the same bootstrapping method that is
implemented in the SKAT package.

whether or not to use small sample correction for logistic models (binary trait
with covariates). The choice “none” turns off small sample correction. If “force”
is chosen, small sample correction is turned on unconditionally. If “automatic”
is chosen (default), small sample correction is turned on if the number of sam-
ples does not exceed 2,000. This argument is ignored for any type of model
except “logistic” and small sample correction is switched off.

in case small sample correction is switched on (see above), this argument in-
dicates whether or not the exact square root of the matrix Fy should be pre-
computed (see Subsection 9.5 of the package vignette). The default is FALSE.
This argument is ignored if small sample correction is not switched on.

nullModel 27

n.resampling.adj
number of null model residuals to sample for the adjustment of higher moments;
ignored if small sample correction is switched off.

checkData if FALSE, only a very limited set of input checks is performed. The purpose
of this option is to save computational effort for repeated input checks if the
function is called from a function that has already performed input checks. The
default is TRUE. Only change to FALSE if you know what you are doing!

all other parameters are passed on to the nullModel method with signature
formula,data.frame.

Details

The podkat package assumes a mixed model in which the trait under investigation depends both
on covariates (if any) and the genotype. The nullModel method models the relationship between
the trait and the covariates (if any) without taking the genotype into account, which corresponds to
the null assumption that the trait and the genotype are independent. Therefore, we speak of null
models. The following types of models are presently available:

Linear model (type “linear”): a linear model is trained for a continuous trait and a given set of
covariates (if any); this is done by standard linear regression using the 1m function.

Logistic linear model (type “logistic’): a generalized linear model is trained for a binary trait and
a given set of covariates (if any); this is done by logistic regression using the glm function.

Bernoulli-distributed trait (type ‘“bernoulli’’): a binary trait without covariates is interpreted as
instances of a simple Bernoulli process with p being the relative frequencies 1’s/cases.

The type argument can be used to select the type of model, where the following restrictions apply:

* For linear models, the trait vector must be numerical. Factors/factor columns are not accepted.

* For logistic models and Bernoulli-distributed traits, both numerical vectors and factors are
acceptable. In any case, only 0’s (controls) and 1’s (cases) are accepted. Furthermore,
nullModel quits with an error if the trait shows no variation. In other words, trait vectors
that only contain 0’s or only contain 1’s are not accepted (as association testings makes little
sense for such traits anyway).

The following interfaces are available to specify the traits and the covariates (if any):

Formula interface: the first argument X can be a formula that specifies the trait vector/column, the
covariate matrix/columns (if any), and the intercept (if any). If neither the y argument nor the
data argument is specified, nul1Model searches the environment from which the function has
been called. This interface is largely analogous to the functions 1m and glm.

Trait vector without covariates: if the X argument is omitted and y is a numeric vector or factor, y
is interpreted as trait vector, and a null model is created from y without covariates. Linear and
logistic models are trained with an intercept. For type “bernoulli”, the trait vector is written to
the output object as is.

Trait vector plus covariate matrix: if the X argument is a matrix and y is a numeric vector or
factor, y is interpreted as trait vector and X is interpreted as covariate matrix. In this case,
linear and logistic models are trained as (generalized) linear regressors that predict the trait
from the covariates plus an intercept. The type “bernoulli” is not available for this variant,
since this type of model cannot consider covariates.

28

nullModel

All nullModel methods also support the choice type="automatic”. In this case, nullModel
guesses the most reasonable type of model in the following way: If the trait vector/column is a
factor or a numeric vector containing only 0’s and 1’s (where both values must be present, as noted
above already), the trait is supposed to be binary and the type “logistic” is assumed, unless the
following conditions are satisfied:

1. The number of samples does not exceed 100.

2. No intercept and no covariates have been specified. This condition can be met by supplying an
empty model to the formula interface (e.g. y ~ @) or by supplying the trait vector as argument
y while omitting X.

If these two conditions are fulfilled for a binary trait, nul1Model chooses the type “bernoulli”. If
the trait is not binary and the trait vector/column is numeric, nul1Model assumes type “linear”.

For consistency with the SKAT package, the podkat package also offers resampling, i.e. a certain
number of vectors of residuals are sampled according to the null model. This can be done when
training the null model by setting the n.resampling parameter (number of residual vectors that
are sampled) to a value larger than 0. Then, when association testing is performed, p-values are
computed also for all these sampled residuals, and an additional estimated p-value is computed as
the relative frequency of p-values of sampled residuals that are at least as significant as the test’s
p-value. The procedure to sample residuals is controlled with the type.resampling argument (see
above).

For logistic models (type “logistic”’), assocTest offers the small sample correction as introduced
by Lee et al. (2012). If the adjustment of higher moments should be applied, some preparations
need to be made already when training the null model. Which preparations are carried out, can
be controlled by the arguments adj, adjExact, n.resampling.adj, and type.resampling (see
descriptions of arguments above and Subsection 9.5 of the package vignette).

If any missing values are found in the trait vector/column or the covariate matrix/columns, the
respective samples are omitted from the resulting model (which is the standard behavior of 1m and
glm anyway). The indices of the omitted samples are stored in the na.omit slot of the returned
NullModel object.

Value

returns a Nul1Model object

Author(s)

Ulrich Bodenhofer

References

https://github.com/UBod/podkat

Lee, S., Emond, M. J., Bamshad, M. J., Barnes, K. C., Rieder, M. J., Nickerson, D. A., NHLBI
Exome Sequencing Project - ESP Lung Project Team, Christiani, D. C., Wurfel, M. M., and Lin,
X. (2012) Optimal unified approach for rare-variant association testing with application to small-
sample case-control whole-exome sequencing studies. Am. J. Hum. Genet. 91, 224-237. DOI:
doi:10.1016/j.ajhg.2012.06.007.

https://github.com/UBod/podkat
https://doi.org/10.1016/j.ajhg.2012.06.007

NullModel-class

See Also

NullModel, Im, glm

Examples

read phenotype data from CSV file (continuous trait + covariates)
phenoFile <- system.file("examples/examplellin.csv", package="podkat")
pheno <-read.table(phenoFile, header=TRUE, sep=",")

train null model with all covariates in data frame 'pheno’
model <- nullModel(y ~ ., pheno)

model

length(model)

residuals(model)

read phenotype data from CSV file (binary trait + covariates)
phenoFile <- system.file("examples/examplellog.csv"”, package="podkat")
pheno <-read.table(phenoFile, header=TRUE, sep=",")

train null model with all covariates in data frame 'pheno'
model <- nullModel(y ~ ., pheno)

model

length(model)

residuals(model)

"train” simple Bernoulli model on a subset of 100 samples
model <- nullModel(y ~ @, pheno[1:100, 1)

model

length(model)

residuals(model)

alternatively, use the interface that only supplies the
trait vector

model <- nullModel(y=pheno[1:100, I$y)

model

NullModel-class Class NullModel

Description

S4 class for storing null models for later usage with the assocTest method

Objects

Objects of this class are created by calling nul1lModel.

30 NullModel-class

Slots

The following slots are defined for Nul1Model objects:

type: type of model

residuals: residuals of linear model; for type “bernoulli”, this is simply the trait vector (see
nullModel-methods for details)

model.matrix: model matrix of the (generalized) linear model trained for the covariates (if any)

inv.matrix: pre-computed inverse of some matrix needed for computing the null distribution;
only used for types “logistic” and “linear”

P@sqrt: pre-computed square root of matrix P, (see Subsections 9.1 and 9.5 of the package vi-
gnette); needed for computing the null distribution in case the small sample correction is used
for a logistic model; computed only if nullModel is called with adjExact=TRUE.

coefficients: coefficients of (generalized) linear model trained for the covariates (if any)

na.omit: indices of samples omitted from (generalized) linear model because of missing values in
target or covariates

n.cases: for binary traits (types “logistic” and “bernoulli”’), the number of cases, i.e. the number
of 1’s in the trait vector

variance: for continuous traits (type “linear”), this is a single numeric value with the variance
of residuals of the linear model; for logistic models with binary traits (type “logistic”), this
is a vector with variances of the per-sample Bernoulli distributions; for later use of the exact
mixture-of-Bernoulli test (type “bernoulli”), this is the variance of the Bernoulli distribution

prob: for logistic models with binary traits (type “logistic”), this is a vector with probabilities of the
per-sample Bernoulli distributions; for later use of the exact mixture-of-Bernoulli test (type
“bernoulli”), this is the probability of the Bernoulli distribution

type.resampling: which resampling algorithm was used
res.resampling: matrix with residuals sampled under the null hypothesis (if any)

res.resampling.adj: matrix with residuals sampled under the null hypothesis for the purpose of
higher moment correction (if any; only used for logistic models with small sample correction)

call: the matched call with which the object was created

Details

This class serves as the general interface for storing the necessary phenotype information for a later
association test. Objects of this class should only be created by the nullModel function. Direct
modification of object slots is strongly discouraged!

Methods

show signature(object="NullModel"): displays basic information about the null model, such
as, the type of the model and the numbers of covariates.

NullModel-class 31

Accessors

residuals signature(object="NullModel"): returns the residuals slot.
names signature(object="NullModel"): returns the names of samples in the null model.
coefficients signature(object="NullModel"): returns the coefficients slot.

length signature(x="NullModel"): returns the number of samples that was used to train the null
model.

Subsetting

For a Nul1lModel object x and an index vector i that is a permutation of 1:1length(x), x[i] returns
a new NullModel object in which the samples have been rearranged according to the permutation
i. This is meant for applications in which the order of the samples in a subsequent association test
is different from the order of the samples when the null model was trained/created.

