Package ‘msPurity’

November 3, 2025
Type Package

Title Automated Evaluation of Precursor Ion Purity for Mass
Spectrometry Based Fragmentation in Metabolomics

Version 1.37.0
Date 2024-05-09

URL https://github.com/computational-metabolomics/msPurity/

Description msPurity R package was developed to:
1) Assess the spectral quality of fragmentation spectra by evaluating the * * precursor ion purity".
2) Process fragmentation spectra.
3) Perform spectral matching.
What is precursor ion purity? -What we call * * Precursor ion purity" is a measure of the
contribution of a selected precursor peak in an isolation window used for fragmentation.
The simple calculation involves dividing the intensity of the selected precursor peak by the
total intensity of the isolation window. When assessing MS/MS spectra this calculation is
done before and after the MS/MS scan of interest and the purity is interpolated at the
recorded time of the MS/MS acquisition. Additionally, isotopic peaks can be removed,
low abundance peaks are removed that are thought to have limited contribution to the
resulting MS/MS spectra and the isolation efficiency of the mass spectrometer can be used
to normalise the intensities used for the calculation.

Encoding UTF-8
License GPL-3 + file LICENSE
LazyData TRUE

BugReports https://github.com/computational-metabolomics/msPurity/issues/new
Depends Rcpp

Imports plyr, dplyr, dbplyr, magrittr, foreach, parallel, doSNOW,
stringr, mzR, reshape?2, fastcluster, ggplot2, DBI, RSQLite

Suggests MSnbase, testthat, xcms, BiocStyle, knitr, rmarkdown,
msPurityData, CAMERA, RPostgres, RMySQL

VignetteBuilder knitr
RoxygenNote 7.3.1
Roxygen list(markdown = TRUE)

https://github.com/computational-metabolomics/msPurity/
https://github.com/computational-metabolomics/msPurity/issues/new

2 Contents

biocViews MassSpectrometry, Metabolomics, Software

Collate 'all-generics.R' 'averaging.R' 'combineAnnotations.R'
'create-database.R' 'createDatabase.R' 'flag-filter-remove.R’
'iw-norm.R' 'matching-algs.R' 'meta_extract.R' 'msPurity.R’
'pcalc.R’ 'purityA-O-class.R' 'purity A-av-spectra.R’

"purity A-constructor.R' ‘purity A-create-msp.R’

'purity A-filter-frag-spectra.R' 'purity A-frag4feature.R’'
"purityA-validate.R' 'purityD-class.R' 'purityD-constructor.R’
"purityD-av-spectra.R' 'purityD-dims-purity.R’
'purityD-fileList.R' 'purityD-filterp.R' "purityD-subtract.R’
"purityD-writeOut.R' 'purityX-class.R' ‘purityX-constructor.R'
'spectral-matching.R' 'spectralMatching.R' 'splinepurity.R’

git_url https://git.bioconductor.org/packages/msPurity
git_branch devel

git_last_commit dc13d89

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-11-02

Author Thomas N. Lawson [aut, cre] (ORCID:
<https://orcid.org/0000-0002-5915-7980>),
Ralf Weber [ctb],
Martin Jones [ctb],
Julien Saint-Vanne [ctb],
Andris Jankevics [ctb],
Mark Viant [ths],
Warwick Dunn [ths]

Maintainer Thomas N. Lawson <thomas.nigel.lawson@gmail.com>

Contents
assessPuritySingle oL 3
averageAllFragSpectra,purityA-method 0oL 5
averagelnterFragSpectra,purityA-method 0oL 7
averagelntraFragSpectra,purityA-method L. 10
averageSpectra,purityD-method L L L 12
averageSpectraSingle L. 14
combineAnnotationso e e e e 16
createDatabase 18
createMSPpurityA-method 20
create_database e 22
dimsPredictPurity,purityD-method oL oo 23
dimsPredictPuritySingle 25
filterFragSpectra,purityA-method Lo oL 26
filterp,purityD-method 28

flag_remove 29

https://orcid.org/0000-0002-5915-7980

assessPuritySingle 3

Index

fragdfeature,purityA-method 31
Getfiles L e 34
getPpurityD-method L 35
get_additional_mzml_meta 36
groupPeaks,purityD-method L Lo 36
groupPeaksEXo 37
initialize,purityD-method 38
IWNOrmGauss o oo e 39
iwNormQE.S e e e 40
iwNormRcosine 40
msPurity e e 41
pealc . . .o e e e 42
PULItYA . . . L e 43
purityD-class L 47
PULItYX . o 48
show,purityA-method 49
show,purityD-method 50
show,purityX-method 50
spectralMatching e e 51
spectral_matching L e 57
subtract,purityD-methodo oL o 59
subtractMZ L e e e e 60
validate,purityA-method 61
writeOut,purityD-method 61

63

assessPuritySingle Assess the purity of a single LC-MS/MS or DI-MS/MS file

Description

Given a filepath to an mzML file the precursor purity for any MS/MS scans will be outputed into a
dataframe

Usage

assessPuritySingle(

filepth,

fileid = NA,
mostIntense = FALSE,
nearest = TRUE,
offsets = NA,

cores =1,

plotP = FALSE,
plotdir = NULL,
interpol = "linear”,
iwNorm = FALSE,

4 assessPuritySingle
iwNormFun = NULL,
ilim = o,
mzRback = "pwiz",
isotopes = TRUE,
im = NULL,
ppmInterp = 7
)
Arguments
filepth character; mzML file path for MS/MS spectra
fileid numeric; adds a fileid column (primarily for internal use for msPurity)
mostIntense boolean; True if the most intense peak is used for calculation. False if the cen-
tered peak is used
nearest boolean; True if the peak selected is as the nearest MS1 scan. If False then the
preceding scan is used
offsets vector; Overide the isolation offsets found in the mzML filee.g. c¢(0.5, 0.5)
cores numeric; Number of cores to use
plotP boolean; If TRUE a plot of the purity is to be saved
plotdir vector; If plotP is TRUE plots will be saved to this directory
interpol character; Type of interolation to be performed "linear", "spline" or "none"
iwNorm boolean; If TRUE then the intensity of the isolation window will be normalised
based on the iwNormFun function
iwNormFun function; A function to normalise the isolation window intensity. The default
function is very generalised and just accounts for edge effects
ilim numeric; All peaks less than this percentage of the target peak will be removed
from the purity calculation, default is 5% (0.05)
mzRback character; Backend to use for mzR parsing
isotopes boolean; TRUE if isotopes are to be removed
im matrix; Isotope matrix, default removes C13 isotopes (single, double and triple
bonds)
ppmInterp numeric; Set the ppm tolerance for the precursor ion purity interpolation. i.e.
the ppm tolerence between the precursor ion found in the neighbouring scans.
Value
a dataframe of the purity score of the ms/ms spectra
See Also
purityA
Examples

filepth <- system.file("extdata”, "lcms"”, "mzML", "LCMSMS_1.mzML", package="msPurityData")

puritydf <- assessPuritySingle(filepth)

averageAllFragSpectra,purity A-method 5

averageAllFragSpectra,purityA-method
Using a purityA object, average and filter MS/MS spectra for each
XCMS feature within and across MS data files (ignoring intra and inter
relationships)

Description

General

Average and filter fragmentation spectra for each XCMS feature within and across MS data files
(ignoring intra and inter relationships).

The averaging is performed using hierarchical clustering of the m/z values of each peaks, where
m/z values within a set ppm tolerance will be clustered. The clustered peaks are then averaged (or
summed).

The fragmentation can be filtered on the averaged spectra (with the arguments snr, rsd, minfrac, ra)

Example LC-MS/MS processing workflow

* Purity assessments
— (mzML files) -> purityA -> (pa)
e XCMS processing

— (mzML files) -> xcms.findChromPeaks -> (optionally) xcms.adjustRtime -> xcms.groupChromPeaks
-> (xcmsObj)

— — Older versions of XCMS — (mzML files) -> xcms.xcmsSet -> xcms.group -> xcms.retcor
-> xcms.group -> (xemsObj)

» Fragmentation processing

— (xcmsObj, pa) -> fragdfeature -> filterFragSpectra -> averageAllFragSpectra -> create-
Database -> spectralMatching -> (sqlite spectral database)

Usage

S4 method for signature 'purityA'
averageAllFragSpectra(

pa,

minfrac = 0.5,
minnum = 1,
ppm = 5,

snr = 0,

ra =0,

av = "median”,
sumi = TRUE,
rmp = FALSE,
cores =1

6 averageAllFragSpectra,purityA-method

Arguments
pa object; purityA object
minfrac numeric;minimum ratio of the peak fraction (peak count / total peaks) across all
(ignoring intra and inter relationships)
minnum numeric; minimum number of times peak is present across all fragmentation
spectra (ignoring intra and inter relationships)
ppm numeric; ppm threshold to average across all scans (ignoring intra and inter
relationships)
snr numeric; minimum signal-to-noise of the peak across all (ignoring intra and
inter relationships)
ra numeric; minimum relative abundance of the peak fraction across all (ignoring
intra and inter relationships)
av character; type of averaging to use (median or mean)
sumi boolean; TRUE if the intensity for each peak is summed across averaged spectra
rmp boolean; TRUE if peaks are to be removed that do not meet the threshold criteria.
Otherwise they will just be flagged
cores numeric; Number of cores for multiprocessing
Value

Returns a purityA object (pa) with the following slots now with data
* pa@av_spectra: the average spectra is recorded here stored as a list. E.g. pa@av_spectra1av_all
would give the average spectra for grouped feature 1.

* pa@av_all_params: The parameters used are recorded here
Each spectra in the av_spectra list contains the following columns:

* cl: id of clustered (averaged) peak

* mz: average m/z

* i: average intensity

* snr: average signal to noise ratio

* rsd: relative standard deviation

 count: number of clustered peaks

* total: total number of potential scans to be used for averaging
* inPurity: average precursor ion purity

* ra: average relative abundance

* frac: the fraction of clustered peaks (e.g. the count/total)
 snr_pass_flag: TRUE if snr threshold criteria met

* minfrac_pass_flag: TRUE if minfrac threshold criteria

* ra_pass_flag: TRUE if ra threshold criteria met

* pass_flag: TRUE if all threshold criteria met

averagelnterFragSpectra,purityA-method 7

Examples

XCMS
Read in MS data

#msmsPths <- list.files(system.file("extdata”, "lcms”, "mzML",

package="msPurityData"”), full.names = TRUE, pattern = "MSMS")
#ms_data = readMSData(msmsPths, mode = 'onDisk', msLevel. = 1)

Find peaks in each file
#cwp <- CentWaveParam(snthresh = 5, noise = 100, ppm = 10, peakwidth = c(3, 30))
#xcmsObj <- xcms::findChromPeaks(ms_data, param = cwp)

Optionally adjust retention time
#xcmsObj <- adjustRtime(xcmsObj , param = ObiwarpParam(binSize = 0.6))

Group features across samples
#pdp <- PeakDensityParam(sampleGroups = c(1, 1), minFraction = @, bw = 30)
#xcmsObj <- groupChromPeaks(xcmsObj , param = pdp)

#====== msPurity
#pa <- purityA(msmsPths)

#pa <- frag4feature(pa, xcmsObj)
#pa <- filterFragSpectra(pa)
#pa <- averageAllFragSpectra(pa)

Run from previously generated data

pa <- readRDS(system.file("extdata”, "tests", "purityA”,
"3_filterFragSpectra_pa.rds”, package="msPurity"))

pa <- averageAllFragSpectra(pa)

averagelnterFragSpectra,purityA-method
Using a purityA object, average and filter fragmentation spectra for
each XCMS feature across multiple MS data files

Description

General

Average and filter fragmentation spectra for each XCMS feature across MS data files. This can only
be run after averageIntraFragSpectra has been used.

The averaging is performed using hierarchical clustering of the m/z values of each peaks, where
m/z values within a set ppm tolerance will be clustered. The clustered peaks are then averaged (or
summed).

The fragmentation can be filtered on the averaged spectra (with the arguments snr, rsd, minfrac and
ra)

Example LC-MS/MS processing workflow

8 averagelnterFragSpectra,purityA-method

* Purity assessments
— (mzML files) -> purityA -> (pa)
* XCMS processing

— (mzML files) -> xcms.findChromPeaks -> (optionally) xcms.adjustRtime -> xcms.groupChromPeaks
-> (xcmsObj)

— — Older versions of XCMS — (mzML files) -> xcms.xcmsSet -> xcms.group -> xcms.retcor
-> xcms.group -> (xcmsObj)

» Fragmentation processing

— (xcmsObj, pa) -> fragdfeature -> filterFragSpectra -> averagelntraFragSpectra -> aver-
agelnterFragSpectra -> createDatabase -> spectralMatching -> (sqlite spectral database)

Usage

S4 method for signature 'purityA'
averagelnterFragSpectra(

pa,
minfrac = 0.5,
minnum = 1,
ppm = 5,
snr = 0,
ra =29,
av = "median”,
sumi = TRUE,
rmp = FALSE,
cores = 1
)
Arguments
pa object; purityA object
minfrac numeric; minimum ratio of the peak fraction (peak count / total peaks) across
files
minnum numeric; minimum number of times peak is present across fragmentation spec-
tra across files
ppm numeric; ppm threshold to average across files
snr numeric; minimum signal-to-noise of the peak across files
ra numeric; minimum relative abundance of the peak across files
av character; type of averaging to use (median or mean)
sumi boolean; TRUE if the intensity for each peak is summed across averaged spectra
rmp boolean; TRUE if peaks are to be removed that do not meet the threshold criteria.

