Package 'flowMeans'

November 3, 2025

2 changepointDetection

8 Index

flowMeans-package

flowMeans Package

Description

Non-parametric Flow Cytometry Data Gating

Details

Package: flowMeans Type: Package Version: 1.0 2010-03-02 Date:

License: Artistic-2.0 or newer

LazyLoad: yes

Author(s)

Nima Aghaeepour <naghaeep@bccrc.ca>

Examples

```
library(flowMeans)
res <- flowMeans(x, c("FL1.H", "FL2.H", "FL3.H", "FL4.H"), MaxN=10)
plot(x[,c(3,4)], res, c("FL1.H", "FL2.H"))
```

changepointDetection Change-Point Detection

Description

Fits a two-component piecewise linear regression to the minimum distance between merged clusters vs the number of clusters for a list of merged cluster solutions.

Usage

```
changepointDetection(vect, OrthagonalResiduals = FALSE, PlotFlag = FALSE)
```

flowMeans 3

Arguments

vect A vector of minimum distances between clusters chosen to be merged at each

iteration.

OrthagonalResiduals

Boolean value, indicates if the residuals must be transformed to orthagonal dis-

tance or not.

PlotFlag Boolean value, indicating if the regression lines must be visualized.

Value

MinIndex Index of the merging step that produced the final results.

11 First regression line used for finding the changepoint for stopping the merging

process.

Second regression line used for finding the changepoint for stopping the merging

process.

Author(s)

Nima Aghaeepour

Examples

```
library(flowMeans)
data(x)
res <- flowMeans(x, c("FL1.H", "FL2.H", "FL3.H", "FL4.H"), MaxN=10)
ft<-changepointDetection(res@Mins)
plot(res@Mins)
abline(ft$11)
abline(ft$12)</pre>
```

flowMeans

flowMeans

Description

Finds a good fit to the data using k-means clustering algorithm. Then merges the adjacent dense spherical clusters to find non-spherical clusters.

Usage

```
flowMeans(x, varNames=NULL, MaxN = NA, NumC = NA, iter.max = 50, nstart = 10,
Mahalanobis = TRUE, Standardize = TRUE, Update = "Mahalanobis", OrthagonalResiduals=TRUE,
MaxCovN=NA, MaxKernN=NA, addNoise=TRUE)
```

4 flowMeans

Arguments

x A matrix, data frame of observations, or object of class flowFrame. Rows cor-

respond to observations and columns correspond to variables.

varNames A character vector specifying the variables (columns) to be included in cluster-

ing. When it is left unspecified, all the variables will be used.

MaxN Maximum number of clusters. If set to NA (default) the value will be estimated

automatically.

NumC Number of clusters. If set to NA (default) the value will be estimated automati-

cally.

iter.max The maximum number of iterations allowed.

nstart The number of random sets used for initialization.

Mahalanobis Boolean value. If TRUE (default) mahalanobis distance will be used. Other-

wised, euclidean distance will be used.

Standardize Boolean value. If TRUE (default) the data will be transformed to the [0,1] inter-

val.

Update String value. If set to "Mahalanobis" the distance function will be updated

at each merging iteration with recalculating mahalanobis distances. If set to "Mean" the distance matrix will be updated after each merging step with aver-

aging. If set to "None" the distance matrix will not be updated.

MaxCovN Maximum number of points, used for calculating the covariance. If set to NA

(default), all the points will be used.)

Maximum number of points, used for counting the modes using kernel density

estimation. If set to NA (default), all the points will be used.)

addNoise Boolean value. Determines if uniform noise must be added to the data to prevent

singularity issues or not.

OrthagonalResiduals

Boolean value, indicates if the residuals must be transformed to orthagonal dis-

tance or not.

Details

If Mahalanobis distance is not used (i.e., Mahalanobis=FALSE) then the Update value cannot be set to Mahalanobis (i.e., Update="Mahalanobis")

Value

Label A vector of integers indicating the cluster to which each point is allocated.

Labels A list of vectors of integers indicating the cluster to which each point is allocated

at each merging iteration.

Mats A list of distance matrixes between clusters at every merging iteration.

Maximum number of clusters

Mins A vector of integers indicating the distance between the two clusters chosen to

be merged at every iteration.

plot 5

MinIndex Index of the merging step that produced the final results.

Line1 First regression line used for finding the changepoint for stopping the merging

process.

Line2 Second regression line used for finding the changepoint for stopping the merging

process.

Author(s)

Nima Aghaeepour

Examples

plot

Scatterplot of Clustering Results

Description

This method generates scatterplot revealing the cluster assignment.

Usage

```
## S4 method for signature 'ANY,Populations'
plot(x, y, varNames=NULL, ...)
## S4 method for signature 'flowFrame,Populations'
plot(x, y, varNames=NULL, ...)
```

Arguments

x A matrix, data frame of observations, or object of class flowFrame. This is the

object on which flowClust was performed.

y Object returned from flowMeans.

varNames A character vector specifying the variables (columns) to be included in the plot.

When it is left unspecified, all the variables will be used.

... Extra parameters that will be passed to the generic plot function

Author(s)

Nima Aghaeepour <<naghaeep@bccrc.ca>>

See Also

flowMeans

6 summary

Examples

```
library(flowMeans)
data(x)
plot(data.frame(x))
```

show

Show Method for Populations Class

Description

This method lists out the slots contained in a Populations object.

Usage

```
## S4 method for signature 'Populations'
show(object)
```

Arguments

object

Object returned from flowMeans

Author(s)

Nima Aghaeepour <<naghaeep@bccrc.ca>>

See Also

flowMeans

summary

Summary Method for flowMeans Object

Description

This method prints out various characteristics of the populations found by flowMeans.

Usage

```
## S4 method for signature 'Populations'
summary(object,...)
```

Arguments

```
objectObject returned from flowMeans.Object returned from flowMeans.
```

x 7

Details

This method prints out various characteristics of the populations found by flowMeans.

Author(s)

Nima Aghaeepour <<naghaeep@bccrc.ca>>

See Also

flowMeans

Х

xSample

Description

A flow cytometry sample produced for diagnosis of the Graft versus Host Disease (GvHD)

Usage

```
data(x)
```

Format

A matrix describing expression values of 6 markers and 14936 cells. Each column represents a marker and each row represents a cell.

Source

R.R. Brinkman, M. Gasparetto, S.J.J. Lee, A.J. Ribickas, J. Perkins, W. Janssen, R. Smiley, and C. Smith. High-content flow cytometry and temporal data analysis for defining a cellular signature of graft- versus-host disease. Biology of Blood and Marrow Transplantation, 13(6):691?700, 2007.

Examples

```
data(x)
## maybe str(x); plot(x) ...
```

Index

```
* cluster
    flowMeans, 3
    flowMeans-package, 2
* datasets
    x, 7
* graphs
    plot, 5
* multivariate
    flowMeans, 3
    flowMeans-package, 2
* nonparametric
    flowMeans, 3
    flowMeans-package, 2
* print
    show, 6
    summary, 6
changepointDetection, 2
flowMeans, 3, 5-7
flowMeans-package, 2
plot, 5
plot, ANY, Populations (plot), 5
\verb"plot,ANY,Populations-method" (\verb"plot"), 5"
plot,flowFrame,Populations(plot),5
plot, flowFrame, Populations-method
        (plot), 5
show, 6
show, Populations (show), 6
show, Populations-method (show), 6
summary, 6
summary,Populations(summary),6
summary,Populations-method(summary),6
x, 7
```