Author(s)
Ulrich Bodenhofer

References

https://github.com/UBod/podkat

See Also

nullModel

Examples

read phenotype data from CSV file (continuous trait + covariates)
phenoFile <- system.file("examples/examplellin.csv", package="podkat")
pheno <-read.table(phenoFile, header=TRUE, sep=",")

train null model with all covariates in data frame 'pheno'
model <- nullModel(y ~ ., pheno)

model

length(model)

residuals(model)

read phenotype data from CSV file (binary trait + covariates)
phenoFile <- system.file("examples/examplellog.csv"”, package="podkat")
pheno <-read.table(phenoFile, header=TRUE, sep=",")

train null model with all covariates in data frame 'pheno'
model <- nullModel(y ~ ., pheno)

model

length(model)

residuals(model)

"train" simple Bernoulli model on a subset of 100 samples
model <- nullModel(y ~ @, pheno[1:100, 1)

https://github.com/UBod/podkat

32 p-adjust-methods

model
length(model)
residuals(model)

p.adjust-methods Adjust p-Value for Multiple Tests

Description
Given an AssocTestResultRanges object, this method adds a metadata column with adjusted p-
values.

Usage

S4 method for signature 'AssocTestResultRanges'
p.adjust(p, method=p.adjust.methods, n=length(p))

Arguments
p object of class AssocTestResultRanges
method correction method (see p.adjust.methods)
n parameter available for consistency with standard p.adjust function; ignored
in this implementation
Details

This function is a wrapper around the standard p.adjust function from the stats package. It takes
the p.value metadata column from the AssocTestResultRanges object p, applies the multiple
testing correction method specified as method argument. The method returns a copy of p with an
additional metadata column p. value.adj that contains the adjusted p-values. If p already contained
a metadata column p.value. adj, this column is overwritten with the new adjusted p-values.

If p also contains a metadata column p.value.resampled, multiple testing correction is also ap-
plied to resampled p-values. The resulting adjusted p-values are placed in the metadata column
p.value.resampled.adj.

Note that, for consistency with the standard p.adjust function, the default correction method is
“holm”.

Value

an AssocTestResultRanges object (see details above)

Author(s)
Ulrich Bodenhofer

References

https://github.com/UBod/podkat

https://github.com/UBod/podkat

partitionRegions-methods

See Also

AssocTestResultRanges, p.adjust

Examples

load genome description
data(hgA)

partition genome into overlapping windows
windows <- partitionRegions(hgA)

load genotype data from VCF file
vcfFile <- system.file("examples/examplel.vcf.gz", package="podkat")
Z <- readGenotypeMatrix(vcfFile)

read phenotype data from CSV file (continous trait + covariates)
phenoFile <- system.file("examples/examplellin.csv", package="podkat")
pheno <-read.table(phenoFile, header=TRUE, sep=",")

train null model with all covariates in data frame 'pheno’
nm.lin <- nullModel(y ~ ., pheno)

perform association test for multiple regions
res <- assocTest(Z, nm.lin, windows)
print(res)

perform multiple testing correction
res.adj <- p.adjust(res, method="BH")
print(res.adj)

partitionRegions-methods
Partition Genomic Regions

Description

Partitions genomic regions into windows of fixed size

Usage

S4 method for signature 'GRanges'

partitionRegions(x, chrs=character(), width=5000, overlap=0.5)

S4 method for signature 'GRangeslList'

partitionRegions(x, chrs=character(), width=5000, overlap=0.5)

S4 method for signature 'MaskedBSgenome'

partitionRegions(x, chrs=character(), width=5000, overlap=0.5, ...)

34 partitionRegions-methods

Arguments
X an object of class GRanges, GRangesList, or MaskedBSgenome
chrs a character vector (possibly empty) with names of chromosomes to limit to
width window size
overlap amount of overlap; a zero value corresponds to non-overlapping windows and
the default 0.5 corresponds to 50% overlap. The largest possible value is 0.8
which corresponds to an overlap of 80%.
further arguments are passed on to unmaskedRegions.
Details

For a GRanges object x, this method partitions each genomic region into possibly overlapping,
equally large windows of size width. The amount of overlap is controlled with the overlap pa-
rameter. The windows are placed such that possible overhangs are balanced at the beginning and
end of the region. As an example, suppose we have a region from bases 1 to 14,000 and that we
want to cover it with windows of 10,000bp length and 50% overlap. The straightforward approach
would be to have two windows 1-10,000 and 5,001-15,000, and to crop the latter to 5,001-14,000.
As said, the partitionRegions balances the overhangs, so it will return two windows 1-9,500 and
4,501-14,000 instead.

If chrs is not empty, partitionRegions will only consider regions from those chromosomes (i.e.
regions in the GRanges object whose seqnames occur in chrs).

If called for a GRangesList object, all componentes of the GRangesList object are partitioned
separately as described above.

For convenience, this function can also be called for a MaskedBSgenome object. In this case,
unmaskedRegions is called before partitioning.

Value
If x is a GRanges object, the function also returns a GRanges object. In the other two cases, a
GRangesList object is returned.

Author(s)

Ulrich Bodenhofer

References

https://github.com/UBod/podkat

See Also

assocTest, unmaskedRegions, unmasked-datasets, GRangesList, GRanges

https://github.com/UBod/podkat

plot 35

Examples

create a toy example

gr <- GRanges(segnames="chr1"”, ranges=IRanges(start=1, end=14000))
partitionRegions(gr, width=10000, overlap=0.5)
partitionRegions(gr, width=10000, overlap=0.8)
partitionRegions(gr, width=10000, overlap=0)

a toy example of a 'GRangesList'

grL <- GRangesList(gr, GRanges(segnames="chr2",
ranges=IRanges(start=1, end=22000)))

partitionRegions(grL, width=10000, overlap=0.5)

partitionRegions(grL, width=10000, overlap=0.8)

real-world example
data(hg38Unmasked)
partitionRegions(hg38Unmasked, chrs="chr22", width=20000)

plot Plotting functions

Description

Functions for visualizing association test results by means of a Manhattan plot and for visualizing
genotypes

Usage

S4 method for signature 'AssocTestResultRanges,missing’
plot(x, y, cutoff=0.05,
which=c("p.value”, "p.value.adj"”, "p.value.resampled”,
"p.value.resampled.adj"), showEmpty=FALSE,
as.dots=FALSE, pch=19, col=c("darkgrey”, "grey"), scol="red",
lcol="red"”, xlab=NULL, ylab=NULL, ylim=NULL, lwd=1, cex=1,
cexXaxs=1, cexYaxs=1, srt=0, adj=c(0.5, 1), ...)
S4 method for signature 'AssocTestResultRanges,character'
plot(x, y, cutoff=0.05,
which=c("p.value”, "p.value.adj"”, "p.value.resampled”,
"p.value.resampled.adj"), showEmpty=FALSE,
as.dots=FALSE, pch=19, col=c("darkgrey"”, "grey"), scol="red",
lcol="red"”, xlab=NULL, ylab=NULL, ylim=NULL, 1lwd=1, cex=1,
cexXaxs=1, cexYaxs=1, srt=0, adj=c(0.5, 1), ...)
S4 method for signature 'AssocTestResultRanges,GRanges'
plot(x, y, cutoff=0.05,
which=c("p.value"”, "p.value.adj"”, "p.value.resampled”,
"p.value.resampled.adj"), showEmpty=FALSE,
as.dots=FALSE, pch=19, col="darkgrey”, scol="red”, lcol="red",
xlab=NULL, ylab=NULL, ylim=NULL, lwd=1, cex=1,
cexXaxs=1, cexYaxs=1, ...)

36

plot

S4 method for signature 'GenotypeMatrix,missing'’
plot(x, y, col="black”,
labRow=NULL, labCol=NULL, cexXaxs=(0.2 + 1 / logl@(ncol(x))),
cexYaxs=(0.2 + 1 / logl@(nrow(x))), srt=90, adj=c(1, 0.5))
S4 method for signature 'GenotypeMatrix,factor'
plot(x, y, col=rainbow(length(levels(y))),
labRow=NULL, labCol=NULL, cexXaxs=(0.2 + 1 / logl@(ncol(x))),
cexYaxs=(0.2 + 1 / logla(nrow(x))), srt=90, adj=c(1, 0.5))
S4 method for signature 'GenotypeMatrix,numeric'
plot(x, y, col="black”, ccol="red", lwd=2,
labRow=NULL, labCol=NULL, cexXaxs=(0.2 + 1 / logl@(ncol(x))),
cexYaxs=(0.2 + 1 / logl@(nrow(x))), srt=90, adj=c(1, 0.5))
S4 method for signature 'GRanges,character'
plot(x, y, alongGenome=FALSE,
type=c("r", "s", "S", "1", "p", "b", "c", "h", "n"),
xlab=NULL, ylab=NULL, col="red"”, 1lwd=2,
cexXaxs=(0.2 + 1 / logla(length(x))), cexYaxs=1,

frame.plot=TRUE, srt=90, adj=c(1, 0.5), ...)
Arguments
X an object of class AssocTestResultRanges, GenotypeMatrix, or GRanges
y a character string, GRanges object, or factor
cutoff significance threshold
which a character string specifying which p-values to plot; if “p.value” (default), raw p-

values are plotted. Other options are “p.value.adj” (adjusted p-values), “p.value.resampled”

(resampled p-values), and “p.value.resampled.adj” (adjusted resampled p-values).
If the requested column is not present in the input object x, the function stops
with an error message.

showEmpty if FALSE (default), p-values of regions that did not contain any variants are omit-
ted from the plot.

as.dots if TRUE, p-values are plotted as dots/characters in the center of the genomic
region. If FALSE (default), p-values are plotted as lines stretching from the starts
to the ends of the corresponding genomic regions.

pch plotting character used to plot a single p-value, ignored if as.dots=FALSE; see
points for details.