Otherwise they will just be flagged

cores numeric; Number of cores for multiprocessing

averagelnterFragSpectra,purity A-method 9

Value
Returns a purityA object (pa) with the following slots now with data
* pa@av_spectra: the average spectra is recorded here stored as a list. e.g. "pa@av_spectra1av_inter"
would give the average spectra for grouped feature 1

* pa@av_intra_params: The parameters used are recorded here
Each spectra in the av_spectra list contains the following columns: *

* cl: id of clustered (averaged) peak

* mz: average m/z

* i: average intensity

* snr: average signal to noise ratio

* rsd: relative standard deviation

 count: number of clustered peaks

* total: total number of potential scans to be used for averaging
* inPurity: average precursor ion purity

* ra: average relative abundance

* frac: the fraction of clustered peaks (e.g. the count/total)
» snr_pass_flag: TRUE if snr threshold criteria met

* minfrac_pass_flag: TRUE if minfrac threshold criteria

* ra_pass_flag: TRUE if ra threshold criteria met

* pass_flag: TRUE if all threshold criteria met

Examples

XCMS
Read in MS data

#msmsPths <- list.files(system.file("extdata”, "lcms", "mzML",

package="msPurityData"”), full.names = TRUE, pattern = "MSMS")
#ms_data = readMSData(msmsPths, mode = 'onDisk', msLevel. = 1)

Find peaks in each file
#tcwp <- CentWaveParam(snthresh = 5, noise = 100, ppm = 10, peakwidth = c(3, 30))
#xcmsObj <- xcms::findChromPeaks(ms_data, param = cwp)

Optionally adjust retention time
#xcmsObj <- adjustRtime(xcmsObj , param = ObiwarpParam(binSize = 0.6))

Group features across samples
#pdp <- PeakDensityParam(sampleGroups = c(1, 1), minFraction = @, bw = 30)
#xcmsObj <- groupChromPeaks(xcmsObj , param = pdp)

#====== msPurity
#pa <- purityA(msmsPths)

#pa <- frag4feature(pa, xcmsObj)
#pa <- averagelntraFragSpectra(pa)

10 averagelntraFragSpectra,purityA-method

#pa <- averagelnterFragSpectra(pa)

Run from previously generated data

pa <- readRDS(system.file("extdata”, "tests", "purityA”,
"4_averagelntraFragSpectra_no_filter_pa.rds"”,
package="msPurity"))

pa <- averagelnterFragSpectra(pa)

averagelntraFragSpectra,purityA-method

Using a purityA object, average and filter fragmentation spectra for
each XCMS feature within a MS data file

Description

General
Average and filter fragmentation spectra for each XCMS feature within a MS data file.

The averaging is performed using hierarchical clustering of the m/z values of each peaks, where
m/z values within a set ppm tolerance will be clustered. The clustered peaks are then averaged (or
summed).

The fragmentation can be filtered on the averaged spectra (with the arguments snr, rsd, minfrac and
ra)

Example LC-MS/MS processing workflow

* Purity assessments
— (mzML files) -> purityA -> (pa)
* XCMS processing
— (mzML files) -> xcms.xcmsSet -> xcms.merge -> XCms.group -> XCms.retcor -> Xcms.group
-> (xcmsObj)
* XCMS processing (version >= 3)

— (mzML files) -> MSnBase.readMSdata -> xcms.findChromPeaks -> xcms.groupChromPeaks-
> xcms.adjustRtime -> xcms.groupChromPeaks -> (xcmsObj)

» Fragmentation processing

— (xcmsObj, pa) -> fragdfeature -> filterFragSpectra -> averagelntraFragSpectra -> aver-
agelntraFragSpectra -> createDatabase -> spectralMatching -> (sqlite spectral database)

Usage

S4 method for signature 'purityA'
averagelntraFragSpectra(

pa,

minfrac = 0.5,

minnum = 1,

ppm = 5,

averagelntraFragSpectra,purityA-method 11

snr = 0,
ra =29,
av = "median”,
sumi = TRUE,
rmp = FALSE,
cores = 1
)
Arguments
pa object; purityA object
minfrac numeric; minimum ratio of the peak fraction (peak count / total peaks) within
each file
minnum numeric; minimum number of times peak is present across fragmentation spec-
tra within each file
ppm numeric; ppm threshold to average within each file
snr numeric; minimum signal-to-noise of the peak within each file
ra numeric; minimum relative abundance of the peak within each file
av character; type of averaging to use (median or mean)
sumi boolean; TRUE if the intensity for each peak is summed across averaged spectra
rmp boolean; TRUE if peaks are to be removed that do not meet the threshold criteria.
Otherwise they will just be flagged
cores numeric; Number of cores for multiprocessing
Value

Returns a purityA object (pa) with the following slots now with data
* pa@av_spectra: the average spectra is recorded here stored as a list. e.g. "pa@av_spectra1av_intra$1"
would give the average spectra for grouped feature 1 and for file 1.

* pa@av_intra_params: The parameters used are recorded here
Each spectra in the av_spectra list contains the following columns:

e cl: id of clustered (averaged) peak

* mz: average m/z

* i: average intensity

* snr: average signal to noise ratio

* rsd: relative standard deviation

* count: number of clustered peaks

* total: total number of potential scans to be used for averaging
* inPurity: average precursor ion purity

* ra: average relative abundance

* frac: the fraction of clustered peaks (e.g. the count/total)

12 averageSpectra,purityD-method

 snr_pass_flag: TRUE if snr threshold criteria met

* minfrac_pass_flag: TRUE if minfrac threshold criteria
* ra_pass_flag: TRUE if ra threshold criteria met

* pass_flag: TRUE if all threshold criteria met

Examples

XCMS
Read in MS data

#msmsPths <- list.files(system.file("extdata”, "lcms”, "mzML",

package="msPurityData"”), full.names = TRUE, pattern = "MSMS")
#ms_data = readMSData(msmsPths, mode = 'onDisk', msLevel. = 1)

Find peaks in each file
#cwp <- CentWaveParam(snthresh = 5, noise = 100, ppm = 10, peakwidth = c(3, 30))
#xcmsObj <- xcms::findChromPeaks(ms_data, param = cwp)

Optionally adjust retention time
#xcmsObj <- adjustRtime(xcmsObj , param = ObiwarpParam(binSize = 0.6))

Group features across samples
#pdp <- PeakDensityParam(sampleGroups = c(1, 1), minFraction = @, bw = 30)
#xcmsObj <- groupChromPeaks(xcmsObj , param = pdp)

#====== msPurity
#pa <- purityA(msmsPths)

#pa <- fragd4feature(pa, xcmsObj)
#pa <- averagelntraFragSpectra(pa)

Run from previously generated data (where class is 'XCMSnExp'):

pa <- readRDS(system.file("extdata”, "tests", "purityA”,
"2_fragdfeature_pa.rds”, package="msPurity"))

pa <- averagelntraFragSpectra(pa)

averageSpectra,purityD-method
Using purityD object, calculates to average mz, intensity and signal-
to-noise of multiple scans from multiple MS datafiles (mzML or .csv)

Description

Uses a purityD object with references to multiple MS files. For each file: Averages multiple scans
together, see averageSpectraSingle for more information

Usage

S4 method for signature 'purityD'
averageSpectra(

averageSpectra,purityD-method

Object,

rtscn = "all”,
scanRange = NA,
timeRange = NA,
clustType = "hc",
ppm = 1.5,

snthr = 3,

av = "median”,
missingV = "zero",
minfrac = 0.6667,
normTIC = FALSE,

13

snMeth = "median”
)
Arguments

Object object; purityD object

rtscn character; Whether it is scans or retention time to be filtered. Use "all" if all
scans to be used. [’rt’, scns’, "all’]

scanRange vector; Scan range (if rtscn="scns’) e.g. c(40, 69)

timeRange vector; Time range (if rtscn="rt) e.g. c(10.3, 400.8) (only if using mzML file)

clustType character; Type of clustering used either Hierarchical or just simple 1D grouping
[’he’, *simple’]

ppm numeric; The ppm error to cluster mz together

snthr numeric; Signal to noise ratio threshold

av character; What type of averaging to do between peaks

missingV character; What to do with missing values (zero or ignore)

minfrac numeric; Min fraction of scans with a grouped peak to be an accepted averaged
peak

normTIC boolean; If TRUE then RSD calculation will use the normalised intensity (in-
tensity divided by TIC) if FALSE will use standard intensity

snMeth character; Type of snMethod to use ['mean’, 'median’, *precalc’]. Precalc only
applicable when using the csvFile parameter as TRUE

Value

purityD object with averaged spectra

See Also

averageSpectraSingle

14 averageSpectraSingle

Examples

datapth <- system.file("extdata”, "dims”, "mzML", package="msPurityData")
inDF <- Getfiles(datapth, pattern=".mzML", check = FALSE, cStrt = FALSE)
ppDIMS <- purityD(fileList=inDF, cores=1, mzML=TRUE)

ppDIMS <- averageSpectra(ppDIMS)

averageSpectraSingle Calculates to average mz, intensity and signal-to-noise of multiple
scans from 1 MS datafile (mzML or .csv)

Description

Averages multiple scans of mass spectrometry data together. Each scan consisting of a minimum of
intensity and mz values.

Works for either mzML or a .csv file consisting of mz, i, scanid, (optional: noise, backgroun, snr)

Signal-to-noise (SNR) can be calculated a number of ways. Default is to calculate the SN for every
scan as the "Intensity of peak / the median intensity of the scan".

Alternatively if using a .csv file as input (and assigning the csvFile parameter to TRUE), a precal-
culated SNR can be one of the columns. The precalculated SNR can then be chosen by using the
option ’precalc’ for the parameter snMethod

The function will work for both LC-MS or DI-MS datasets.

Usage
averageSpectraSingle(
filePth,
rtscn = "all”,

scanRange = NA,
timeRange = NA,
clustType = "hc",
ppm = 1.5,

snthr = 3,

cores = 1,

av = "median”,
missingV = "ignore",
minfrac = 0.6667,
snMeth = "median”,
csvFile = FALSE,
normTIC = FALSE,
mzRback = "pwiz",
MSFileReader = FALSE

averageSpectraSingle 15
Arguments
filePth character; Path of the file to be processed
rtscn character; Whether it is scans or retention time to be filtered. Use "all" if all
scans to be used. [’rt’, ’scns’, ’all’]
scanRange vector; Scan range (if rtscn="scns’) e.g. c(40, 69)
timeRange vector; Time range (if rtscn="rt) e.g. c(10.3, 400.8) (only if using mzML file)
clustType character; Type of clustering used either Hierarchical or just simple 1D grouping
[’he’, ’simple’]
ppm numeric; The ppm error to cluster mz together
snthr numeric; Signal to noise ratio threshold
cores numeric; Number of cores used to perform Hierarchical clustering WARNING:
memory intensive, default 2
av character; What type of averaging to do between peaks
missingV character; What to do with missing values (zero or ignore)
minfrac numeric; Min fraction of scans with a grouped peak to be an accepted averaged
peak
snMeth character; Type of snMethod to use ['mean’, 'median’, *precalc’]. Precalc only
applicable when using the csvFile parameter as TRUE
csvFile boolean; A csv file can be used as input. Useful for thermo files where the
MSFileReader API can extract peaklist. This can consist of an .csv file with the
following columns c¢('mz’, ’i’, ’scanid’, ’snr’)
normTIC boolean; If TRUE then RSD calculation will use the normalised intensity (in-
tensity divided by TIC) if FALSE will use standard intensity
mzRback character; Backend to use for mzR parsing
MSFileReader boolean; Deprecapted. Use csvFile parameter
Value

dataframe of the median mz, intensity, signal-to-noise ratio.

Examples

mzmlPth <- system.file("extdata”, "dims", "mzML", "B@2_Daph_TEST_pos.mzML", package="msPurityData")
avP <- averageSpectraSingle(mzmlPth)

16 combineAnnotations

combineAnnotations Combine Annotations

Description

Combine the annotation results from msPurity spectral matching, MetFrag, Sirius CSI:FingerID,
probmetab and any generic MS1 lookup software (e.g. results from the BEAMS software)

The annotation results are then aligned by inchikey and XCMS grouped feature.

The tool has to be run with a local compound database (available on request - contact t.n.lawson @bham.ac.uk)

Usage

combineAnnotations(
sm_resultPth,
compoundDbPth,
metfrag_resultPth = NA,
sirius_csi_resultPth = NA,
probmetab_resultPth = NA,
ms1_lookup_resultPth = NA,
ms1_lookup_dbSource = "hmdb",
ms1_lookup_checkAdducts = FALSE,
ms1_lookup_keepAdducts = c("[M+HI+", "[M-HI-"),
weights = list(sm = 0.3, metfrag = 0.2, sirius_csifingerid = 0.2, probmetab = 0,
ms1_lookup = 0.05, biosim = 0.25),
compoundDbType = "sqglite",
compoundDbName = NA,
compoundDbHost = NA,
compoundDbPort = NA,
compoundDbUser = NA,
compoundDbPass = NA,

outPth = NA,
summaryOutput = TRUE
)
Arguments

sm_resultPth character; Path to the msPurity SQLite database used for spectral matching

compoundDbPth character; Path to local compound database with pubchem, hmdb, KEGG and
metab_compound summary table (full database available on request - contact
t.n.lawson@bham.ac.uk). This is only applicable if using "compoundDbType
sqlite")

metfrag_resultPth
character; Path to the tsv table of metfrag results

sirius_csi_resultPth
character; Path to the tsv table of Sirius CSI:Finger ID results

combineAnnotations 17

probmetab_resultPth

character; Path to the tsv table of Probmetab results
ms1_lookup_resultPth

character; Path to generic tsv table of MS1 lookup results

ms1_lookup_dbSource
character; Source of the compound database used for ms1_lookup (currently
only supports HMDB, KEGG or PubChem)
ms1_lookup_checkAdducts
boolean; Check if adducts match to those found in CAMERA (requires the
database to have been created with CAMERA object)
ms1_lookup_keepAdducts

vecotr; Keep only adducts found from the MS1 lookup that are found in this
vector

weights list;

compoundDbType character; Database type for compound database can be either (sqlite, postgres
or mysql)

compoundDbName character; Database name (only applicable for postgres and mysql)
compoundDbHost character; Database host (only applicable for postgres and mysql)
compoundDbPort character; Database port (only applicable for postgres and mysql)
compoundDbUser character; Database user (only applicable for postgres and mysql)

compoundDbPass character; Database pass (only applicable for postgres and mysql) - Note this is
not secure!

outPth character;

summaryOutput boolean; If a summary dataframe is to be created

Value

purityA object with slots for fragmentation-XCMS links

Examples

metfrag_resultPth <- system.file("extdata”, "tests”, "external_annotations”,
"metfrag.tsv”, package="msPurity")
run the standard spectral matching workflow to get the sm_resultPth
sm_resultPth <- system.file("extdata”,"tests"”, "sm",
"spectralMatching_result.sqlite”, package="msPurity")
compoundDbPth <- system.file("extdata”, "tests”, "db",
"metab_compound_subset.sqlite"”, package="msPurity")
combined <- combineAnnotations(sm_resultPth,
metfrag_resultPth,
outPth=file.path(tempdir(), 'combined.sqlite'),
compoundDbPth=compoundDbPth)

n

18 createDatabase

createDatabase Create database

Description

General

Create an SQLite database of an LC-MS(/MS) experiment (replaces the create_database function).
Schema details can be found here.

Example LC-MS/MS processing workflow

* Purity assessments
— (mzML files) -> purityA -> (pa)
* XCMS processing

— (mzML files) -> xcms.findChromPeaks -> (optionally) xcms.adjustRtime -> xcms.groupChromPeaks
-> (xcmsObj)

— — Older versions of XCMS — (mzML files) -> xcms.xcmsSet -> xcms.group -> xcms.retcor
-> xcms.group -> (xcmsObj)

* Fragmentation processing

— (xcmsObj, pa) -> fragdfeature -> filterFragSpectra -> averageAllFragSpectra -> create-
Database -> spectralMatching -> (sqlite spectral database)

Usage

createDatabase(
pa,
xcmsObj,
xsa = NULL,
outDir = ".",
grpPeaklist = NA,
dbName = NA,
metadata = NA,
xset = NA

Arguments

pa purityA object; Needs to be the same used for fragdfeature function

xcmsObj xcms object of class XCMSnExp or xcmsSet; Needs to be the same used for
fragdfeature function (this will be ignored when using xsa parameter)

Xsa CAMERA object (optional); if CAMERA object is used, we ignore the xset
parameter input and obtain all information from the xset object nested with the
CAMERA xsa object. Adduct and isotope information will be included into the
database when using this parameter. The underlying xset object must be the one
used for the fragdfeature function

https://bioconductor.org/packages/release/bioc/vignettes/msPurity/inst/doc/msPurity-spectral-datatabase-schema.html

createDatabase 19

outDir character; Out directory for the SQLite result database

grpPeaklist dataframe (optional); Can use any peak dataframe. Still needs to be derived
from the xset object though

dbName character (optional); Name of the result database
metadata list; A list of metadata to add to the s_peak_meta table
xset xcms object of class XCMSnExp or xcmsSet; (Deprecated - if provided, will

replace variable ’obj’)

Value

path to SQLite database and database name

Examples

library(xcms)
library(MSnbase)
library(magrittr)
XCMS
Read in MS data
msmsPths <- list.files(system.file("extdata”, "lcms", "mzML",
package="msPurityData"), full.names = TRUE, pattern = "MSMS")
ms_data = readMSData(msmsPths, mode = 'onDisk', msLevel. = 1)

Find peaks in each file
cwp <- CentWaveParam(snthresh = 5, noise = 100, ppm = 10, peakwidth = c(3, 30))
xcmsObj <- xcms::findChromPeaks(ms_data, param = cwp)

Optionally adjust retention time
xcmsObj <- adjustRtime(xcmsObj , param = ObiwarpParam(binSize = 0.6))

Group features across samples
pdp <- PeakDensityParam(sampleGroups = c(1, 1), minFraction = @, bw = 30)
xcmsObj <- groupChromPeaks(xcmsObj , param = pdp)

#====== msPurity
pa <- purityA(msmsPths)

pa <- fragédfeature(pa = pa, xcmsObj = xcmsObj)

pa <- filterFragSpectra(pa, allfrag=TRUE)

pa <- averageAllFragSpectra(pa)

dbPth <- createDatabase(pa, xcmsObj, metadata=list('polarity'='positive', 'instrument'='Q-Exactive'))

td <~ tempdir()
db_pth = createDatabase(pa = pa, xcmsObj = xcmsObj, outDir = td)

20 createMSP,purityA-method

createMSP, purityA-method
Using a purityA object, create an MSP file of fragmentation spectra

Description

General

Create an MSP file for all the fragmentation spectra that has been linked to an XCMS feature via
fragdfeature. Can export all the associated scans individually or the averaged fragmentation spectra
can be exported.

Additional metadata can be included in a dataframe (each column will be added to metadata of
the MSP spectra). The dataframe must contain the column "grpid" corresponding to the XCMS
grouped feature.

Example LC-MS/MS processing workflow

* Purity assessments
— (mzML files) -> purityA -> (pa)
* XCMS processing

— (mzML files) -> xcms.findChromPeaks -> (optionally) xcms.adjustRtime -> xcms.groupChromPeaks
-> (xcmsObj)

— — Older versions of XCMS — (mzML files) -> xcms.xcmsSet -> xcms.group -> Xcms.retcor
-> xcms.group -> (xemsObj)

* Fragmentation processing

— (xcmsObj, pa) -> fragdfeature -> filterFragSpectra -> averagelntraFragSpectra -> aver-
agelntraFragSpectra -> createMSP -> (MSP file)

Usage

S4 method for signature 'purityA'
createMSP(
pa,
msp_file_pth = NULL,
metadata = NULL,
metadata_cols = NULL,
xcms_groupids = NULL,
method = "all”,
adduct_split = TRUE,
filter = TRUE,
msp_schema = "massbank”,
intensity_ra = "intensity_ra",
include_adducts = ""

createMSP,purityA-method 21

Arguments

pa
msp_file_pth

metadata

metadata_cols
xcms_groupids
method

adduct_split

filter

msp_schema

intensity_ra

include_adducts

Value

object; purityA object
character; Name of the output msp file, if NULL the file "frag_spectra_time
stamp.msp" will be created in the current directory

data.frame; Data frame with additional coumpound infomation to include in msp
output

vector; Column names of meta data to incorporate into name
vector; XCMS group id’s to extract ms/ms data for

character; "all" will export all matching ms/ms spectra to xcms features, "max"
will use spectra with the highest inensity, "av_intra" will use the intra file aver-
aged spectra (within file), "av_inter" will use the inter file (across file) averaged
spectra, "av_all" will use the averaged spectra (ignoring inter and intra)

boolean; If either "adduct" or MS$FOCUSED_ION: PRECURSOR_TYPE col-
umn is in metadata then each adduct will have it’s own MSP spectra. (Useful, if
the MSP file will be used for further annotation)

boolean; TRUE if filtered peaks are to be removed

character; Either MassBank (Europe) or MoNA style of MSP file format to be
used ("massbank’ or 'mona’)

character; Either ’intensity’, 'ra’ (relative abundance) or ’intensity_ra’ (intensity
and relative abundance) to be written to the MSP file

character; Additional adducts to include as a string seperated by white a space
(e.g. [M+H]+ [M+Na]+)

Returns a MSP file with the selected spectra and metadata

Examples

XCMS

Read in MS data

#msmsPths <- list.files(system.file("extdata”, "lcms”, "mzML",

package="msPurityData"”), full.names = TRUE, pattern = "MSMS")
#ms_data = readMSData(msmsPths, mode = 'onDisk', msLevel. = 1)

Find peaks in each file
#cwp <- CentWaveParam(snthresh = 5, noise = 100, ppm = 10, peakwidth = c(3, 30))
#xcmsObj <- xcms::findChromPeaks(ms_data, param = cwp)

Optionally adjust retention time
#xcmsObj <- adjustRtime(xcmsObj , param = ObiwarpParam(binSize = 0.6))

Group features across samples
#pdp <- PeakDensityParam(sampleGroups = c(1, 1), minFraction = @, bw = 30)
#xcmsObj <- groupChromPeaks(xcmsObj , param = pdp)

22 create_database

#====== msPurity
#pa <- purityA(msmsPths)

#pa <- frag4feature(pa = pa, xcmsObj = xcmsObj)
#pa <- filterFragSpectra(pa, allfrag=TRUE)

#pa <- averageAllFragSpectra(pa)

#createMSP(pa)

pa <- readRDS(system.file("extdata”, "tests”, "purityA”,
"9_averageAllFragSpectra_with_filter_pa.rds"”,
package="msPurity"))

createMSP(pa)

create_database Create database deprecated

Description

Create and SQLite database of an LC-MS(/MS) experiment

msPurity::create_database is deprecated. Please use msPurity::createDatabase for future use

Usage
create_database(
pa,
xset,
xsa = NULL,
out_dir = ".",
grp_peaklist = NA,
db_name = NA
)
Arguments
pa purityA object; Needs to be the same used for fragdfeature function
xset xcms object; Needs to be the same used for fragdfeature function (this will be
ignored when using xsa parameter)
Xsa CAMERA object [optional]; if CAMERA object is used, we ignore the xset
parameter input and obtain all information from the xset object nested with the
CAMERA xsa object. Adduct and isotope information will be included into the
database when using this parameter. The underlying xset object must be the one
used for the fragdfeature function
out_dir character; Out directory for the SQLite result database

grp_peaklist dataframe [optional]; Can use any peak dataframe. Still needs to be derived
from the xset object though

db_name character [optional]; Name of the result database

dimsPredictPurity,purityD-method 23

Value

path to SQLite database and database name

Examples

#msmsPths <- list.files(system.file("extdata”, "lcms”, "mzML",

package="msPurityData"), full.names = TRUE, pattern = "MSMS")
#xset <- xcms::xcmsSet(msmsPths)

#xset <- xcms::group(xset)

#pa <- purityA(msmsPths)

#pa <- fragd4feature(pa, xset)

#pa <- averageAllFragSpectra(pa)
#db_pth <- create_database(pa, xset)

Run from previously generated data
pa <- readRDS(system.file("extdata”, "tests", "purityA”,
"9_averageAllFragSpectra_with_filter_pa_OLD.rds",
package="msPurity"))
xset <- readRDS(system.file("extdata”,"tests”, "xcms",
"msms_only_xset_OLD.rds"”, package="msPurity"))

Need to ensure the filelists are matching
msmsPths <- list.files(system.file("extdata”, "lcms", "mzML",
package="msPurityData"),
full.names = TRUE, pattern = "MSMS")
pa@fileList[1] <- msmsPths[basename(msmsPths)=="LCMSMS_1.mzML"]
pa@fileList[2] <- msmsPths[basename(msmsPths)=="LCMSMS_2.mzML"]
xset@filepaths[1] <- msmsPths[basename(msmsPths)=="LCMSMS_1.mzML"]
xset@filepaths[2] <- msmsPths[basename(msmsPths)=="LCMSMS_2.mzML"]
db_pth <- create_database(pa, xset)

dimsPredictPurity, purityD-method
Using purityD object, assess anticipated purity from a DI-MS run

Description

Assess the precursor purity of anticpated MS/MS spectra. i.e. it ’predicts’ the precursor purity of
the DI-MS peaks for a future MS/MS run.