col plotting color(s); see details below

scol color for plotting significant p-values (i.e. the ones passing the significance
threshold)

lcol color for plotting the significance threshold line

xlab x axis label; if NULL (default) or NA, plot makes an automatic choice

ylab y axis label; if NULL (default) or NA, plot makes an automatic choice

ylim y axis limits; if NULL (default) or NA, plot makes an automatic choice; if user-

specified, ylim must be a two-element numeric vector with the first element
being 0 and the second element being a positive value.

plot

37
lwd line thickness; in Manhattan plots, this parameter corresponds to the thickness
of the significance threshold line. When plotting genotype matrices along with
continuous traits, this is the thickness of the line that corresponds to the trait.
cex scaling factor for plotting p-values; see points for details.

labRow, 1abCol row and column labels; set to NA to switch labels off; if NULL, rows are labeled
by sample names (rownames(x)) and columns are labeled by variant names
(names(variantInfo(x))).

cexXaxs, cexYaxs
scaling factors for axes labels

ccol color of the line that plots the continuous trait along with a genotype matrix

srt rotation angle of text labels on horizontal axis (see text for details); ignored if
standard numerical ticks and labels are used.

adj adjustment of text labels on horizontal axis (see text for details); ignored if
standard numerical ticks and labels are used.

alongGenome plot along the genome or per region (default); see details below.

type type of plot; see plot.default for details. Additionally, the type “r” is available
(default) which plots horizontal lines along the regions of x.

frame.plot whether or not to frame the plotting area (see plot; default: TRUE)

all other arguments are passed to plot.

Details

If plot is called for an AssocTestResultRanges object without specifying the second argument
y, a so-called Manhattan plot is produced. The x axis corresponds to the genome on which the
AssocTestResultRanges x is based and the y axis shows absolute values of log-transformed p-
values. The which argument determines which p-value is plotted, i.e. raw p-values, adjusted
p-values, resampled p-values, or adjusted resampled p-values. The cutoff argument allows for
setting a significance threshold above which p-values are plotted in a different color (see above).

The optional y argument can be used for two purposes: (1) if it is a character vector containing
chromosome names (sequence names), it can be used for specifying a subset of one or more chro-
mosomes to be plotted. (2) if y is a GRanges object of length 1 (if longer, plot stops with an error),
only the genomic region corresponding to y is plotted.

The col argument serves for specifying the color for plotting insignificant p-values (i.e. the ones
above the significance threshold); if the number of colors is smaller than the number of chromo-
somes, the vector is recycled. If col is a single color, all insignificant p-values are plotted in the
same color. If col has two elements (like the default value), the insignificant p-values of different
chromosomes are plotted with alternating colors. It is also possible to produce density plots of
p-values by using semi-transparent colors (see, e.g., rgb or hsv for information on how to use the
alpha channel).

If plot is called for a GenotypeMatrix object x and no y argument, the matrix is visualized in a
heatmap-like fashion, where two major alleles are displayed in white, two minor alleles are dis-
played in the color passed as col argument, and the heterozygotous case (one minor, one major) is
displayed in the color passed as col argument, but with 50% transparency. The arguments cexYaxs
and cexXaxs can be used to change the scaling of the axis labels.

38

plot

If plot is called for a GenotypeMatrix object x and a factor y, then the factor y is interpreted as
a binary trait. In this case, the rows of the genotype matrix x are reordered such that rows/samples
with the same label are plotted next to each other. Each such group can be plotted in a different
color. For this purpose, a vector of colors can be passed as col argument.

If plot is called for a GenotypeMatrix object x and a numeric vector y, then the vector y is inter-
preted as a continuous trait. In this case, the rows of the genotype matrix x are reordered according
to the trait vector y and the genotype matrix is plotted as described above. The trait y is superim-
posed in the plot in color ccol and with line width 1wd. If the null model has been trained with
covariates, it also makes sense to plot the genotype against the null model residuals, since these are
exactly the values that the genotypes were tested against.

If plot is called for a GRanges object x and a character string y, then plot checks whether x
has a metadata column named y. If it exists, this column is plotted against the regions in x. If
alongGenome is FALSE (which is the default), the regions in x are arranged along the horizontal plot
axis with equal widths and in the same order as contained in x. If the regions in x are named, then
the names are used as axis labels and the argument cexXaxs can be used to scale the font size of
the names. If alongGenome is TRUE, the metadata column is plotted against genomic positions. The
knots of the curves are then positioned at the positions given in the GRanges object x. For types “s”,
“S”, “1”, “p”, “b”, “c”, and “h”, knots are placed in the middle of the genomic regions contained
in x if they are longer than one base. For type “r”, regions are plotted as lines exactly stretching
between the start and end coordinates of each region in x.

Value

returns an invisible numeric vector of length 2 containing the y axis limits

Author(s)

Ulrich Bodenhofer

References

https://github.com/UBod/podkat

See Also

AssocTestResultRanges, GRanges

Examples

load genome description
data(hgA)

partition genome into overlapping windows
windows <- partitionRegions(hgA)

load genotype data from VCF file
vcfFile <- system.file("examples/examplel.vcf.gz", package="podkat")

Z <- readGenotypeMatrix(vcfFile)

plot some fraction of the genotype matrix

https://github.com/UBod/podkat

print-methods

plot(Z[, 1:251)

read phenotype data from CSV file (continuous trait + covariates)
phenoFile <- system.file("examples/examplellog.csv"”, package="podkat")
pheno <-read.table(phenoFile, header=TRUE, sep=",")

train null model with all covariates in data frame 'pheno'
nm.log <- nullModel(y ~ ., pheno)

perform association test
res <- assocTest(Z, nm.log, windows)
res.adj <- p.adjust(res)

plot results

plot(res)

plot(res, cutoff=1.e-5, as.dots=TRUE)

plot(res.adj, which="p.value.adj")

plot(res.adj, reduce(windows[3:5]), which="p.value.adj")

filter regions
res.adj.f <- filterResult(res.adj, filterBy="p.value.adj")

plot genotype grouped by target

sel <- which(overlapsAny(variantInfo(Z), reduce(res.adj.f)))
plot(Z[, sel], factor(pheno$y))

plot(Z[, sell, residuals(nm.log), srt=45)

compute contributions
contrib <- weights(res.adj.f, Z, nm.log)
contrib[[1]]

plot contributions
plot(contrib[[1]], "weight.raw")
plot(contrib[[1]], "weight.contribution”, type="b", alongGenome=TRUE)

39

print-methods Print Association Test Results

Description

Display method for S4 class AssocTestResultRanges

Usage

S4 method for signature 'AssocTestResultRanges'
print(x, cutoff=0.05,
sortBy=c("p.value”, "p.value.adj"”, "p.value.resampled”,
"p.value.resampled.adj", "genome”, "none"),
max . show=10)

40

Arguments

X

cutoff

sortBy

max . show

Details

print-methods

an object of class AssocTestResultRanges

a numerical vector with one or more p-value thresholds; if present (otherwise
NA or an empty vector must be passed), print displays the number of tested
regions with a p-value below each threshold. If the AssocTestResultRanges
object also contains adjusted p-values, the numbers of tested regions with p-
values below each of the thresholds are printed too. If max.show is greater than
0, the max . show most significant regions up to an (adjusted) p-value (depending
on the sortBy argument) up to the largest threshold are shown.

a character string that determines (1) how regions are sorted and (2) according to
which p-value the cutoff threshold is applied when printing regions; if sortBy
is “p.value” (default), regions are sorted according to raw p-values and only
the max. show most significant regions are printed - as long as the raw p-value
is not larger than the largest value in the cutoff argument. For “p.value.ad;j”,
regions are sorted and filtered according to adjusted p-values, analogously for
choices “p.value.resampled” and “p.value.resampled.adj”. In case that sortBy
is “genome”, the p-values are ignored and the first max.show regions in the
genome are displayed. In case that sortBy is “none”, the p-values are also
ignored and the first max . show regions are displayed in the order as they appear
in the AssocTestResultRanges object.

maximum number of regions to display; if 0, no regions are displayed at all.

print displays the most important information stored in an AssocTestResultRanges object x.
That includes the type of null model, the numbers of samples and tested regions, the kernel that
was used for testing, etc. Depending on the cutoff argument, a certain number of significant tests
is printed. If max.show is larger than 0, then some regions are shown along with association test
results. Which regions are selected and how they are sorted, depends on the arguments sortBy and
cutoff (see above).

Value

print returns its argument x invisibly.