Usage
S4 method for signature 'purityD'
dimsPredictPurity(
Object,
ppm = 1.5,
minOffset = 0.5,
maxOffset = 0.5

24

iwNorm =

dimsPredictPurity,purityD-method

FALSE,

iwNormFun = NULL,

ilim = 0.05,

sampleOnly = FALSE,

isotopes

im = NULL

Arguments
Object

ppm
minOffset
maxOffset

iwNorm

iwNormFun

ilim

sampleOnly
isotopes

im

Value

TRUE,

object = purityD object

numeric = tolerance for target mz value in each scan
numeric = isolation window minimum offset
numeric = isolation window maximum offset

boolean = if TRUE then the intensity of the isolation window will be normalised
based on the iwNormFun function

function = A function to normalise the isolation window intensity. The default
function is very generalised and just accounts for edge effects

numeric = All peaks less than this percentage of the target peak will be removed
from the purity calculation, default is 5% (0.05)

boolean = if TRUE will only calculate purity for sample peaklists
boolean = TRUE if isotopes are to be removed

matrix = Isotope matrix, default removes C13 isotopes (single, double and triple
bonds)

purityD object with predicted purity of peaks

purityD object

See Also

dimsPredictPuritySingle

Examples

datapth <- system.file("extdata”, "dims"”, "mzML", package="msPurityData")
inDF <- Getfiles(datapth, pattern=".mzML", check = FALSE, cStrt = FALSE)
ppDIMS <- purityD(fileList=inDF, cores=1, mzML=TRUE)

ppDIMS <- averageSpectra(ppDIMS)

ppDIMS <- filterp(ppDIMS)

ppDIMS <- subtract(ppDIMS)

ppDIMS <- dimsPredictPurity(ppDIMS)

dimsPredictPuritySingle

25

dimsPredictPuritySingle

Predict the precursor purity from a DI-MS dataset

Description

Given a an DI-MS dataset (either mzML or .csv file) calculate the predicted purity for a vector of

mz values.

Calculated at a given offset e.g. for 0.5 +/- Da the minOffset would be 0.5 and the maxOffset of 0.5.

A ppm tolerance is used to find the target mz value in each scan.

Usage
dimsPredictPuritySingle(
mztargets,
filepth,
minOffset = 0.5,
maxOffset = 0.5,
ppm = 2.5,
mzML = TRUE,
iwNorm = FALSE,
iwNormFun = NULL,
ilim = 0@.05,
mzRback = "pwiz",
isotopes = TRUE,
im = NULL,
sim = FALSE
)
Arguments
mztargets vector = mz targets to get predicted purity for
filepth character = mzML file path or .csv file path
minOffset numeric = isolation window minimum offset
maxOffset numeric = isolation window maximum offset
ppm numeric = tolerance for target mz value in each scan
mzML boolean = Whether an mzML file is to be used or .csv file (TRUE == mzML)
iwNorm boolean = if TRUE then the intensity of the isolation window will be normalised
based on the iwNormFun function
iwNormFun function = A function to normalise the isolation window intensity. The default
function is very generalised and just accounts for edge effects
ilim numeric = All peaks less than this percentage of the target peak will be removed
from the purity calculation, default is 5% (0.05)
mzRback character = backend to use for mzR parsing

26 filterFragSpectra,purityA-method

isotopes boolean = TRUE if isotopes are to be removed
im matrix = Isotope matrix, default removes C13 isotopes (single, double and triple
bonds)
sim boolean = TRUE fif file is from sim stitch experiment. Default FALSE
Value

a dataframe of the target mz values and the predicted purity score

Examples

mzmlPth <- system.file("extdata”, "dims", "mzML", "B@2_Daph_TEST_pos.mzML",
package="msPurityData")

predicted <- dimsPredictPuritySingle(c(173.0806, 216.1045), filepth=mzmlPth,

minOffset=0.5, maxOffset=0.5, ppm=5, mzML=TRUE)

filterFragSpectra,purityA-method
Filter fragmentation spectra associated with an XCMS feature

Description

General

Flag and filter features based on signal-to-noise ratio, relative abundance, intensity threshold and
purity of the precursor ion.

Example LC-MS/MS processing workflow

* Purity assessments
— (mzML files) -> purityA -> (pa)
* XCMS processing

— (mzML files) -> xcms.findChromPeaks -> (optionally) xcms.adjustRtime -> xcms.groupChromPeaks
-> (xcmsObj)

— — Older versions of XCMS — (mzML files) -> xcms.xcmsSet -> xcms.group -> xcms.retcor
-> xcms.group -> (xcmsObj)

» Fragmentation processing

— (xcmsObj, pa) -> fragdfeature -> filterFragSpectra -> average AllFragSpectra -> create-
Database -> spectralMatching -> (sqlite spectral database)

filterFragSpectra,purity A-method 27

Usage
S4 method for signature 'purityA'
filterFragSpectra(
pa,
ilim = 0,
plim = 0.8,
ra =29,
snr = 3,
rmp = FALSE,
snmeth = "median”,
allfrag = FALSE
)
Arguments
pa object; purityA object
ilim numeric; min intensity of a peak
plim numeric; min precursor ion purity of the associated precursor for fragmentation
spectra scan
ra numeric; minimum relative abundance of a peak
snr numeric; minimum signal-to-noise of a peak within each file
rmp boolean; TRUE if peaks are to be removed that do not meet the threshold criteria.
Otherwise they will just be flagged.
snmeth character; Method to calculate signal to noise ration (either median or mean)
allfrag boolean; Whether to filter on all fragmentation spectra or just the fragmentation
spectra grouped to XCMS feature
Value

Returns a purity A object with the pa@grped_msms spectra matrices are updated with the following
columns

snr: Signal to noise ratio (calculated at scan level)

ra: Relative abundance (calculated at scan level)
purity_pass_flag: Precursor ion purity flag (1 pass, 0 fail)
intensity_pass_flag: Intensity flag (1 pass, O fail)
snr_pass_flag: Signal-to-noise pass flag (1 pass, O fail)
ra_pass_flag: Relative abundance pass flag (1 pass, O fail)

pass_flag: Overall pass flag, all flags must pass for this to pass (1 pass, O fail)

Examples

.

H#
#

XCMS

Read in MS data
#msmsPths <- list.files(system.file("extdata”, "lcms", "mzML",

28 filterp,purityD-method

package="msPurityData"”), full.names = TRUE, pattern = "MSMS")
#ms_data = readMSData(msmsPths, mode = 'onDisk', msLevel. = 1)

Find peaks in each file
#tcwp <- CentWaveParam(snthresh = 5, noise = 100, ppm = 10, peakwidth = c(3, 30))
#xcmsObj <- xcms::findChromPeaks(ms_data, param = cwp)

Optionally adjust retention time
#xcmsObj <- adjustRtime(xcmsObj , param = ObiwarpParam(binSize = 0.6))

Group features across samples
#pdp <- PeakDensityParam(sampleGroups = c(1, 1), minFraction = @, bw = 30)
#xcmsObj <- groupChromPeaks(xcmsObj , param = pdp)

#====== msPurity
#pa <- purityA(msmsPths)

#pa <- fragd4feature(pa, xcmsObj)
#pa <- filterFragSpectra(pa)

Run from previously generated data

pa <- readRDS(system.file("extdata”, "tests", "purityA”,
"2_frag4feature_pa.rds”, package="msPurity"))

pa <- filterFragSpectra(pa)

filterp,purityD-method
Filter out peaks based on intensity and RSD criteria

Description
Uses a purityD object remove peaks from either (or both) samples and blanks that are either below
an intensity threshold or greater than a Relative Standard Deviation (RSD) threshold

Usage

S4 method for signature 'purityD'
filterp(Object, thr = 5000, rsd = 20, sampleOnly = TRUE)

Arguments

Object object; purityD object

thr numeric; intensity threshold

rsd numeric; rsd threshold

sampleOnly boolean; if only the sample (not blanks) should be filtered
Value

purityD object

flag_remove 29

Examples

datapth <- system.file("extdata”, "dims”, "mzML", package="msPurityData")
inDF <- Getfiles(datapth, pattern=".mzML", check = FALSE, cStrt = FALSE)

ppDIMS <- purityD(inDF, cores=1)
ppDIMS <- averageSpectra(ppDIMS)
ppDIMS <- filterp(ppDIMS, thr = 5000)

flag_remove Flag and remove unwanted peaks

Description

Filter, flag and remove unwanted peaks from xcms object (xcmsObj) of class XCMSnExp, xcmsSet
or xsAnnotate. When the peaks are removed, the xcmsObj object can be regrouped (originally using
xcms::group, now using xcms::groupChromPeaks). The function then checks if any blank peaks are
still present and the process is repeated.

The output is a list object containing: 1) the updated xcms object, 2) the grouped peaklist and 3) the
blank removed peaks

Usage

flag_remove(
xcmsO0bj,
pol = NA,
rsd_i_blank = NA,
minfrac_blank = 0.5,
rsd_rt_blank = NA,
ithres_blank = NA,
s2b = 10,
ref.class = "blank”,
egauss_thr = NA,
rsd_i_sample = NA,
minfrac_sample = 0.7,
rsd_rt_sample = NA,
ithres_sample = NA,
minfrac_xcms = 0.7,
mzwid = 0.017,
bw = 5,
out_dir = ".",
temp_save = FALSE,
remove_spectra_bool = TRUE,
grp_rm_ids = NA,
xset = NA

30 flag_remove

Arguments
xcmsObj object; XCMSnExp, xcmsSet or xsAnnotate object
pol str; polarity (just used for naming purpose for files being saved) [positive, nega-

tive, NA]
rsd_i_blank numeric; RSD threshold for the blank
minfrac_blank numeric; minimum fraction of files for features needed for the blank
rsd_rt_blank numeric; RSD threshold for the RT of the blank
ithres_blank numeric; Intensity threshold for the blank

s2b numeric; fold change (sample/blank) needed for sample peak to be allowed. e.g.
if s2b set to 10 and the recorded sample ’intensity’ value was 100 and blank =
10. 1000/10 = 100 so sample has fold change higher than the threshold and the
peak is not considered a blank

ref.class str; A string representing the class that will be used for the blank.

egauss_thr numeric; Threshold for filtering out non gaussian shaped peaks. Note this only
works if the verbose option was set for XCMS;

rsd_i_sample numeric; RSD threshold for the sample

minfrac_sample numeric; minimum fraction of files for features needed for the sample
rsd_rt_sample numeric; RSD threshold for the RT of the sample

ithres_sample numeric; Intensity threshold for the sample

minfrac_xcms numeric; minfrac for xcms grouping

mzwid numeric; xcms grouping parameter (corresponds to variable *binSize’ in XCMS3)
bw numeric; xcms grouping parameter

out_dir str; out directory

temp_save boolean; Assign True if files for each step saved (for testing purpsoses)

remove_spectra_bool
bool; TRUE if flagged spectra is to be removed

grp_rm_ids vector; vector of grouped_xcms peaks to remove (corresponds to the row from
Xxcms::group output)
xset object, DEPRECATED; xcmsSet object
Value

list(xset, grp_peaklist, removed_peaks)

Examples

library(xcms)

library(MSnbase)

library(magrittr)

#read in files and data

msPths <-list.files(system.file("extdata”, "lcms”, "mzML", package="msPurityData"), full.names = TRUE)
ms_data = readMSData(msPths, mode = 'onDisk', msLevel. = 1)

fragdfeature,purityA-method 31

#subset the data to focus on retention times 30-90 seconds and m/z values between 100 and 200 m/z.
rtr = c(30, 90)

mzr = c(100, 200)

ms_data = ms_data %>% filterRt(rt = rtr) %>% filterMz(mz = mzr)

###H# perform feature detection in individual files

cwp <- CentWaveParam(snthresh = 3, noise = 100, ppm = 10, peakwidth = c(3, 30))

xcmsObj <- findChromPeaks(ms_data, param = cwp)

xcmsObj@phenoData@data$class = c('blank', 'blank', 'sample', 'sample')

xcmsObj@phenoData@varMetadata = data.frame('labelDescription' = 'sampleNames', 'class')

pdp <- PeakDensityParam(sampleGroups = xcmsObj@phenoData@data$class, minFraction = @, bw = 5, binSize = 0.017)
xcmsObj <- groupChromPeaks(xcmsObj, param = pdp)

#i##H# flag, filter and remove peaks, returning an updated xcmsObj (XCMSnExp or xcmsSet class), grouped_peaklist (dat
fr <- flag_remove(xcmsObj)

#i##H# load from existing data
xcmsObj = readRDS(system.file("extdata”, "tests”, "purityA”, "10_input_filterflagremove.rds"”, package="msPurity"”

frag4feature,purityA-method
Using a purityA object, link MS/MS data to XCMS features

Description

General:

Assign fragmentation spectra (MS/MS) stored within a purityA class object to grouped features
within an XCMS xset object.

XCMS calculates individual chromatographic peaks for each mzML file (retrieved using xcms::chromPeaks(xcmsObj)),
these are then grouped together (using xcms::groupChromPeaks). Ideally the mzML files that
contain the MS/MS spectra also contain sufficient MS1 scans for XCMS to detect MS1 chro-
matographic features. If this is the case, to determine if a MS2 spectra is to be linked to an XCMS
grouped feature, the associated acquisition time of the MS/MS event has to be within the retention
time window defined for the individual peaks associated for each file. The precursor m/z value
also has to be within the user ppm tolerance to XCMS feature.

See below for representation of the linking (the * —— * represent a many-to-many relationship)
e.g. 1 or more MS/MS events can be linked to 1 or more individual feature and an individual
XCMS feature can be linked to 1 or more grouped XCMS features

* [individual XCMS feature - per file] *

¢ [grouped XCMS feature - across files] *
* [MS/MS spectra]

Alternatively, if the "useGroup" argument is set to TRUE, the full width of the grouped peak
(determined as the minimum rtmin and maximum rtmax of the all associated individual peaks)
will be used. This option should be used if the mzML file with MS/MS has very limited MS1 data
and so individual chromatographic peaks might not be detected with the mzML files containing
the MS/MS data. However, it should be noted this may lead to potential inaccurate linking.

32 fragdfeature,purityA-method

¢ [grouped XCMS peaks] * —— * [MS/MS spectra]

Example LC-MS/MS processing workflow:

* Purity assessments
— (mzML files) -> purityA -> (pa)
* XCMS processing
— (mzML files) -> xcms.findChromPeaks -> (optionally) xcms.adjustRtime -> xcms.groupChromPeaks
-> (xcmsObj)
— — Older versions of XCMS — (mzML files) -> xcms.xcmsSet -> xcms.group -> Xcms.retcor
-> xcms.group -> (xcmsObj)

» Fragmentation processing

— (xcmsObj, pa) -> fragdfeature -> filterFragSpectra -> average AllFragSpectra -> create-
Database -> spectralMatching -> (sqlite spectral database)

Additional notes:

* If using only a single file, then grouping still needs to be performed within XCMS before
fragdfeature can be used.

» Fragmentation spectra below a certain precursor ion purity can be be removed (see plim
argument).

* A SQLite database can be created directly here but the functionality has been deprecated and
the createDatabase function should now be used

» Can experience some problems when using XCMS version < 3 and obiwarp retention time
correction.

Usage

S4 method for signature 'purityA'
fragafeature(
pa,
xcmsO0bj,
ppm = 5,
plim = NA,
intense = TRUE,
convert2RawRT = TRUE,
useGroup = FALSE,
createDb = FALSE,
outDir = ".",
dbName = NA,
grpPeaklist = NA,
use_group = NA,
out_dir = NA,
create_db = NA,
grp_peaklist = NA,
db_name = NA,
xset = NA

Arguments

pa

xcms0bj

ppm
plim

intense

convert2RawRT

useGroup

createDb
outDir
dbName

grpPeaklist

use_group

out_dir

create_db

grp_peaklist

db_name

xset

Value

fragdfeature,purityA-method 33

object; purityA object

object; XCMSnExp, xcmsSet or xsAnnotate object derived from the same files
as those used to create the purityA object

numeric; ppm tolerance between precursor mz and XCMS feature mz
numeric; minimum purity of precursor to be included

boolean; If TRUE the most intense precursor will be used. If FALSE the precur-
sor closest to the center of the isolation window will be used

boolean; If retention time correction has been used in XCMS set this to TRUE

boolean; Ignore individual peaks and just find matching fragmentation spectra
within the (full) rtmin rtmax of each grouped feature

boolean; if yes, generate a database of MS2 spectra
string; path where (optionally generated) database file should be saved
character; name to assign to (optionally exported) database.

dataframe; Can use any peak dataframe to add to databse. Still needs to be
derived from the "obj" object though

boolean; (Deprecated, to be removed - replaced with useGroup argument for
style consistency)

character; (Deprecated, to be removed - use createDatabase function) Path where
database will be created

boolean; (Deprecated, to be removed - use createDatabase function) SQLite
database will be created of the results

dataframe; (Deprecated, to be removed - use createDatabase function) Can use
any peak dataframe to add to databse. Still needs to be derived from the xset
object though

character; (Deprecated, to be removed - use createDatabase function) If cre-
ate_db is TRUE, a custom database name can be used, default is a time stamp

object; (Deprecated, to be removed - use xcmsObj) *xcmsSet’ object derived
from the same files as those used to create the purityA object

Returns a purityA object (pa) with the following slots populated:

* pa@grped_df: A dataframe of the grouped XCMS features linked to the associated fragmen-
tation spectra precursor details is recorded here

* pa@grped_ms2: A list of fragmentation spectra associated with each grouped XCMS feature
is recorded here

* pa@f4f_link_type: The linking method is recorded here (e.g. individual peaks or grouped -
"useGroup=TRUE")

34 Getfiles

Examples

library(xcms)
library(MSnbase)
library(magrittr)
XCMS
Read in MS data
msmsPths <- list.files(system.file("extdata”, "lcms"”, "mzML",
package="msPurityData"), full.names = TRUE, pattern = "MSMS")
ms_data = readMSData(msmsPths, mode = 'onDisk', msLevel. = 1)

Find peaks in each file
cwp <- CentWaveParam(snthresh = 5, noise = 100, ppm = 10, peakwidth = c(3, 30))
xcmsObj <- xcms: :findChromPeaks(ms_data, param = cwp)

Optionally adjust retention time
xcmsObj <- adjustRtime(xcmsObj , param = ObiwarpParam(binSize = 0.6))

Group features across samples
pdp <- PeakDensityParam(sampleGroups = c(1, 1), minFraction = @, bw = 30)
xcmsObj <- groupChromPeaks(xcmsObj , param = pdp)

Or if using the old XCMS functions
#xcmsObj <- xcms::xcmsSet(msmsPths)
#xcmsObj <- xcms: :group(xcmsObj)
#xcmsObj <- xcms: :retcor(xcmsObj)
#xcmsObj <- xcms::group(xcmsObj)

#====== msPurity
pa <- purityA(msmsPths)
pa <- frag4feature(pa, xcmsObj)

Getfiles Get files for DI-MS processing

Description

Takes in a folder path and outputs the a data frame structure for purityD. Function modified from
mzmatch.

Usage

Getfiles(
projectFolder = NULL,
recursive = FALSE,
pattern = ".csv",
check = TRUE,
raw = FALSE,

peakout = NA,

getP,purityD-method 35

cStrt = TRUE,
mzml_out = FALSE
)
Arguments

projectFolder character; Directory path

recursive boolean; Recursively check for files
pattern character; File suffix to check for
check boolean; Check with a GUI the files
raw (REDUNDANT)
peakout (REDUNDANT)
cStrt boolean; Use the first word as the class name for files
mzml_out (REDUNDANT)
Value

dataframe of files

Examples

datapth <- system.file("extdata”, "dims"”, "mzML", package="msPurityData")
inDF <- Getfiles(datapth, pattern=".mzML", check = FALSE, cStrt = FALSE)

getP,purityD-method Get peaklist for a purityD object

Description

output peak list for a purityD object

Usage
S4 method for signature 'purityD'
getP(x)

Arguments

X object; purityD object

Value

peaks

36 groupPeaks,purityD-method

Examples

datapth <- system.file("extdata”, "dims"”, "mzML", package="msPurityData")
inDF <- Getfiles(datapth, pattern=".mzML", check = FALSE, cStrt = FALSE)
ppDIMS <- purityD(filelList=inDF, cores=1, mzML=TRUE)

peaks <- getP(ppDIMS)

get_additional_mzml_meta
Get additional mzML meta

Description
Extract the filter strings ’accession MS:1000512° from an mzML file. Called header in thermo
software. Enables quick access to various information regarding each scan

Usage

get_additional_mzml_meta(mzml_pth)

Arguments

mzml_pth character; mzML path

Value

dataframe of meta info

Examples

mzml_pth <- system.file("extdata”, "dims”, "mzML", 'B@2_Daph_TEST_pos.mzML', package="msPurityData")
meta_df <- get_additional_mzml_meta(mzml_pth)

groupPeaks, purityD-method

Using purityD object, group multiple peaklists by similar mz values
(mzML or .csv)

Description

Uses a purityD object to group all the peaklists in the *avPeaks$processing” slot

Usage

S4 method for signature 'purityD'
groupPeaks(Object, ppm = 3, sampleOnly = FALSE, clustType = "hc")

groupPeaksEx 37

Arguments
Object object = purityD object
ppm numeric = The ppm tolerance to group peaklists
sampleOnly = if TRUE the sample peaks will only be grouped
clustType =if "he’ the hierarchical clustering, if ’simple’ the mz values will just be grouped
using a simple 1D method
Value

data.frame of peaklists grouped together by mz

Examples

datapth <- system.file("extdata”, "dims"”, "mzML", package="msPurityData")
inDF <- Getfiles(datapth, pattern=".mzML", check = FALSE, cStrt = FALSE)
ppDIMS <- purityD(fileList=inDF, cores=1, mzML=TRUE)

ppDIMS <- averageSpectra(ppDIMS)

grpedP <- groupPeaks(ppDIMS)

groupPeaksEx Group peaklists from a list of dataframes

Description

Group a list of dataframes by their m/z values

Usage

groupPeaksEx(peak_list, cores = 1, clustType = "hc", ppm = 2)

Arguments
peak_list list = A list (named) of dataframes consiting of a least the following columns
['peakID’, *'mz’]
cores = number of cores used for calculation
clustType =1if ’hc’ the hierarchical clustering, if "simple’ the mz values will just be grouped
using a simple 1D method
ppm numeric = The ppm tolerance to group peaklists
Value

data.frame of peaklists grouped together by mz

38 initialize,purityD-method

Examples

datapth <- system.file("extdata”, "dims”, "mzML", package="msPurityData")
inDF <- Getfiles(datapth, pattern=".mzML", check = FALSE, cStrt = FALSE)
ppDIMS <- purityD(fileList=inDF, cores=1, mzML=TRUE)

ppDIMS <- averageSpectra(ppDIMS)

grpedP <- groupPeaks (ppDIMS)

initialize,purityD-method
Constructor for §4 class to represent a DI-MS purityD

Description

The class used to predict purity from an DI-MS dataset.

Usage

S4 method for signature 'purityD'
initialize(.Object, filelList, cores = 1, mzML = TRUE, mzRback = "pwiz")

Arguments
.Object object; purityD object
filelList data.frame; created using GetFiles, data.frame with filepaths and sample class
information
cores numeric; Number of cores used to perform Hierarchical clustering WARNING:
memory intensive, default 1
mzML boolean; TRUE if mzML to be used FALSE if .csv file to be used
mzRback character; backend to use for mzR parsing
Value
purityD object
Examples

datapth <- system.file("extdata”, "dims”, "mzML", package="msPurityData")
inDF <- Getfiles(datapth, pattern=".mzML", check = FALSE, cStrt = FALSE)
ppDIMS <- purityD(fileList=inDF, cores=1, mzML=TRUE)

iwNormGauss 39

iwNormGauss Gaussian normalisation for isolation window efficiency

Description

Creates a function based on a gaussian curve shape that will normalise any intensity values within
a defined isolation window.

The function that is created will output a value between O to 1 based on the position between the
minOff and maxOff params. (The value 1.0 being equivalent to 100% efficient)

Usage

iwNormGauss(sdlim = 3, minOff = -0.5, maxOff = +0.5)

Arguments
sdlim numerical; Standard deviation limit for gaussian curve
minOff numerical; Offset to the ’left’ for the precursor range. (Should be negative)
maxOff character; Offset to the ’left’ for the precursor range. (Should be positive)
Value

normalisation function for selected range.

Examples

iwNormFun <- iwNormGauss(minOff=-0.5, max0ff=0.5)

pm <- data.frame(mz=c(99.5, 99.9, 100, 100.1, 100.5),i=c(1000, 1000, 1000, 1000, 1000))
mzmax = 100.5

mzmin = 99.5

middle <- mzmax-(mzmax-mzmin)/2

adjustmz = pm$mz-middle

normalise the intensities
pm$normi = pm$i*xiwNormFun(adjustmz)

40 iwNormRcosine

iwNormQE.5 Q-Exactive +/- 0.5 range, normalisation for isolation window effi-
ciency

Description
Creates a function based on a previous experimental analysis of a Q-Exactive at +/- 0.5 isolation
window efficiency. See http://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b04358

The function that is created will output a value between 0 to 1 based on the position between the
minOff and maxOff params

NOTE: The resulting function will work for values greater that 0.5 and less than -0.5.

This is because (on our instrument tested at least) when using a window of +/- 0.5, the isolation is
NOT confined to the +/-0.5 Da window. Resulting in ions from outside the window being isolated.
For this reason the function can normalise values outside of the the +/- 1 Da range. Please see above
paper figure 3 for more details.