Author(s)

Ulrich Bodenhofer

References

https://github.com/UBod/podkat

See Also

GenotypeMatrix, NullModel, AssocTestResult, AssocTestResultRanges

https://github.com/UBod/podkat

qqplot 41

Examples

load genome description
data(hgA)

partition genome into overlapping windows
windows <- partitionRegions(hgA)

load genotype data from VCF file
vcfFile <- system.file("examples/examplel.vcf.gz", package="podkat")
Z <- readGenotypeMatrix(vcfFile)

read phenotype data from CSV file (continuous trait + covariates)
phenoFile <- system.file("examples/examplellin.csv"”, package="podkat")
pheno <-read.table(phenoFile, header=TRUE, sep=",")

train null model with all covariates in data frame 'pheno'
nm.lin <- nullModel(y ~ ., pheno)

perform association test for multiple regions
res <- assocTest(Z, nm.lin, windows)

perform multiple testing correction
res.adj <- p.adjust(res)

print 'AssocTestResultRanges' object

print(res)

print(res, max.show=0)

print(res.adj, cutoff=c(0.005, 0.01, 0.05))
print(res.adj, cutoff=0.05, sortBy="p.value.adj")
print(res.adj, cutoff=NA, sortBy="none", max.show=40)

qgplot Quantile-Quantile Plots

Description

Functions for visualizing association test results by means of a quantile-quantile (Q-Q) plot

Usage

S4 method for signature 'AssocTestResultRanges,missing’
qgplot(x, vy,
xlab=deparse(substitute(x)), ylab=deparse(substitute(y)),
common.scale=TRUE, preservelLabels=FALSE, lwd=1,
lcol="red"”, ..., conf.level=NULL, conf.args=NULL)
S4 method for signature 'AssocTestResultRanges,AssocTestResultRanges
qgplot(x, vy,
xlab=deparse(substitute(x)), ylab=deparse(substitute(y)),
common.scale=TRUE, preservelLabels=FALSE, lwd=1,
lcol="red", ..., conf.level=NULL, conf.args=NULL)

42 qqplot
Arguments
X,y objects of class AssocTestResultRanges
xlab if preservelLabels is TRUE, x1ab is interpreted as axis label for the horizontal
axis; if preservelabels is FALSE, x1ab can be a character string or expression
that is interpreted as a name/label for the object x and is used for determining an
appropriate axis label.
ylab if preservelLabels is TRUE, ylab is interpreted as axis label for the vertical
axis; if preservelabels is FALSE, ylab can be a character string or expression
that is interpreted as a name/label for the object y and is used for determining an
appropriate axis label.
common.scale if TRUE (default), the same plotting ranges are used for both axes; if FALSE, the
two axes are scaled independently.
preservelLabels if TRUE, xlab and ylab are used as axis labels without any change; if FALSE
(default), the function interprets x1ab and ylab as object labels for x and y and
uses them for determining axis labels appropriately
lwd line width for drawing the diagonal line which theoretically corresponds to the
equality of the two distributions; if zero, no diagonal line is drawn.
lcol color for drawing the diagonal line
conf.level dummy argument for compatibility with the new version of the function in the
stats package; currently unused
conf.args dummy argument for compatibility with the new version of the function in the
stats package; currently unused
all other arguments are passed to plot;
Details
If qgplot is called for an AssocTestResultRanges object without specifying the second argu-
ment y, a Q-Q plot of the raw p-values in x against a uniform distribution of expected p-values
is created, where the theoretical p-values are computed using the ppoints function. In this case,
the log-transformed observed p-values contained in x are plotted on the vertical axis and the log-
transformed expected p-values are plotted on the horizontal axis. If preservelLabels is TRUE, x1ab
and ylab are used as axis labels as usual. However, if preservelLabels is FALSE, which is the
default, x1ab is interpreted as object label for x, i.e. the object whose p-values are plotted on the
vertical axis.
If ggplot is called for two AssocTestResultRanges object x and y, the log-transformed raw p-
values of x and y are plotted against each other, where the p-values of x are plotted on the horizontal
axis and the p-values of x are plotted on the vertical axis.
Value
like the standard qgplot function from the stats package, qgplot returns an invisible list containing
the two sorted vectors of p-values.
Author(s)

Ulrich Bodenhofer

readGenotypeMatrix-methods 43

References

https://github.com/UBod/podkat

See Also

AssocTestResultRanges

Examples

load genome description
data(hgA)

partition genome into overlapping windows
windows <- partitionRegions(hgA)

load genotype data from VCF file
vcfFile <- system.file("examples/examplel.vcf.gz", package="podkat")
Z <- readGenotypeMatrix(vcfFile)

read phenotype data from CSV file (continuous trait + covariates)
phenoFile <- system.file("examples/examplellin.csv", package="podkat")
pheno <-read.table(phenoFile, header=TRUE, sep=",")

train null model with all covariates in data frame 'pheno’
nm.lin <- nullModel(y ~ ., pheno)

perform association tests
res.p <- assocTest(Z, nm.lin, windows, kernel="linear.podkat")
res.s <- assocTest(Z, nm.lin, windows, kernel="linear.SKAT")

plot results

qgplot(res.p)

qgplot(res.p, res.s, xlab="PODKAT results”, ylab="SKAT results")

qgplot(res.p, res.s, xlab="PODKAT results”, ylab="SKAT results”,
preservelabels=TRUE)

qgplot(res.p, res.s, common.scale=FALSE)

readGenotypeMatrix-methods
Read from VCF File

Description

A fast lightweight function that reads from a VCF file and returns the result as a GenotypeMatrix
object

https://github.com/UBod/podkat

44

Usage

readGenotypeMatrix-methods

S4 method for signature 'TabixFile,GRanges'
readGenotypeMatrix(file, regions, subset,

noIndels=TRUE, onlyPass=TRUE,

na.limit=1, MAF.limit=1,
na.action=c("impute.major”, "omit", "fail"),
MAF.action=c("invert”, "omit”, "ignore", "fail"),
sex=NULL)

S4 method for signature 'TabixFile,missing'
readGenotypeMatrix(file, regions, ...)
S4 method for signature 'character,GRanges'
readGenotypeMatrix(file, regions, ...)
S4 method for signature 'character,missing'
readGenotypeMatrix(file, regions, ...)

Arguments

file

regions

subset

noIndels

onlyPass

na.limit

MAF.limit

na.action

MAF .action

a TabixFile object or a character string with a file name of the VCEF file to read
from; if file is a file name, the method internally creates a TabixFile object
for this file name.

a GRanges object that specifies which genomic regions to read from the VCF
file; if missing, the entire VCF file is read.

a numeric vector with indices or a character vector with names of samples to
restrict to; if specified, only these samples’ genotypes are read from the VCF
file and all other samples are ignored and omitted from the GenotypeMatrix
object that is returned. Moreover, minor allele frequencies (MAFs) are only
computed from the genotypes of the samples specified by subset.

if TRUE (default), only single-nucleotide variants (SN'Vs) are considered and in-
dels are skipped.

if TRUE (default), only variants are considered whose value in the FILTER column
is “PASS”.

all variants with a missing value ratio above this threshold will be omitted from
the output object.

all variants with an MAF above this threshold will be omitted from the output
object.

if “impute.major”, all missing values will be imputed by major alleles in the
output object. If “omit”, all variants containing missing values will be omitted
in the output object. If “fail”, the function stops with an error if a variant contains
any missing values.

if “invert”, all variants with an MAF exceeding 0.5 will be inverted in the sense
that all minor alleles will be replaced by major alleles and vice versa. If “omit”,
all variants with an MAF greater than 0.5 are omitted in the output object. If
“ignore”, no action is taken and MAFs greater than 0.5 are kept as they are. If
“fail”, the function stops with an error if any variant has an MAF greater than
0.5.

readGenotypeMatrix-methods 45

sex if NULL, all samples are treated the same without any modifications; if sex is a
factor with levels F (female) and M (male) that is as long as subset or as the
VCEF file has samples, this argument is interpreted as the sex of the samples. In
this case, the genotypes corresponding to male samples are doubled before fur-
ther processing. This is designed for mixed-sex analyses of the X chromosome
outside of the pseudoautosomal regions.

for the three latter methods above, all other parameters are passed on to the
method with signature TabixFile,GRanges.

Details

This method uses the tabix API provided by the Rsamtools package to read from a VCF file,
parses the result into a sparse matrix along with positional information, and returns the result as a
GenotypeMatrix object. Reading can be restricted to certain regions by specifying the regions
object. Note that it might not be possible to read a very large VCF file as a whole.

For all variants, filters in terms of missing values and MAFs can be applied. Moreover, variants
with MAFs greater than 0.5 can filtered out or inverted. For details, see descriptions of parameters
na.limit, MAF.limit, na.action, and MAF.action above.

Value

returns an object of class GenotypeMatrix

Author(s)
Ulrich Bodenhofer

References
https://github.com/UBod/podkat
https://github.com/samtools/hts-specs

Li, H., Handsaker, B., Wysoker, A., Fenell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin,
R., and 1000 Genome Project Data Processing Subgroup (2009) The Sequence Alignment/Map
format and SAMtools. Bioinformatics 25, 2078-2079. DOI: doi:10.1093/bioinformatics/btp352.

See Also

GenotypeMatrix

Examples

vcfFile <- system.file("examples/examplel.vcf.gz", package="podkat")
readGenotypeMatrix(vcfFile)
readGenotypeMatrix(vcfFile, onlyPass=FALSE, MAF.action="ignore")

https://github.com/UBod/podkat
https://github.com/samtools/hts-specs
https://doi.org/10.1093/bioinformatics/btp352

46 readRegionsFromBedFile

readRegionsFromBedFile
Read Genomic Regions from BED File

Description

Reads a BED file and returns the genomic regions as GRanges object

Usage
readRegionsFromBedFile(file, header=FALSE, sep="\t",
col.names=c("chrom”, "chromStart",
"chromend”, "names"),

ignoreMcols=TRUE, seqInfo=NULL)

Arguments

file the name of the file, text-mode connection, or URL to read data from
header, sep, col.names
arguments passed on to read. table

ignoreMcols if TRUE (default), further columns are ignored; if FALSE, further columns are ap-
pended to the resulting GRanges object as metadata colums (see details below).
seqInfo can be NULL (default) or an object of class Seqinfo (see details below).
Details

This function is a simple wrapper around the read.table function that reads from a BED file
and returns the genomic regions as a GRanges object. How the file is split into columns can be
controlled by the arguments header, sep, and col.names. These arguments are passed on to
read.table as they are. The choice of the col.names argument is crucial. A wrong col.names
argument results in erroneous assignment of columns. The function readRegionsFromBedFile re-
quires columns named “chrom”, “chromStart”, and “chromEnd” to be present in the object returned
from read. table upon reading from the BED file. If a column named “strands” is contained in the
BED file, this column is used as strand info in the resulting GRanges object.