Usage
iwNormQE.5()

Value

normalisation function for +/- 0.5 range for Q-Exactive

Examples

iwNormFun <- iwNormQE.5()

pm <- data.frame(mz=c(99.5, 99.9, 100, 100.1, 100.5),i=c(1000, 1000, 1000, 1000, 1000))
mzmax = 100.5

mzmin = 99.5

middle <- mzmax-(mzmax-mzmin)/2

adjustmz = pm$mz-middle

normalise the intensities
pm$normi = pm$i*iwNormFun(adjustmz)

iwNormRcosine Raised cosine normalisation for isolation window efficiency

Description
Creates a function based on a rasied cosine curve shape that will normalise any intensity values
within a defined isolation window

The function that is created will output a value between 0 to 1 based on the position between the
minOff and maxOff params

msPurity 41

Usage

iwNormRcosine(minOff = -0.5, maxOff = +@.5)

Arguments
minOff numerical; Offset to the ’left’ for the precursor range. (Should be negative)
maxOff character; Offset to the ’left’ for the precursor range. (Should be positive)
Value

normalisation function for selected range

Examples

iwNormFun <- iwNormRcosine()

pm <- data.frame(mz=c(99.5, 99.9, 100, 100.1, 100.5),i=c(1000, 1000, 1000, 1000, 1000))
mzmax = 100.5

mzmin = 99.5

middle <- mzmax-(mzmax-mzmin)/2

adjustmz = pm$mz-middle

normalise the intensities
pm$normi = pm$i*iwNormFun(adjustmz)

msPurity msPurity package

Description

msPurity Bioconductor

Author(s)

Maintainer: Thomas N. Lawson <thomas.nigel.lawson@gmail.com> (ORCID)

Other contributors:

Ralf Weber [contributor]

e Martin Jones [contributor]

* Julien Saint-Vanne [contributor]
e Andris Jankevics [contributor]

e Mark Viant [thesis advisor]

e Warwick Dunn [thesis advisor]

https://bioconductor.org/packages/release/bioc/html/msPurity.html
https://orcid.org/0000-0002-5915-7980

42

See Also

Useful links:

pcalc

* https://github.com/computational-metabolomics/msPurity/

* Report bugs at https://github.com/computational-metabolomics/msPurity/issues/

new

pcalc

Perform purity calculation on a peak matrix

Description

This is the main purity calculation that is performed in purityX, purityD and purityA.

Usage

* Takes in a matrix of peaks

* gets isolation window based on mzmin mzmax

* locates the mz target in the peak matrix

* removes isotopic peaks

* removes any peaks below limit (percentage of target peak intensity)

e normalises

* Calculates purity: Divides the target peak intensity by the total peak intensity for the isolation

window

pcalc(

peaks,

mzmin,

mzmax,

mztarget,

ppm = NA,

iwNorm = FALSE,
iwNormFun = NULL,
ilim = 0,
targetMinMzZ = NA,
targetMaxMZ = NA,
isotopes = FALSE,
im = NULL

https://github.com/computational-metabolomics/msPurity/
https://github.com/computational-metabolomics/msPurity/issues/new
https://github.com/computational-metabolomics/msPurity/issues/new

purityA

Arguments

peaks
mzmin
mzmax

mztarget

ppm

iwNorm

iwNormFun

ilim

targetMinMz
targetMaxMZ
isotopes

im

Value

43

matrix; Matrix of peaks consisting of 2 columns: mz and i
numeric; Isolation window (min)
numeric; Isolation window (max)
numeric; The mz window to target in the isolation window

numeric; PPM tolerance for the target mz value. If NA will presume target-
MinMZ and targetMaxMZ will be used

boolean; If TRUE then the intensity of the isolation window will be normalised
based on the iwNormFun function

function; A function to normalise the isolation window intensity. The default
function is very generalised and just accounts for edge effects

numeric; All peaks less than this percentage of the target peak will be removed
from the purity calculation, default is 5% (0.05)

numeric; Range to look for the mztarget (min)
numeric; Range to look for the mztarget (max)
boolean; TRUE if isotopes are to be removed

matrix; Isotope matrix, default removes C13 isotopes (single, double and triple
bonds)

a vector of the purity score and the number of peaks in the window e.g c(purity, pknm)

Examples

pm <- rbind(c(100, 1000),c(101.003, 10))

pcalc(pm, mzmin
pcalc(pm, mzmin =

102, mztarget=100, ppm=5)
102, mztarget=100, ppm=5, isotopes =

98, mzmax =

98, mzmax = TRUE)

purityA Assess the acquired precursor ion purity of MS/MS spectra (construc-
tor)
Description
General:

Given a vector of LC-MS/MS or DI-MS/MS mzML file paths calculate the precursor ion purity
of each MS/MS scan.

The precursor ion purity represents the measure of the contribution of a selected precursor peak
in an isolation window used for fragmentation and can be used as away of assessing the spectral
quality and level of "contamination" of fragmentation spectra.

purityA

The calculation involves dividing the intensity of the selected precursor peak by the total inten-
sity of the isolation window and is performed before and after the MS/MS scan of interest and
interpolated at the recorded time of the MS/MS acquisition.

Additionally, isotopic peaks are annotated and omitted from the calculation, low abundance peaks
are removed that are thought to have minor contribution to the resulting MS/MS spectra and the
isolation efficiency of the mass spectrometer can be used to normalise the intensities used for the
calculation.

The output is a purityA S4 class object (referred to as pa for convenience throughout the manual).
The object contains a slot (pa@puritydf) where the details of the purity assessments for each
MS/MS scan. The purityA object can then be used for further processing including linking the
fragmentation spectra to XCMS features, averaging fragmentation, database creation and spectral
matching (from the created database).

Example LC-MS/MS processing workflow:
The purity A object can be used for further processing including linking the fragmentation spectra
to XCMS features, averaging fragmentation, database creation and spectral matching (from the
created database). See below for an example workflow:
* Purity assessments
— (mzML files) -> purityA -> (pa)
* XCMS processing
— (mzML files) -> xcms.findChromPeaks -> (optionally) xcms.adjustRtime -> xcms.groupChromPeaks
-> (xcmsObj)
— — Older versions of XCMS — (mzML files) -> xcms.xcmsSet -> xcms.group -> Xcms.retcor
-> xcms.group -> (xcmsObj)
* Fragmentation processing
— (xcmsObj, pa) -> fragdfeature -> filterFragSpectra -> averageAllFragSpectra -> create-
Database -> spectralMatching -> (sqlite spectral database)

Isolation efficiency:

When the isolation efficiency of an MS instrument is known the peak intensities within an isolation
window can be normalised for the precursor purity calculation. The isolation efficiency can be
estimated by measuring a single precursor across a sliding window. See figure 3 from the original
msPurity paper (Lawson et al 2017). This has been experimentally measured for a Thermo Fisher
Q-Exactive Mass spectrometer using 0.5 Da windows and can be set within msPurity by using
msPurity::iwNormQE.5() as the input to the iwNormFunc argument.

Other options to model the isolation efficiency the gaussian isolation window msPurity::iwNormGauss(minOff=-
0.5, maxOff = 0.5) or a R-Cosine window msPurity::iwNormRCosine(minOff=-0.5, maxOff=0.5).
Where the minOff and maxOff can be altered depending on the isolation window size.

A user can also define their own normalisation function. The only requirement of the function is
that given a value between the minOff and maxOff a normalisation value between 0-1 is returned.

Notes regarding instrument specific isolation window offsets used::

* The isolation widths offsets will be automatically determined from extracting metadata from
the mzML file. However, for some vendors though this is not recorded, in these cases the
offsets should be given by the user as an argument (offsets).

¢ In the case of Agilent only the "narrow" isolation is supported. This roughly equates to +/-
0.65 Da (depending on the instrument). If the file is detected as originating from an Agilent
instrument the isolation widths will automatically be set as +/- 0.65 Da.

purityA

Usage

purityA(

45

filelist,

cores =1,
mostIntense = FALSE,
nearest = TRUE,
offsets = NA,

plotP = FALSE,
plotdir = NULL,
interpol = "linear”,
iwNorm = FALSE,
iwNormFun = NULL,
ilim = 0.05,

mzRback = "pwiz",
isotopes = TRUE,

im = NULL,

ppmInterp = 7

Arguments

filelList
cores

mostIntense
nearest

offsets
plotP
plotdir
interpol
iwNorm
iwNormFun
ilim

mzRback
isotopes

im

ppmInterp

vector; mzML file paths
numeric; Number of cores to use

boolean; True if the most intense peak is used for calculation. Set to FALSE if
the peak closest to mz value detailed in mzML meta data.

boolean; True if the peak selected is from either the preceding scan or the near-
est.

vector; Override the isolation offsets found in the mzML file e.g. ¢(0.5, 0.5)
boolean; If TRUE a plot of the purity is to be saved
vector; If plotP is TRUE plots will be saved to this directory

character; type of interolation to be performed "linear" or "spline" (Spline option
is only included for testing purposes, linear should be used for all standard cases,
isotope removal is also not available for the spline option)

boolean; If TRUE then the intensity of the isolation window will be normalised
based on the iwNormFun function

function; A function to normalise the isolation window intensity. The default
function is very generalised and just accounts for edge effects

numeric; All peaks less than this percentage of the target peak will be removed
from the purity calculation, default is 5% (0.05)

character; backend to use for mzR parsing
boolean; TRUE if isotopes are to be removed

matrix; Isotope matrix, default removes C13 isotopes (single, double and triple
bonds)

numeric; Set the ppm tolerance for the precursor ion purity interpolation. i.e.
the ppm tolerence between the precursor ion found in the neighbouring scans.

46

Value

purityA

Returns a purityA object (pa) with the pa@ puritydf slot updated

The purity dataframe (pa@puritydf) consists of the following columns:

pid: unique id for MS/MS scan

fileid: unique id for mzML file

seqNum: scan number

precursorIntensity: precursor intensity value as defined in the mzML file
precursorMZ: precursor m/z value as defined in the mzML file
precursorRT: precursor RT value as defined in the mzML file
precursorScanNum: precursor scan number value as defined in mzML file
id: unique id (redundant)

filename: mzML filename

precursorNearest: MS1 scan nearest to the MS/MS scan

aMz: The m/z value in the "precursorNearest" MS1 scan which most closely matches the
precursorMZ value provided from the mzML file

aPurity: The purity score for aMz
apkNm: The number of peaks in the isolation window for aMz

iMz: The m/z value in the precursorNearest MS1 scan that is the most intense within the
isolation window.

iPurity: The purity score for iMz
ipkNm: The number of peaks in the isolation window for iMz

inPurity: The interpolated purity score (the purity score is calculated at neighbouring MS1
scans and interpolated at the point of the MS/MS acquisition)

inpkNm: The interpolated number of peaks in the isolation window

The remaining slots for purityA class include

pa@cores: The number of CPUs to be used for any further processing with this purityA object
pa@fileList: list of the mzML files that have been processed

pa@mzRback: The backend library used by mzR to extract information from the mzML file
(e.g. pwiz)

pa@grped_df: If fragdfeature has been performed, a dataframe of the grouped XCMS features
linked to the associated fragmentation spectra precursor details is recorded here

pa@grped_ms2: If fragdfeature has been performed, a list of fragmentation spectra associated
with each grouped XCMS feature is recorded here

pa@f4f link_type: If fragdfeature has been performed, the ’linking method’ is recorded here,
e.g. 'group’ or ’individual’. Default is ’individual’, see fragdfeature documentation for more
details

pa@av_spectra: if averagelntraFragSpectra, averagelnterFragSpectra, or averageAllFragSpec-
tra have been performed, the average spectra is recorded here

purityD-class 47

* pa@av_intra_params: If averagelntraFragSpectra has been performed, the parameters are
recorded here

* pa@av_inter_params: if averagelnterFragSpectra has been performed, the parameters are
recorded here]

e pa@av_all_params: If averageAllFragSpectra has been performed, the parameters are recorded
here

* pa@db_path: If create_database has been performed, the resulting path to the database is
recorded here
See Also

assessPuritySingle

Examples

filepths <- system.file("extdata”, "lcms”, "mzML", "LCMSMS_1.mzML", package="msPurityData")
pa <- purityA(filepths)

purityD-class An $4 class to represent a DI-MS purityD

Description

The class used to assess anticipated purity from a DI-MS run

Arguments
.Object object; purityD object
filelList data.frame; Created using GetFiles, data.frame with filepaths and sample class
information
cores numeric; Number of cores used to perform Hierarchical clustering WARNING:
memory intensive, default 1
mzML boolean; TRUE if mzML to be used FALSE if .csv file to be used
Value
purityD object
Examples

datapth <- system.file("extdata”, "dims”, "mzML", package="msPurityData")
inDF <- Getfiles(datapth, pattern=".mzML", check = FALSE, cStrt = FALSE)
ppDIMS <- purityD(filelList=inDF, cores=1, mzML=TRUE)

48

purityX

purityX

Assessing anticipated purity of XCMS features from an LC-MS run

Description

Constructor for the purityX class.

Given an XCMS object get the anticipated precursor purity of the grouped peaks

Usage

purityX(
xset,
purityType =

"purityFWHMmedian",

offsets = c(0.5, 0.5),

fileignore =
cores =1,

NULL,

xgroups = NULL,
iwNorm = FALSE,
iwNormFun = NULL,

ilim = 0.05,

plotP = FALSE,
mzRback = "pwiz",
isotopes = FALSE,

im = NULL,
singleFile =
rtrawColumns

o,
= FALSE,

saveEIC = FALSE,
sglitePth = NULL

Arguments

xset

purityType

offsets
fileignore
cores
Xgroups

iwNorm

iwNormFun

ilim

object; xcms object

character; Area and average used for the purity predictions. Options are "puri-
tyFWHMmedian", "purityFWmedian", "purityFWHMmean", "purityFWmean"

vector; vector of the isolation window upper and lower offsets
vector; vector of files to ignore for the prediction calculation
numeric; number of cores to use

vector; vector of xcms groups to perform prediction on

boolean; if TRUE then the intensity of the isolation window will be normalised
based on the iwNormFun function

function; A function to normalise the isolation window intensity. The default
function is very generalised and just accounts for edge effects

numeric; All peaks less than this percentage of the target peak will be removed
from the purity calculation, default is 5% (0.05)

show,purityA-method 49

plotP boolean; TRUE if plot of the EIC of feature and associated contamination is the
be save to the working directory

mzRback character; backend to use for mzR parsing

isotopes boolean; TRUE if isotopes are to be removed

im matrix; Isotope matrix, default removes C13 isotopes (single, double and triple
bonds)

singleFile numeric; If just a single file for purity is to be calculated (rather than the grouped
XCMS peaks). Uses the index of the files in xcmsSet object. If zero this is
ignored.

rtrawColumns boolean; TRUE if the rt_raw values are included as additional columns in the
@peaks slot (only required if using the obiwarp)

saveEIC boolean; If True extracted ion chromatograms will be saved to SQLite database

sqlitePth character; If saveEIC True, then a path to sqlite database can be used. If NULL
then a database will be created in the working directory called eics

Value

a purityX object containing a dataframe of predicted purity scores

Examples

msPths <- list.files(system.file("extdata”, "lcms", "mzML", package="msPurityData"), full.names = TRUE, pattern =
xset <- readRDS(system.file("extdata”, "tests"”, "xcms"”, "ms_only_xset_OLD.rds", package="msPurity"))
xset@filepaths[1] <- msPths[basename(msPths)=="LCMS_1.mzML"]

xset@filepaths[2] <- msPths[basename(msPths)=="LCMS_2.mzML"]

px <- purityX(xset, singleFile = 1)

show, purityA-method Show method for purityA class

Description

print statement for purityA class

Usage
S4 method for signature 'purityA'
show(object)

Arguments

object object; purityA object

Value

a print statement of regarding object

50

show,purityX-method

show, purityD-method Show method for purityD

Description

Show method for purityD object

Usage
S4 method for signature 'purityD'
show(object)

Arguments

object = purityD object

Value

a print statement of regarding object

show, purityX-method Show method for purityX

Description

Show method for purityX object

Usage

S4 method for signature 'purityX'
show(object)

Arguments

object object; purityX object

Value

a print statement of regarding object

spectralMatching 51

spectralMatching Spectral matching for LC-MS/MS datasets

Description

General
Perform spectral matching to spectral libraries for an LC-MS/MS dataset.

The spectral matching is performed from a Query SQLite spectral-database against a Library
SQLite spectral-database.

The SQLite schema of the spectral database can be detailed Schema details can be found here.

The query spectral-database in most cases should contain be the "unknown" spectra database gener-
ated the msPurity function createDatabase as part of a msPurity-XCMS data processing workflow.

The library spectral-database in most cases should contain the "known" spectra from either public
or user generated resources. The library SQLite database by default contains data from MoNA
including Massbank, HMDB, LipidBlast and GNPS. A larger database can be downloaded from
here. To create a user generated library SQLite database the following tool can be used to generate
a SQLite database from a collection of MSP files: msp2db. It should be noted though, that as long
as the schema of the spectral-database is as described here , then any database can be used for either
the library or query - even allowing for the same database to be used.

The spectral matching functionality has four main components, spectral filtering, spectral align-
ment, spectral matching, and summarising the results.

Spectral filtering is simply filtering both the library and query spectra to be search against (e.g.
choosing the library source, instrument, retention time, precursor PPM tolerance etc).

The spectral alignment stage involves aligning the query peaks to the library peaks. The approach
used is similar to modified pMatch algorithm described in Zhou et al 2015.

The spectral matching of the aligned spectra is performed against a combined intensity and m/z
weighted vector - created for both the query and library spectra (wq and wl). See below:
w = intensity® x mzY

Where x and y represent weight factors, defaults to x=0.5 and y=2 as per MassBank. These can be
adjusted by the user though.

The aligned weighted vectors are then matched using dot product cosine, reverse dot product cosine
and the composite dot product. See below for dot product cosine equation.

dpc:wq*wl/\/qu2 * \/ZwZQ

See the vigenttes for more details regarding matching algorithms used.

Example LC-MS/MS processing workflow

* Purity assessments

— (mzML files) -> purityA -> (pa)

https://bioconductor.org/packages/release/bioc/vignettes/msPurity/inst/doc/msPurity-spectral-datatabase-schema.html
https://github.com/computational-metabolomics/msp2db/releases
https://github.com/computational-metabolomics/msp2db/releases
https://bioconductor.org/packages/release/bioc/vignettes/msPurity/inst/doc/msPurity-spectral-database-vignette.html

52 spectralMatching

¢ XCMS processing

— (mzML files) -> xcms.findChromPeaks -> (optionally) xcms.adjustRtime -> xcms.groupChromPeaks
-> (xcmsObj)
— — Older versions of XCMS — (mzML files) -> xcms.xcmsSet -> xcms.group -> xcms.retcor
-> xcms.group -> (xcmsObj)
» Fragmentation processing

— (xcmsObj, pa) -> fragdfeature -> filterFragSpectra -> averageAllFragSpectra -> create-
Database -> spectralMatching -> (sqlite spectral database)

Usage

spectralMatching(
q_dbPth,
1_dbPth = NA,
q_purity = NA,
q_ppmProd = 10,
g_ppmPrec = 5,
g_raThres = NA,
q_pol = NA,

g_instrumentTypes = NA,
g_instruments = NA,
g_sources = NA,
g_spectraTypes = c("av_all”, "inter"),
g_pids = NA,

g_rtrange = c(NA, NA),
g_spectraFilter = TRUE,
g_xcmsGroups = NA,
g_accessions = NA,

1 _purity = NA,
1_ppmProd = 10,

1_ppmPrec = 5,
1_raThres = NA,
1_pol = "positive”,

1_instrumentTypes = NA,
1_instruments = NA,
1_sources = NA,
1_spectraTypes = NA,
1_pids = NA,

1_rtrange = c(NA, NA),
1_spectraFilter = FALSE,
1_xcmsGroups = NA,
1_accessions = NA,
usePrecursors = TRUE,

raW = 0.5,
mzW = 2,
rttol = NA,

q_dbType = "sqlite"”,
g_dbName = NA,

spectralMatching

53

q_dbHost = NA,

g_dbUser = NA,
g_dbPass = NA,
g_dbPort = NA,
1_dbType = "sqlite”,
1_dbName = NA,
1_dbHost = NA,
1_dbUser = NA,
1_dbPass = NA,
1_dbPort = NA,

cores = 1,

updateDb = FALSE,
copyDb = FALSE,
outPth = "sm_result.sqlite”

Arguments

q_dbPth

1_dbPth

g_purity

g_ppmProd
q_ppmPrec
g_raThres

g_pol

character; Path of the database of queries that will be searched against the library
spectra. Generated from createDatabase

character; path to library spectral SQLite database. Defaults to msPurityData
package data.

character; Precursor ion purity threshold for the query spectra
numeric; ppm tolerance for query product

numeric; ppm tolerance for query precursor

numeric; Relative abundance threshold for query spectra

character; Polarity of query spectra ("positive’, ‘negative’, NA).

g_instrumentTypes

g_instruments

g_sources

g_spectraTypes

g_pids

g_rtrange

g_spectraFilter

g_xcmsGroups
g_accessions

1 _purity

vector; Instrument types for query spectra.

vector; Instruments for query spectra (note that this is used in combination
with qg_instrumentTypes - any spectra matching either q_instrumentTypes or
g_instruments will be used).

vector; Sources of query spectra (e.g. massbank, hmdb).

character; Spectra types of query spectra to perfrom spectral matching e.g. (’scan’,
av_all’, ’intra’, ’inter’)

vector; pids for query spectra (correspond to column ’pid; in s_peak_meta)

vector; retention time range (in secs) of query spectra, first value mininum time
and second value max e.g. ¢(0, 10) is between 0 and 10 seconds

boolean; For query spectra, if prior filtering performed with msPurity, flag peaks
will be removed from spectral matching

vector; XCMS group ids for query spectra
vector; accession ids to filter query spectra

character; Precursor ion purity threshold for the library spectra (uses interpo-
lated purity - inPurity)

54

spectralMatching
1_ppmProd numeric; ppm tolerance for library product
1_ppmPrec numeric; ppm tolerance for library precursor
1_raThres numeric; Relative abundance threshold for library spectra
1_pol character; Polarity of library spectra ("positive’, ‘negative’, NA)

1_instrumentTypes
vector; Instrument types for library spectra.

1_instruments vector; Instruments for library spectra (note that this is used in combination
with g_instrumentTypes - any spectra matching either q_instrumentTypes or
g_instruments will be used).

1_sources vector; Sources of library spectra (e.g. massbank, hmdb).

1_spectraTypes vector; Spectra type of library spectra to perfrom spectral matching with e.g.
(’scan’, ’av_all’, ’intra’, ’inter’)

1_pids vector; pids for library spectra (correspond to column ’pid; in s_peak_meta)

1_rtrange vector; retention time range (in secs) of library spectra, first value mininum time
and second value max e.g. ¢(0, 10) is between 0 and 10 seconds

1_spectraFilter
boolean; For library spectra, if prior filtering performed with msPurity, flag
peaks will be removed from spectral matching

1_xcmsGroups vector; XCMS group ids for library spectra

1_accessions vector; accession ids to filter library spectra

usePrecursors boolean; If TRUE spectra will be filtered by similarity of precursors based on
ppm range defined by I_ppmPrec and q_ppmPrec

raw numeric; Relative abundance weight for spectra (default to 0.5 as determined by
massbank for ESI data)

mzW numeric; mz weight for spectra (default to 2 as determined by massbank for ESI
data)

rttol numeric ; Tolerance in time range between the library and query spectra reten-
tion time

g_dbType character; Query database type for compound database can be either (sqlite,
postgres or mysql)

g_dbName character; Query database name (only applicable for postgres and mysql)

g_dbHost character; Query database host (only applicable for postgres and mysql)

g_dbUser character; Query database user (only applicable for postgres and mysql)

g_dbPass character; Query database pass - Note this is not secure! use with caution (only
applicable for postgres and mysql)

g_dbPort character; Query database port (only applicable for postgres and mysql)

1_dbType character; Library database type for compound database can be either (sqlite,
postgres or mysql)

1_dbName character; Library database name (only applicable for postgres and mysql)

1_dbHost character; Library database host (only applicable for postgres and mysql)

1_dbUser character; Library database user (only applicable for postgres and mysql)

spectralMatching

1_dbPass

1_dbPort
cores
updateDb
copyDb

outPth

Value

55

character; Library database pass - Note this is not secure! use with caution (only
applicable for postgres and mysql)

character; Library database port (only applicable for postgres and mysql)
numeric; Number of cores to use
boolean; Update the Query SQLite database with the results

boolean; If updating the database - perform on a copy rather thatn the original
query database

character; If copying the database - the path of the new database file

Returns a list containing the following elements

q_dbPth

Path of the query database (this will have been updated with the annotation results if updateDb

argument used)

xcmsMatchedResults

If the geury spectra had XCMS based chromotographic peaks tables (e.g c_peak_groups, c_peaks)
in the sqlite database - it will be possible to summarise the matches for each XCMS grouped feature.
The dataframe contains the following columns

* Ipid - id in database of library spectra

* gpid - id in database of query spectra

* dpc - dot product cosine of the match

* rdpc - reverse dot product cosine of the match

* cdpc - composite dot product cosine of the match

* mcount - number of matching peaks

* allcount - total number of peaks across both query and library spectra

* mpercent - percentage of matching peaks across both query and library spectra

e library_rt - retention time of library spectra

* query_rt - retention time of query spectra

* rtdiff - difference between library and query retention time

e library_precursor_mz - library precursor mz

* query_precursor_mz - query precursor mz

* library_precursor_ion_purity - library precursor ion purity

* query_precursor_ion_purity - query precursor ion purity

* library_accession - library accession value (unique string or number given to eith MoNA or
Massbank data entires)