If ignoreMcols=TRUE (default), further columns are ignored. If ignoreMcols=FALSE, all columns
other than “chrom”, “chromStart”, “chromEnd”, “names”, “strand”, and “width” are appended to
the resulting GRanges object as metadata columns.

Note that the default for col.names has changed in version 1.23.2 of the package. Starting with
this version, the BED is no longer assumed to contain strand and width information.

The seqInfo argument can be used to assign the right metadata, such as, genome, chromosome
names, and chromosome lengths to the resulting GRanges object.

Value

a GRanges object

readSampleNamesFromVctHeader

Author(s)
Ulrich Bodenhofer

References

https://github.com/UBod/podkat
http://genome.ucsc.edu/FAQ/FAQformat.html#formati

See Also

read. table

Examples

basic example (hg38 regions of HBA1 and HBA2)
bedFile <- system.file("examples/HBA.bed"”, package="podkat")
readRegionsFromBedFile(bedFile)

example with enforcing seqinfo
data(hg38Unmasked)
readRegionsFromBedFile(bedFile, seqInfo=seqinfo(hg38Unmasked))

##

example with regions targeted by Illumina TruSeq Exome Enrichment kit:

download file "truseq_exome_targeted_regions.hg19.bed.chr.gz" from

http://support.illumina.com/downloads/truseq_exome_targeted_regions_bed_file.ilmn
(follow link "TruSeq Exome Targeted Regions BED file"”; these regions

are based on hgl9)

##

Not run:

readRegionsFromBedFile("truseq_exome_targeted_regions.hg19.bed.chr.gz")

data(hg19Unmasked)

readRegionsFromBedFile("truseq_exome_targeted_regions.hg19.bed.chr.gz",
segInfo=seqginfo(hgl9Unmasked))

End(Not run)

readSampleNamesFromVcfHeader
Read Sample Names from VCF File Header

Description

Reads the header of a VCF file and returns sample names as character vector

Usage

readSampleNamesFromVcfHeader(file, ...)

https://github.com/UBod/podkat
http://genome.ucsc.edu/FAQ/FAQformat.html#format1

48 read VariantInfo-methods

Arguments
file a TabixFile object or a character string with a file name of the VCEF file to read
from; if file is a file name, the method internally creates a TabixFile object
for this file name.
all additional arguments are passed on internally to scanBcfHeader function
from the Rsamtools package.
Details

This function is a simple wrapper around the scanBcfHeader function from the Rsamtools package
that scans the header of a VCF file and returns the sample names as a character vector.

Value

a character vector with sample names

Author(s)
Ulrich Bodenhofer

References

https://github.com/UBod/podkat
https://github.com/samtools/hts-specs

Li, H., Handsaker, B., Wysoker, A., Fenell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin,
R., and 1000 Genome Project Data Processing Subgroup (2009) The Sequence Alignment/Map
format and SAMtools. Bioinformatics 25, 2078-2079. DOI: doi: 10.1093/bioinformatics/btp352.

See Also

scanBcfHeader

Examples

vcfFile <- system.file("examples/examplel.vcf.gz", package="podkat")
readSampleNamesFromVcfHeader (vcfFile)

readVariantInfo-methods
Read information about variants from VCF file

Description

A fast lightweight function that determines information on variants ocurring in a VCF file and
returns the result as a VariantInfo object

https://github.com/UBod/podkat
https://github.com/samtools/hts-specs
https://doi.org/10.1093/bioinformatics/btp352

read VariantInfo-methods 49

Usage

S4 method for signature 'TabixFile,GRanges'
readVariantInfo(file, regions, subset,

noIndels=TRUE, onlyPass=TRUE,
na.limit=1, MAF.limit=1,
na.action=c("impute.major”, "omit", "fail"),

MAF.action=c("ignore”, "omit","invert”, "fail"),
omitZeroMAF=TRUE, refAlt=FALSE, sex=NULL)

S4 method for signature 'TabixFile,missing'

readVariantInfo(file, regions, ...)

S4 method for signature 'character,GRanges'

readVariantInfo(file, regions, ...)

S4 method for signature 'character,missing'

readVariantInfo(file, regions, ...)

Arguments

file a TabixFile object or a character string with a file name of the VCF file to read
from; if file is a file name, the method internally creates a TabixFile object
for this file name.

regions a GRanges object that specifies which genomic regions to read from the VCF
file; if missing, the entire VCF file is read.

subset a numeric vector with indices or a character vector with names of samples to
restrict to; if specified, only these samples’ genotypes are considered when de-
termining the minor allele frequencies (MAFs) of variants.

noIndels if TRUE (default), only single-nucleotide variants (SN'Vs) are considered and in-
dels are skipped.

onlyPass if TRUE (default), only variants are considered whose value in the FILTER column
is “PASS”.

na.limit all variants with a missing value ratio above this threshold will be omitted from
the output object.

MAF.limit all variants with an MAF above this threshold will be omitted from the output
object.

na.action if “impute.major”, all missing values are considered as major alleles when com-
puting MAFs. If “omit”, all variants containing missing values will be omitted in
the output object. If “fail”, the function stops with an error if a variant contains
any missing values.

MAF.action if “ignore” (default), no action is taken for variants with an MAF greater than

0.5, these variants are kept and included in the output object as they are. If
“omit”, all variants with an MAF greater than 0.5 are omitted in the output
object. If “fail”, the function stops with an error if any variant has an MAF
greater than 0.5. If “invert”, all variants with an MAF exceeding 0.5 will be
inverted in the sense that all minor alleles will be replaced by major alleles and
vice versa. Note: if this setting is used in conjunction with refA1t=TRUE, the
MAFs of the variants that have been inverted do no longer correspond to the true
alternate allele.

50

read VariantInfo-methods

omitZeroMAF if TRUE (default), variants with an MAF of O are not considered and omitted from
the output object.

refAlt if TRUE, two metadata columns named “ref” and “alt” are added to the output
object that contain reference and alternate alleles. Note that these sequences can
be quite long for indels, which may result in large memory consumption. The
default is FALSE.

sex if NULL, all samples are treated the same without any modifications; if sex is a
factor with levels F (female) and M (male) that is as long as subset or as the
VCEF file has samples, this argument is interpreted as the sex of the samples.
In this case, the genotypes corresponding to male samples are doubled before
computing MAFs. The option to supply the sex argument is meant to allow for
a correct estimate of MAFs as readGenotypeMatrix and assocTest compute
it. Note, however, that the MAFs computed in this way do not correspond to the
true MAFs contained in the data.

for the three latter methods above, all other parameters are passed on to the
method with signature TabixFile, GRanges.

Details

This method uses the “tabix” API provided by the Rsamtools package to parse a VCF file. The
readVariantInfo method considers each variant and determines its minor allele frequency (MAF)
and the type of the variant. The result is returned as a VariantInfo object, i.e. a GRanges object
with two metadata columns “MAF” and “type”. The former contains the MAF of each variant,
while the latter is a factor column that contains information about the type of the variant. Pos-
sible values in this column are “INDEL” (insertion or deletion), “MULTIPLE” (single-nucleotide
variant with multiple alternate alleles), “TRANSITION” (single-nucleotide variation A/G or C/T),
“TRANSVERSION” (single-nucleotide variation A/C, A/T, C/G, or G/T), or “UNKNOWN” (any-
thing else). If refAlt is TRUE, two further metadata columns “ref” and “alt” are included which
contain reference and alternate alleles of each variant.

For all variants, filters in terms of missing values and MAFs can be applied. Moreover, variants
with MAFs greater than 0.5 can filtered out or inverted. For details, see descriptions of parameters
na.limit, MAF.1limit, na.action, and MAF.action above.

Value

returns an object of class VariantInfo

Author(s)

Ulrich Bodenhofer

References

https://github.com/UBod/podkat
https://github.com/samtools/hts-specs

Li, H., Handsaker, B., Wysoker, A., Fenell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin,
R., and 1000 Genome Project Data Processing Subgroup (2009) The Sequence Alignment/Map
format and SAMtools. Bioinformatics 25, 2078-2079. DOI: doi: 10.1093/bioinformatics/btp352.

https://github.com/UBod/podkat
https://github.com/samtools/hts-specs
https://doi.org/10.1093/bioinformatics/btp352

sort-methods 51

See Also

GenotypeMatrix

Examples

vcfFile <- system.file("examples/examplel.vcf.gz", package="podkat")

default parameters

vInfo <- readVariantInfo(vcfFile)
vInfo

summary (vInfo)

including zero MAF variants and reference/alternate alleles
vInfo <- readVariantInfo(vcfFile, omitZeroMAF=FALSE, refAlt=TRUE)
vInfo

summary (vInfo)

sort-methods Sort Association Test Results

Description

Rearrange association test results according to sort criterion

Usage

S4 method for signature 'AssocTestResultRanges'
sort(x, decreasing=FALSE,

sortBy=c("p.value”, "p.value.adj", "p.value.resampled”,
"p.value.resampled.adj”, "genome"))
Arguments
X object of class AssocTestResultRanges
decreasing logical indicating if sorting should be done in decreasing order
sortBy sort criterion (see details below)

Details

The function sort takes an AssocTestResultRanges object x and returns a new object of the
same class, but with the regions rearranged according to the sort criterion sortBy. As an exam-
ple, if sortBy is “p.value” regions are sorted according to raw p-values in ascending order, analo-
gously for the choices “p.value.adj”, “p.value.resampled”, and “p.value.resampled.adj”. If sortBy
is “genome”, the regions are arranged along the genome in the same way as a GRanges object would

be sorted. If decreasing is TRUE, the order is reversed.

52

Value

an AssocTestResultRanges object;

Author(s)

Ulrich Bodenhofer

References

https://github.com/UBod/podkat

See Also

AssocTestResultRanges

Examples

load genome description
data(hgA)

partition genome into overlapping windows
windows <- partitionRegions(hgA)

load genotype data from VCF file
vcfFile <- system.file("examples/examplel.vcf.gz", package="podkat")
Z <- readGenotypeMatrix(vcfFile)

read phenotype data from CSV file (continuous trait + covariates)
phenoFile <- system.file("examples/examplellin.csv", package="podkat")
pheno <-read.table(phenoFile, header=TRUE, sep=",")

train null model with all covariates in data frame 'pheno’
nm.lin <- nullModel(y ~ ., pheno)

perform association test for multiple regions
res <- assocTest(Z, nm.lin, windows)

perform multiple testing correction
res.adj <- p.adjust(res)

show sorted results (default: by raw p-value)
as(sort(res), "GRanges")
print(sort(res), sortBy="none")

show results sorted by adjusted p-value
as(sort(res.adj, sortBy="p.value.adj"), "GRanges")
print(sort(res.adj, sortBy="p.value.adj"), sortBy="none")

sort-methods

https://github.com/UBod/podkat

split-methods

53

split-methods Split GRanges Object

Description

Splits a GRanges object into a GRangesList

Usage

S4 method for signature 'GRanges,GRangeslList'
split(x, f)

Arguments

X object of class GRanges

f object of class GRangesList
Details

This function splits a GRanges object x along a GRangesList object f. More specifically, each re-
gion in x is checked for overlaps with every list component of f. The function returns a GRangesList
object each component of which contains all overlaps of x with one of the components of f. If the

overlap is empty, this component is discarded.

This function is mainly made for splitting regions of interests (transcripts, exons, regions targeted

by exome capturing) along chromosomes (and pseudoautosomal regions).

The returned object inherits sequence infos (chromosome names, chromosome lengths, genome,

etc.) from the GRangesList object f.

For greater universality, the function takes strand information into account. If overlaps should not
be determined in a strand-specific manner, all strand information must be discarded from x and f

before calling split.

Value

a GRangesList object (see details above)

Author(s)
Ulrich Bodenhofer

References

https://github.com/UBod/podkat

See Also

GRanges, GRangeslList

https://github.com/UBod/podkat

54 unmasked-datasets

Examples

set up toy example

chr1 <- GRanges(seqnames="chr1”, ranges=IRanges(start=1, end=200000))
chr2 <- GRanges(segnames="chr2", ranges=IRanges(start=1, end=180000))
grL <- GRangesList(list(chri=chr1, chr2=chr2))

seqlevels(grL) <- c("chr1”, "chr2")

seqlengths(grL) <- c(chr1=200000, chr2=180000)

griL

split set of regions given as 'GRanges' object
gr <- GRanges(segnames=c("chr1”, "chri1”, "chr2", "chr2", "chr2"),
ranges=IRanges(start=c(1, 30000, 10000, 51000, 110000),
end=c(340, 37000, 10100, 61000, 176000)))
gr
split(gr, grL)

consider transcripts on the X chromosome, but with pseudoautosomal
regions treated separately
if (require(TxDb.Hsapiens.UCSC.hg38.knownGene))

{
data(hg38Unmasked)
hg38tr <- transcripts(TxDb.Hsapiens.UCSC.hg38.knownGene)
strand(hg38tr) <- "x"
split(hg38tr, hg38Unmasked[c("chrX", "X.PAR1", "X.PAR2", "X.XTR")1)

3

unmasked-datasets Unmasked Regions of Human Genomes
Description

Pre-built GRangesList objects with unmasked regions of different human genome builds

Usage

hg18Unmasked
hg19Unmasked
hg38Unmasked
b36Unmasked
b37Unmasked

Format

Each of these is a GRangesList object with unmasked regions of different human genome builds, as
provided by the packages BSgenome.Hsapiens.UCSC.hg18.masked, BSgenome.Hsapiens.UCSC.hg19.masked,
and BSgenome.Hsapiens.UCSC.hg38.masked. The two latter, b36Unmasked and b37Unmasked,

unmasked-datasets 55

are variants using chromosome names as the genomes b36 and b37 that are frequently used by the
Genome Analysis Toolkit (GATK).

All four data sets comprise all 22 autosomal chromosomes, the two sex chromosomes, mitochon-
drial DNA, and the six pseudoautosomal regions as defined in the data frames pseudoautosomal.hg18
(for hgl18), pseudoautosomal.hgl19 (for hgl9), and pseudoautosomal.hg38 (for hg38) as pro-
vided by the GWASTools package. If this is undesired, the user can re-unite the pseudoautosomal
regions with their chromosomes as shown in the example section below or run unmaskedRegions
him- or herself to extract unmasked regions.

Author(s)
Ulrich Bodenhofer

References

https://github.com/UBod/podkat

See Also

unmaskedRegions, GRangeslList, GRanges, pseudoautosomal

Examples

load data sets
data(hg19Unmasked)
data(b37Unmasked)

show chromosome names
seqlevels(hgl19Unmasked)
seqlevels(b37Unmasked)

show names of list components
names (hg19Unmasked)
names (b37Unmasked)

determine numbers of regions for each component
sapply(hg19Unmasked, length)
sapply(b37Unmasked, length)

re-unite pseudoautosomal regions with their chromosomes

(that is the result of what unmaskedRegions() would have given

without specifying pseudoautosomal regions)

hg19basic <- hgl9Unmasked[paste@("chr”, 1:22)]

hg19basic$chrX <- reduce(unlist(hgl9Unmasked[c("chrX”, "X.PAR1",
"X.PAR2", "X.XTR™)1))

hgl9basic$chrY <- reduce(unlist(hgl9Unmasked[c("chrY”, "Y.PAR1",
"Y.PAR2", "Y.XTR")1))

show some information about the newly created object
names(hg19basic)
sapply(hgl9basic, length)

https://github.com/UBod/podkat

56 unmaskedRegions

unmaskedRegions Extract Unmasked Regions from MaskedBSgenome Object

Description

Create a GRangesList of unmasked regions from a MaskedBSgenome object

Usage

unmaskedRegions(x, chrs=character(), pseudoautosomal=NULL,
ignoreGaps=250, activeMasks=active(masks(x[[111)))

Arguments
X a MaskedBSgenome object
chrs a character vector of chromosome names to restrict to; if empty (default), all
chromosomes in x are considered.
pseudoautosomal
if NULL (default), the chromosomes are considered as they are; pseudoautosomal
must be a data frame complying with the format of the pseudoautosomal.hg18,
pseudoautosomal.hgl19, and pseudoautosomal.hg38 from the GWASTools
package (see details below).
ignoreGaps skip assembly gaps only if larger than this threshold; in turn, if two unmasked
regions are separated by an assembly gap not larger than ignoreGaps, they are
joined in the resuling GRanges object.
activeMasks masks to apply for determining unmasked region; defaults to the masks that are
active by default in the MaskedBSgenome object x. Therefore, this argument only
needs to be set if a masking other than the default is necessary.
Details

This function takes a MaskedBSgenome object x and extracts the genomic regions that are unmasked
in this genome, where the set of masks to apply can be specified using the activeMasks argument.
The result is returned as a GRangesList object each component of which corresponds to one chro-
mosome of the genome x - or a subset thereof if the chrs argument has been specified.

The pseudoautosomal argument allows for a special treatment of pseudoautosomal regions. If not
NULL, this argument must be a data frame that contains columns with names “chrom”, “start.base”,
and “end.base”. The “chrom” column must contain chromosome names as they appear in the
MaskedBSgenome object x. The columns “start.base” and “end.base” must contain numeric val-
ues that specify the starts and ends of pseudoautosomal regions, respectively. The function is
implemented such that the data frames pseudoautosomal.hgl18, pseudoautosomal.hgl19, and
pseudoautosomal.hg38 provided by the GWASTools package can be used (except for the chro-
mosome names that need to be adapted to hg18/hg19/hg38). If the pseudoautosomal argument is
specified correctly, the unmaskedRegions function produces separate components in the resulting
GRangesList object - one for each pseudoautosomal region. These components are named as the
corresponding row names in the data frame pseudoautosomal. Moreover, these regions are omitted
from the list of unmasked regions of the chromosomes they are on.

unmaskedRegions

Value

a GRangesList object (see details above)

Author(s)

Ulrich Bodenhofer

References

https://github.com/UBod/podkat

See Also

GRangesList, pseudoautosomal

Examples

load packages to obtain masked hg38genome and
pseudoautosomal.hgl9 from GWASTools package
if (require(BSgenome.Hsapiens.UCSC.hg38.masked) && require(GWASTools))
{
extract unmasked regions of all autosomal chromosomes
regions <- unmaskedRegions(BSgenome.Hsapiens.UCSC.hg38.masked,
chrs=paste@("chr”, 1:22))
names(regions)
regions$chri

adjust chromosome names
pseudoautosomal .hg38

psaut <- pseudoautosomal.hg38
psaut$chrom <- paste@("chr”, psaut$chrom)
psaut

extract unmasked regions of sex chromosomes taking pseudoautosomal

regions into account
regions <- unmaskedRegions(BSgenome.Hsapiens.UCSC.hg38.masked,

chrs=c("chrX", "chrY"), pseudoautosomal=psaut)

names(regions)
regions$chrXx
regions$X.PAR1

check overlap between X chromosome and a pseudoautosomal region

intersect(regions$chrX, regions$X.PAR1)

57

https://github.com/UBod/podkat

58 VariantInfo-class

VariantInfo-class Class VariantInfo

Description

S4 class for storing information about variants

Details

This class extends the class GRanges without adding any extra slots. The main difference is that
VariantInfo objects always have a metadata column “MAF” that contains minor allele frequencies
(MAFs). A special summary method allows for computing statistics about MAFs and types of
variants.