* library_precursor_type - library precursor type (i.e. adduct)

e library_entry_name - Name given to the library spectra

* inchikey - inchikey of the matched library spectra

56 spectralMatching

¢ library_source_name - source of the spectra (e.g. massbank, gnps)

¢ library_compound_name - name of compound spectra was obtained from

matchedResults

All matched results from the query spectra to the library spectra. Contains the same columns as
above but without the XCMS details. This table is useful to observe spectral matching results for
all MS/MS spectra irrespective of if they are linked to XCMS MS1 features.

list of database details and dataframe summarising the results for the xcms features

Examples

XCMS
Read in MS data

#msmsPths <- list.files(system.file("extdata”, "lcms”, "mzML",

package="msPurityData"”), full.names = TRUE, pattern = "MSMS")
#ms_data = readMSData(msmsPths, mode = 'onDisk', msLevel. = 1)

Find peaks in each file
#cwp <- CentWaveParam(snthresh = 5, noise = 100, ppm = 10, peakwidth = c(3, 30))
#xcmsObj <- xcms::findChromPeaks(ms_data, param = cwp)

Optionally adjust retention time
#xcmsObj <- adjustRtime(xcmsObj , param = ObiwarpParam(binSize = 0.6))

Group features across samples
#pdp <- PeakDensityParam(sampleGroups = c(1, 1), minFraction = @, bw = 30)
#xcmsObj <- groupChromPeaks(xcmsObj , param = pdp)

#====== msPurity
#pa <- purityA(msmsPths)

#pa <- fragd4feature(pa = pa, xcmsObj = xcmsObj)

#pa <- filterFragSpectra(pa, allfrag=TRUE)

#pa <- averageAllFragSpectra(pa)

#q_dbPth <- createDatabase(pa, xcmsObj, metadata=list('polarity'='positive', 'instrument'='Q-Exactive'))
#sm_result <- spectralMatching(qg_dbPth, cores=4, 1_pol='positive')

td <- tempdir()
g_dbPth <- system.file("extdata”, "tests”, "db", "createDatabase_example.sqlite"”, package="msPurity")

rid <- paste@(paste@(sample(LETTERS, 5, TRUE), collapse=""), paste@(sample(9999, 1, TRUE), collapse=""), ".sqlite
sm_out_pth <- file.path(td, rid)

result <- spectralMatching(q_dbPth, g_xcmsGroups = c(53, 89, 410), cores=1, 1_accessions = c('PR100407', 'ML0O05101
g_spectraTypes = 'av_all',
updateDb = TRUE,
copyDb = TRUE,
outPth = sm_out_pth)

spectral_matching 57

spectral_matching Spectral matching deprecated

Description

Perform spectral matching to spectral libraries using dot product cosine on a LC-MS/MS dataset
and link to XCMS features.

msPurity::spectral_matching is deprecated - please use msPurity::spectralMatching for future use

Usage

spectral_matching(
query_db_pth,
ra_thres_1 = 0,
ra_thres_q = 2,
cores =1,
pol = "positive”,
ppm_tol_prod = 10,
ppm_tol_prec = 5,
score_thres = 0.6,
topn = NA,
db_name = NA,
library_db_pth = NA,
instrument_types = NA,
library_sources = "massbank”,
scan_ids = NA,
pa = NA,
xset = NA,
grp_peaklist = NA,

n o n

out_dir = ".",

spectra_type_q = "scans",
ra_thres_t = NA,
target_db_pth = NA,
rt_range = c(NA, NA),

rttol = NA,
match_alg = "dpc”
)
Arguments

query_db_pth character; Path of the database of targets (queries) that will be searched against
the library spectra. Generated either from frag4feature or from create_database
functions.

ra_thres_1 numeric; Relative abundance threshold for library spectra

58

spectral_matching

ra_thres_q numeric; Relative abundance threshold for target (query) spectra (Peaks below
this RA threshold will be excluded)

cores numeric; Number of cores to use

pol character; Polarity [’positive’ or "negative’]

ppm_tol_prod numeric; PPM tolerance to match to product

ppm_tol_prec numeric; PPM tolerance to match to precursor

score_thres numeric; Dot product cosine score threshold
topn numeric [optional]; Only use top n matches
db_name character [optional]; Name of the result database (e.g. can use CAMERA peak-

list)

library_db_pth character [optional]; path to library spectral SQLite database. Defaults to msPu-
rityData package data.

instrument_types
vector [optional]; Vector of instrument types, defaults to all

library_sources
vector [optional]; Vector of library sources. Default option is for massbank only
but the ’lipidblast’ library is also available

scan_ids vector [optional]; Vector of unique scan ids calculated from msPurity "pid".
These scans will on used for the spectral matching. All scans will be used if set
to NA

pa purityA object [optional]; If target_db_pth set to NA, a new database can be

created using pa, xset and grp_peaklist

xset xcms object [optional]; If target_db_pth set to NA, a new database can be created
using pa, xset and grp_peaklist

grp_peaklist dataframe [optional]; If target_db_pth set to NA, a new database can be created
using pa, xset and grp_peaklist

out_dir character [optional]; If target_db_pth set to NA, Out directory for the SQLite
result database

ra_w numeric; Relative abundance weight for spectra
mz_w numeric; mz weight for spectra

spectra_type_q character; Type of fragmentation spectra from query to match with "scans" =
all individual scans, "av_intra" = averaged spectra (intra), "av_inter" = averaged
spectra (inter), "av_all" = averaged all spectra ignoring inter-intra relationships

ra_thres_t numeric [deprecated]; The relative abundance threshold for the query spectra
(use ra_thres_q for future use)

target_db_pth character [deprecated]; The query database path (use query_db_pth for future
use)

rt_range vector [optional]; Vector of rention time range to filter the library spectra (rtmin,
rtmax). Default is to ignore retention time range

rttol numeric [optional]; Tolerance in time range between the Library and Query
database retention time (in seconds) NA to ignore

match_alg character; Can either use dot product cosine (dpc) or match factor (mf) for spec-
tral matching. Defaults to dpc

subtract,purityD-method

Value

list of database details and dataframe summarising the results for the xcms features

Examples

#msmsPths <- list.files(system.file("extdata”, "lcms”, "mzML",

package="msPurityData"), full.names = TRUE,
pattern = "MSMS")

#xset <- xcms::xcmsSet(msmsPths)

#xset <- xcms::group(xset)

#xset <- xcms::retcor(xset)

#xset <- xcms::group(xset)

#pa <- purityA(msmsPths)

#pa <- frag4feature(pa, xset)

#pa <- averageAllFragSpectra(pa)

#db_pth <- create_database(pa, xset)

#g_dbPth <- system.file("extdata”, "tests”, "db",

"create_database_example.sqlite"”, package="msPurity")
#result <- spectral_matching(gq_dbPth, spectra_type_q="av_all")

59

subtract,purityD-method
Using Subtract MZ values based on ppm tolerance and noise ratio

Description

Uses a purityD object with references to multiple MS files. Subtract blank peaks from the sample

peaks see subtractMZ for more information

Usage
S4 method for signature 'purityD'
subtract(
Object,
byClass = TRUE,
mapping = c("sample”, "blank"),
ppm = 5,
s2bthres = 10
)
Arguments
Object object; purityD object
byClass boolean; subtract within each class
mapping parameter not functional (TODO)
ppm numeric = ppm tolerance

s2bthres numeric = threshold for the samp2blank (i1/i2)

60 subtractMZ

Value

purityD object with averaged spectra

See Also

subtractMzZ

Examples

datapth <- system.file("extdata”, "dims”, "mzML", package="msPurityData")
inDF <- Getfiles(datapth, pattern=".mzML", check = FALSE, cStrt = FALSE)

ppDIMS <- purityD(inDF, cores=1)
ppDIMS <- averageSpectra(ppDIMS)
ppDIMS <- filterp(ppDIMS, thr = 5000)
ppDIMS <- subtract(ppDIMS)

subtractMz Subtract MZ values based on ppm tolerance and noise ratio

Description

This function is intended for blank subtraction of mz values from two peaklists. It takes in 2 vectors
of mz values and 2 coresponding vectors of Intensity values.

The second mz values are subtracted from the first set within an MZ tolerance.

However, if the mz match but the intensity is above a defined threshold then they are not subtracted

Usage

subtractMZ(mz1, mz2, i1, i2, ppm = 5, s2bthres = 10)

Arguments

mz1 vector = mz values to start with

mz2 vector = mz values to subtract

i1 vector =i values for mz1

i2 vector = i values for mz2

ppm numeric = ppm tolerance

s2bthres numeric = threshold for the samp2blank (i1/i2)
Value

a vector of the remaining mz values

validate,purity A-method 61

Examples

mz1 <- c(100.001, 200.002, 300.302)
mz2 <- c(100.004, 200.003, 500.101)
i1 <- c(100, 100, 100)

i2 <= c(100, 10000, 100)

subtractMzZ(mz1, mz2, i1, i2, ppm=5, s2bthres =10)

validate,purityA-method

Validate precursor purity predictions using LC-MS and LC-MS/MS
dataset

Description

The method is used to validate the precursor purity predictions made from an LC-MS dataset

Usage

S4 method for signature 'purityA'
validate(pa, ppLCMS)

Arguments
pa object; purityA object
ppLCMS object; purityX object
Value
purityA object

writeOQut,purityD-method
Using purityD object, save peaks as text files

Description

Uses a purityD object with references to multiple MS files. Predicts the purity of the processed
sample files

Usage

S4 method for signature 'purityD'
writeOQut(Object, outDir, original)

62

Arguments

Object
outDir

original

Value

purityD object

writeOut,purityD-method

object; purityD object
character; Directory to save text files

boolean; If the original (unprocessed) files are to be saved to text files

Index

assessPuritySingle, 3,47
averageAllFragSpectra

filterp,purityD-method, 28
flag_remove, 29

(averageAllFragSpectra,purityA-methodfrag4feature

5 (fragdfeature,purityA-method),
averageAllFragSpectra,purityA-method, 31
5 frag4feature,purityA-method, 31

averagelnterFragSpectra
(averageInterFragSpectra,purityA-meth8§ft-additional_mzml_meta, 36

7 Getfiles, 34
averagelInterFragSpectra, purityA-method, getP (getP, purityD-method), 35

7 getP,purityD-method, 35
averagelntraFragSpectra groupPeaks (groupPeaks,purityD-method),

(averagelntraFragSpectra,purityA-method), 36

10 groupPeaks,purityD-method, 36
averagelIntraFragSpectra,purityA-method, groupPeaksEx, 37

10
averageSpectra initialize,purityD-method, 38

(averageSpectra,purityD-method), }wNormGauss,39

12 iwNormQE. 5, 40

averageSpectra,purityD-method, 12 iwNormRcosine, 40

averageSpectraSingle, 13, 14 msPurity, 41

msPurity-package (msPurity), 41
combineAnnotations, 16 urity=e ge (msPurity)

create_database, 22 pcalc, 42

createDatabase, 18 purityA, 4, 43

createMSP (createMSP, purityA-method), 20 purityD (purityD-class), 47

createMSP, purityA-method, 20 purityD-class, 47
purityX, 48

deprecated, 22, 57
dimsPredictPurity show, purityA-method, 49
(dimsPredictPurity,purityD-method), show,purityD-method, 50
23 show, purityX-method, 50
dimsPredictPurity,purityD-method, 23 spectral_matching, 57
dimsPredictPuritySingle, 24, 25 spectralMatching, 51
subtract (subtract,purityD-method), 59

filterFragSpectra subtract,purityD-method, 59
(filterFragSpectra,purityA-method), sybtractMz, 60, 60

26
filterFragSpectra,purityA-method, 26
filterp (filterp,purityD-method), 28

validate (validate,purityA-method), 61
validate, purityA-method, 61

63

64 INDEX

writeOut (writeOut,purityD-method), 61
writeOut,purityD-method, 61

	assessPuritySingle
	averageAllFragSpectra,purityA-method
	averageInterFragSpectra,purityA-method
	averageIntraFragSpectra,purityA-method
	averageSpectra,purityD-method
	averageSpectraSingle
	combineAnnotations
	createDatabase
	createMSP,purityA-method
	create_database
	dimsPredictPurity,purityD-method
	dimsPredictPuritySingle
	filterFragSpectra,purityA-method
	filterp,purityD-method
	flag_remove
	frag4feature,purityA-method
	Getfiles
	getP,purityD-method
	get_additional_mzml_meta
	groupPeaks,purityD-method
	groupPeaksEx
	initialize,purityD-method
	iwNormGauss
	iwNormQE.5
	iwNormRcosine
	msPurity
	pcalc
	purityA
	purityD-class
	purityX
	show,purityA-method
	show,purityD-method
	show,purityX-method
	spectralMatching
	spectral_matching
	subtract,purityD-method
	subtractMZ
	validate,purityA-method
	writeOut,purityD-method
	Index