Objects of this class should only be created and manipulated by the constructors and accessors de-
scribed below, as only these methods ensure the integrity of the created objects. Direct modification
of object slots is strongly discouraged!

Constructors

variantInfo signature(x="missing"): creates an empty VariantInfo object

variantInfo signature(x="GRanges"): coerces a GRanges object to class VariantInfo by adding
a “MAF” metadata column that is initialized with NA values.

Furthermore, see the help page of readVariantInfo.

Accessors
MAF signature(object="VariantInfo”): returns a numeric vector with the minor allele fre-
quencies (MAFs).
Methods

summary signature(object="VariantInfo"): returns a string with the number of variants and
metadata columns (if any); if the optional argument details is set to TRUE, this method com-
putes and prints a summary about the MAFs and variant types (if available); this variant returns
a list with summarized values.

All other methods, including sub-setting, are inherited from the GRanges class.

Author(s)
Ulrich Bodenhofer

References

https://github.com/UBod/podkat

https://github.com/UBod/podkat

weightFuncs 59

See Also

GRanges, readVariantInfo, genotypeMatrix, readGenotypeMatrix

Examples

vcfFile <- system.file("examples/examplel.vcf.gz", package="podkat")

read variant info directly from VCF file

vInfo <- readVariantInfo(vcfFile, omitZeroMAF=FALSE)
vInfo

summary (vInfo)

read full genotype from VCF file
geno <- readGenotypeMatrix(vcfFile)

display summary of variant info stored in genotype matrix
summary (variantInfo(geno))

weightFuncs Weighting Functions

Description

Functions for computing SNV weights from minor allele frequences (MAF)

Usage

betaWeights(x, shapel=1, shape2=25)
logisticWeights(x, th=0.07, slope=150)
invSdWeights(x)

Arguments

X a numeric vector of minor allele frequencies (MAFs); see details below
shape1, shape2 shape parameters of Beta distribution weighting function (see dbeta for details)

th, slope parameters of the logistic weighting function (see details below)

Details

The function betaWeights is a wrapper around the dbeta function. It uses the same parame-
ters shape1 and shape2, but does not support the non-centrality parameter ncp. The defaults are
shape1=1 and shape2=25 as suggested by Wu et al. (2011) and implemented in the SKAT pack-
age. If called without argument x, a function with a single argument x is returned that can directly
be used as weighting function, e.g. passed as weightFunc argument to the assocTest method.

The function logisticWeights provides a logistic weighting that corresponds to a soft threshold
function. The th parameter corresponds to the threshold and the slope parameter corresponds

60

weightFuncs

to the steepness of the soft threshold. Like betaWeights, this function can be called without x
argument to produce a parameter-free weighting function.

The function invSdWeights computes weights as suggested by Madsen and Browning (2009). For
consistency, this function also returns a single-argument function if called without x argument.

For mathematical details, see Subsection 9.3 of the package vignette.

Value

a numeric vector with weights as long as the argument x, a function if x was missing;

Author(s)

Ulrich Bodenhofer

References

https://github.com/UBod/podkat

Wu, M. C., Lee, S., Cai, T, Li, Y., Boehnke, M., and Lin, X. (2011) Rare-variant association testing
for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89, 82-93. DOLI:
doi:10.1016/j.ajhg.2011.05.029.

Madsen, B. E. and Browning, S. R. (2009) A groupwise association test for rare mutations using a
weighted sum statistic. PLoS Genetics S, e1000384. DOI: doi:10.1371/journal.pgen.1000384

See Also

GenotypeMatrix, dbeta, assocTest

Examples

create a toy example
A <- matrix(rbinom(50, 2, prob=0.2), 5, 10)
MAF <- colSums(A) / (2 * nrow(A))

compute some weight vectors

betaWeights(MAF, 1, 25)

betaWeights(MAF, 1, 30)

logisticWeights(MAF)

invSdWeights (MAF)

plot weighting functions (note the missing 'x'
plot(betaWeights(shape2=30), xlim=c(@, 1))
plot(logisticWeights(), xlim=c(Q, 1))
plot(invSdWeights, xlim=c(@, 1))

arguments)

https://github.com/UBod/podkat
https://doi.org/10.1016/j.ajhg.2011.05.029
https://doi.org/10.1371/journal.pgen.1000384

weights 61

weights Extract Contribution Weights of Variants

Description

Method for extracting the contributions that each variant makes to the test statistic of an association
test

Usage

S4 method for signature 'AssocTestResult'
weights(object, Z, model)

S4 method for signature 'AssocTestResultRanges'
weights(object, Z, model, limit=20, sex=NULL)

Arguments
object an object of class AssocTestResult or AssocTestResultRanges
Z an object of class GenotypeMatrix, an object of class TabixFile, or a character
string with the file name of a VCF file
model an object of class Nul1Model
limit maximum number of regions to be processed; set to Inf or non-numeric value
like NA or NULL to disable limitation. Do this with caution, in particular, when
reading from a VCEF file, as reading of excessively large regions from VCF files
may take very long or even kill the R session because of excessive memory
comsumption!
sex if NULL, all samples are treated the same without any modifications; if sex is
a factor with levels F (female) and M (male) that is as long as the number of
samples in model, this argument is interpreted as the sex of the samples. In
this case, the genotypes corresponding to male samples are doubled before fur-
ther processing. This is designed for mixed-sex analyses of the X chromosome
outside of the pseudoautosomal regions.
Details

Upon successful completion of an association test, the weights method allows for finding out the
individual contributions each of the variants made to the test statistic. This computation is only
possible for kernels “linear.podkat” and “linear. SKAT” (see computeKernel).

If called for an AssocTestResult object as first argument object, a GenotypeMatrix object Z,

and a NullModel object model, weights returns a GRanges object that contains all variants of
variantInfo(Z) along with two numerical metadata columns named “weight.raw’” and “weight.contribution”.
The column “weight.raw” corresponds to raw contributions. These are signed, i.e. a positive value

indicates a positive association, while a negative value indicates a negative association. The larger

the absolute value, the larger the contribution. The column “weight.contribution” corresponds to

relative contributions. These values are non-negative and they sum up to 1. For mathematical

details, see Subsection 9.4 of the package vignette.

62 weights

If weights is called for an AssocTestResultRanges object object, a second argument Z that is
an object of class GenotypeMatrix, an object of class TabixFile, or a character string with the
name of a VCF file, and a Nul1Model object model, the contribution weights described above are
computed for each region in object. In this case, the method returns a GRangesList with as many
components as object has regions, where each list component is a GRanges object containing the
contribution weights as described above.

It is essential for weights to work correctly that object is actually the result of an association
test between Z and model. If called for objects that actually do not belong to each other, the re-
sults are void. The method is implemented such that all possible checks are made that possibly
detect inconsistencies between the input objects. However, the final responsibility is left to user

to make sure that all data are consistent. Special caution is necessary if weights is run for an
AssocTestResultRanges object that has been obtained by merging multiple AssocTestResultRanges
using the ¢ method. The c method performs several checks to ensure consistency of associa-
tion test parameters among the merged results, but the sex parameter is an exception: if it ap-
pears to be inconsistent among the results to merge, it is omitted from the merged object (see also
AssocTestResultRanges).

The weights method needs to re-evaluate some computations of the association test. In case it is
called for Z being a TabixFile object or file name of a VCF file, weights even needs to re-read
the genotype data from the file. Therefore, the method has a safety limit not to process too many
regions (see 1imit argument described above).

Value

an object of class GRanges or GRangesList (see details above)

Author(s)
Ulrich Bodenhofer

References

https://github.com/UBod/podkat

See Also

assocTest, AssocTestResult, AssocTestResultRanges, nullModel, NullModel, computeKernel,
GenotypeMatrix, p.adjust, filterResult

Examples

load genome description
data(hgA)

partition genome into overlapping windows
windows <- partitionRegions(hgA)

load genotype data from VCF file
vcfFile <- system.file("examples/examplel.vcf.gz", package="podkat")
Z <- readGenotypeMatrix(vcfFile)

https://github.com/UBod/podkat

weights 63

read phenotype data from CSV file (continuous trait + covariates)
phenoFile <- system.file("examples/examplellin.csv"”, package="podkat")
pheno <- read.table(phenoFile, header=TRUE, sep=",")

train null model with all covariates in data frame 'pheno’
model <- nullModel(y ~ ., pheno)

perform association test
res <- assocTest(Z, model, windows)

perform multiple testing correction and filter for
significant regions
res <- filterResult(p.adjust(res), filterBy="p.value.adj")

compute contributions
contrib <- weights(res, Z, model)
contrib

extract most indicative variants
filterResult(contrib)

plot contributions
plot(contrib[[1]], "weight.raw")
plot(contrib[[1]], "weight.contribution”, type="b", alongGenome=TRUE)

Index

* classes
AssocTestResult-class, 10
AssocTestResultRanges-class, 11
GenotypeMatrix-class, 18
NullModel-class, 29
VariantInfo-class, 58

x datasets
hgA, 24
unmasked-datasets, 54

+« methods
assocTest, 4
filterResult-methods, 16
genotypeMatrix-methods, 20
nullModel, 25
p.adjust-methods, 32
partitionRegions-methods, 33
plot, 35
print-methods, 39
qgplot, 41
readGenotypeMatrix-methods, 43
readVariantInfo-methods, 48
sort-methods, 51
split-methods, 53
weights, 61

x package
podkat-package, 3

[,GenotypeMatrix,index,index,missing-metho

(GenotypeMatrix-class), 18

[,GenotypeMatrix,index,missing,missing-method

(GenotypeMatrix-class), 18

[,GenotypeMatrix,missing, index,missing-method

(GenotypeMatrix-class), 18

[,NullModel,index,missing,missing-method

(NullModel-class), 29

assocTest, 3,4, 10-13, 28, 29, 34, 50, 59, 60,
62

assocTest,character,NullModel-method
(assocTest), 4

assocTest,GenotypeMatrix,NullModel-method

(assocTest), 4
assocTest,matrix,NullModel-method
(assocTest), 4
assocTest,TabixFile,NullModel-method
(assocTest), 4
assocTest-methods (assocTest), 4
AssocTestResult, 7-9, 40, 61, 62
AssocTestResult
(AssocTestResult-class), 10
AssocTestResult-class, 10
AssocTestResultRanges, 7-9, 16, 17, 32, 33,
36-40, 42, 43,51, 52,61, 62
AssocTestResultRanges
(AssocTestResultRanges-class),
11
AssocTestResultRanges-class, 11

b36Unmasked (unmasked-datasets), 54
b37Unmasked (unmasked-datasets), 54
betaWeights (weightFuncs), 59

c,AssocTestResultRanges-method
(AssocTestResultRanges-class),
11

class:AssocTestResult
(AssocTestResult-class), 10

d class:AssocTestResultRanges

(AssocTestResultRanges-class),
11
class:GenotypeMatrix
(GenotypeMatrix-class), 18
class:NullModel (NullModel-class), 29
class:VariantInfo (VariantInfo-class),
58
coefficients,NullModel-method
(NullModel-class), 29
colnames, I8
computeKernel, 7, 9, 14, 61, 62

dbeta, 59, 60

INDEX

dgCMatrix, 18, 19, 21-23

elementMetadata, 12
eSet, 21, 23

filterResult, 9, 13, 62

filterResult (filterResult-methods), 16

filterResult,AssocTestResultRanges-method
(filterResult-methods), 16

filterResult,GRanges-method
(filterResult-methods), 16

filterResult,GRangesList-method
(filterResult-methods), 16

filterResult-methods, 16

GenotypeMatrix, 5,7, 9, 14, 15, 19, 20, 22
23, 36-38, 40, 4345, 51, 60-62

GenotypeMatrix (GenotypeMatrix-class),
18

genotypeMatrix, 18, 19, 59

genotypeMatrix
(genotypeMatrix-methods), 20

genotypeMatrix,ANY, character,missing-method

(genotypeMatrix-methods), 20
genotypeMatrix,ANY, GRanges,missing-method
(genotypeMatrix-methods), 20
genotypeMatrix,ANY,missing,missing-method
(genotypeMatrix-methods), 20

genotypeMatrix,ANY,numeric,character-method

(genotypeMatrix-methods), 20

genotypeMatrix,eSet,character,character-method

(genotypeMatrix-methods), 20

genotypeMatrix,eSet,character,missing-method

(genotypeMatrix-methods), 20

genotypeMatrix,eSet,numeric,character-method

(genotypeMatrix-methods), 20
GenotypeMatrix-class, 18
genotypeMatrix-methods, 20
glm, 27-29
GRanges, 5, 12, 13, 16, 17, 21-25, 34, 36-38,

44,46, 49-51, 53, 55, 56, 58, 59, 61,

62
GRangeslList, 5, 6, 16, 17, 34, 53-57, 62

hg18Unmasked (unmasked-datasets), 54
hg19Unmasked (unmasked-datasets), 54
hg38Unmasked (unmasked-datasets), 54
hgA, 24
hsv, 37

65

invSdWeights (weightFuncs), 59

length,NullModel-method
(NullModel-class), 29

Im, 27-29

logisticWeights (weightFuncs), 59

MAF (VariantInfo-class), 58

MAF , GenotypeMatrix-method
(GenotypeMatrix-class), 18

MAF,VariantInfo-method
(VariantInfo-class), 58

makePSOCKcluster, 6

MaskedBSgenome, 34, 56

Matrix, /4

mcols, 12

method: genotypeMatrix
(genotypeMatrix-methods), 20

method: readGenotypeMatrix
(readGenotypeMatrix-methods),
43

method:readVariantInfo
(readVariantInfo-methods), 48

names,NullModel-method
(NullModel-class), 29
NullModel, 5, 7-9, 28, 29, 40, 61, 62
NullModel (NullModel-class), 29
nullModel, 3, 5, 7-9, 25, 29-31, 62
nullModel, formula,data.frame-method
(nullModel), 25
nullModel, formula,missing-method
(nullModel), 25
nullModel,matrix, factor-method
(nullModel), 25
nullModel,matrix,numeric-method
(nullModel), 25
nullModel,missing, factor-method
(nullModel), 25
nullModel,missing, numeric-method
(nullModel), 25
NullModel-class, 29
nullModel-methods (nullModel), 25

p.adjust, 9, 12, 17, 32, 33,62

p.adjust (p.adjust-methods), 32

p.adjust,AssocTestResul tRanges-method
(p.adjust-methods), 32

p.adjust-methods, 32

66 INDEX

p.adjust.methods, 32 readGenotypeMatrix, 8, 9, 18, 19, 50, 59
partitionRegions, 25 readGenotypeMatrix
partitionRegions (readGenotypeMatrix-methods),

(partitionRegions-methods), 33 43
partitionRegions,GRanges-method readGenotypeMatrix,character,GRanges-method

(partitionRegions-methods), 33 (readGenotypeMatrix-methods),
partitionRegions,GRangesList-method 43

(partitionRegions-methods), 33 readGenotypeMatrix, character,missing-method
partitionRegions,MaskedBSgenome-method (readGenotypeMatrix-methods),

(partitionRegions-methods), 33 43
partitionRegions-methods, 33 readGenotypeMatrix,TabixFile,GRanges-method
plot, 9, 13, 35, 37,42 (readGenotypeMatrix-methods),
plot,AssocTestResultRanges, character-method 43

(plot), 35 readGenotypeMatrix,TabixFile,missing-method
plot,AssocTestResultRanges, GRanges-method (readGenotypeMatrix-methods),

(plot), 35 43
plot,AssocTestResultRanges,missing-method readGenotypeMatrix-methods, 43

(plot), 35 readRegionsFromBedFile, 46
plot,GenotypeMatrix, factor-method readSampleNamesFromVcfHeader, 47

(plot), 35 readVariantInfo, 58, 59
plot,GenotypeMatrix,missing-method readVariantInfo

(plot), 35 (readVariantInfo-methods), 48
plot,GenotypeMatrix,numeric-method readVariantInfo,character,GRanges-method

(plot), 35 (readVariantInfo-methods), 48
plot,GRanges, character-method (plot), 35 readVariantInfo,character,missing-method
plot-methods (plot), 35 (readVariantInfo-methods), 48
plot.default, 37 readVariantInfo,TabixFile, GRanges-method
podkat (podkat-package), 3 (readvariantInfo-methods), 48
podkat-package, 3 readVariantInfo,TabixFile,missing-method
pOiht5’36»37 (readVariantInfo-methods), 48
pp91nts,42 readVariantInfo-methods, 48
print, 13 residuals,NullModel-method
print (print-methods), 39 (NullModel-class), 29
print,AssocTestResultRanges-method reb, 37

(print-methods), 39
print-methods, 39
pseudoautosomal, 55, 57
pseudoautosomal.hgl8, 55, 56
pseudoautosomal.hgl9, 55, 56

rownames, /8
Rsamtools, 48

scanBcfHeader, 48

pseudoautosomal . hg38, 55, 56 Seginfo, 46
show, AssocTestResult-method

qaplot, 9, 13,41, 42 (AssocTestResult-class), 10
agplot,AssocTestResultRanges,AssocTestResul tRahg¥sAmeeabastResul tRanges-method

(qgplot), 41 (AssocTestResultRanges-class),
qgplot,AssocTestResultRanges,missing-method 11

(qaplot), 41 show, GenotypeMatrix-method
ggplot-methods (qgplot), 41 (GenotypeMatrix-class), 18

show, NullModel-method
read.table, 46, 47 (NullModel-class), 29

INDEX

show, VariantInfo-method
(VariantInfo-class), 58

SnpSet, 23

SOCKcluster, 6, 8

sort, /3

sort (sort-methods), 51

sort,AssocTestResultRanges-method
(sort-methods), 51

sort-methods, 51

split (split-methods), 53

split,GRanges,GRangesList-method
(split-methods), 53

split-methods, 53

summary,VariantInfo-method
(VariantInfo-class), 58

TabixFile, 5,7,44,48, 49, 61, 62
text, 37

unmasked-datasets, 54
unmaskedRegions, 34, 55, 56

VariantInfo, I8, 19, 48, 50
VariantInfo (VariantInfo-class), 58
variantInfo (VariantInfo-class), 58
variantInfo,GenotypeMatrix-method
(GenotypeMatrix-class), 18
variantInfo,GRanges-method
(VariantInfo-class), 58
variantInfo,missing-method
(VariantInfo-class), 58
VariantInfo-class, 58

weightFuncs, 5, 9, 59

weights, 61

weights,AssocTestResult-method
(weights), 61

weights,AssocTestResultRanges-method
(weights), 61

weights-methods (weights), 61

67

	podkat-package
	assocTest
	AssocTestResult-class
	AssocTestResultRanges-class
	computeKernel
	filterResult-methods
	GenotypeMatrix-class
	genotypeMatrix-methods
	hgA
	nullModel
	NullModel-class
	p.adjust-methods
	partitionRegions-methods
	plot
	print-methods
	qqplot
	readGenotypeMatrix-methods
	readRegionsFromBedFile
	readSampleNamesFromVcfHeader
	readVariantInfo-methods
	sort-methods
	split-methods
	unmasked-datasets
	unmaskedRegions
	VariantInfo-class
	weightFuncs
	weights
	Index

