Package ‘HelloRanges’

November 4, 2025
Type Package

Title Introduce *Ranges to bedtools users

Version 1.37.0

Author Michael Lawrence

Maintainer Michael Lawrence <lawremi@gmail . com>

Description Translates bedtools command-line invocations to R code
calling functions from the Bioconductor *Ranges infrastructure.
This is intended to educate novice Bioconductor users and to
compare the syntax and semantics of the two frameworks.

License GPL (>=2)
Imports docopt, stats, tools, utils

Depends methods, BiocGenerics, S4Vectors (>= 0.17.39), [Ranges (>=
2.13.12), GenomicRanges (>= 1.31.10), Biostrings (>= 2.41.3),
BSgenome, GenomicFeatures (>= 1.31.5), VariantAnnotation (>=
1.19.3), Rsamtools, GenomicAlignments (>= 1.15.7), rtracklayer
(>=1.33.8), Seqinfo, SummarizedExperiment, BiocIO

Suggests GenomelnfoDb, HelloRangesData, BiocStyle, RUnit,
TxDb.Hsapiens.UCSC.hg19.knownGene

biocViews Sequencing, Annotation, Coverage, GenomeAnnotation,
Datalmport, SequenceMatching, VariantAnnotation

git_url https://git.bioconductor.org/packages/HelloRanges
git_branch devel

git_last commit 38fc888

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-11-03

Contents

ArgPArSING . . . v v i e e e e e e

2 argparsing
bedtools_cClosest e 3
bedtools_complement 6
bedtools_coverage L. e e e e 7
bedtools_flank L 10
bedtools_genomecov e e 11
bedtools_getfasta 14
bedtools_groupby e 15
bedtools_intersect e e e e e e e 18
bedtools_jaccard L 20
bedtools_makewindows 23
bedtools_map 24
bedtools_merge 27
bedtools_multiinter e e e 29
bedtools_ nuc L e 30
bedtools_shift e 32
bedtools_slop L 34
bedtools_subtract 35
bedtools_unionbedg 37
distmode e e e 39
PAIT . . e e e e e 40

Index 42

argparsing Argument parsing details

Description

HelloRanges uses docopt for parsing the argument string passed as the cmd argument to functions
like bedtools_intersect. bedtools has its own style of argument formatting. Here we document
the subtle differences.

Details

Here are the specific differences:

* docopt requires that multi-character arguments are prefixed by two hyphens, e.g., ‘--bed’.
However, bedtools expects only a single hyphen. It turns out docopt is robust to the single-
hyphen case, except for the first argument. Since the typical convention is to first indicate the
file, e.g., ‘*-a’ or ‘-1i’, this incompatibility does not often arise in practice.

* docopt does not allow values of argument to be space-separated, while bedtools often ex-
pects space separation for multi-valued arguments. As a compromise, HelloRanges expects
the values to be comma-separated. Thus, ‘-b b.bed c.bed’ needs to be ‘-b b.bed, c.bed’.

* Most shells support nested commands within parentheses, e.g., ‘-b < (grep foo file.bed)’,
but docopt does not support that. Instead, nested commands should be enclosed in double
quotes, e.g., ‘b < "grep foo file.bed"’. Such constructs are supported via pipe.

https://CRAN.R-project.org/package=docopt
https://CRAN.R-project.org/package=docopt
https://CRAN.R-project.org/package=docopt
https://CRAN.R-project.org/package=docopt
https://CRAN.R-project.org/package=docopt

bedtools_closest 3

Author(s)

Michael Lawrence

bedtools_closest bedtools_closest

Description

Finds the features in one dataset that are closest to those in another. Supports restriction by strand,
upstream, downstream, and overlap. There are several methods for resolving ties. Optionally returns
the distance.

Usage

bedtools_closest(cmd = "--help")
R_bedtools_closest(a, b, s = FALSE, S = FALSE, d = FALSE,
D = c("none”, "ref"”, "a", "b"), io = FALSE, iu = FALSE,
id = FALSE, fu = FALSE, fd = FALSE,
t = c("all”, "first”, "last"”), mdb = c("each”, "all"),
k = 1L, names = NULL, filenames = FALSE, N = FALSE)
do_bedtools_closest(a, b, s = FALSE, S = FALSE, d = FALSE,
D = c("none”, "ref", "a", "b"), io = FALSE, iu = FALSE,
id = FALSE, fu = FALSE, fd = FALSE,
t = c("all”, "first", "last"), mdb = c("each”, "all"),
k = 1L, names = NULL, filenames = FALSE, N = FALSE)

Arguments

cmd String of bedtools command line arguments, as they would be entered at the
shell. There are a few incompatibilities between the docopt parser and the bed-
tools style. See argument parsing.

a Path to a BAM/BED/GFF/VCF/etc file, a BED stream, a file object, or a ranged
data structure, such as a GRanges. Each feature in a is compared to b in search
of nearest neighbors. Use "stdin" for input from another process (presum-
ably while running via Rscript). For streaming from a subprocess, prefix the
command string with “<”, e.g., "<grep foo file.bed"”. Any streamed data is
assumed to be in BED format.

b Like a, except supports multiple datasets, either as a vector/list or a comma-
separated string. Also supports file glob patterns, i.e., strings containing the
wildcard, “*”.

s Require same strandedness. That is, find the closest feature in b that overlaps a

on the same strand. By default, overlaps are reported without respect to strand.
Note that this is the exact opposite of Bioconductor behavior.

S Require opposite strandedness. That is, find the closest feature in b that overlaps
a on the opposite strand. By default, overlaps are reported without respect to
strand.

https://CRAN.R-project.org/package=docopt

io

iu

id

fu

fd

mdb

names

filenames

Details

bedtools_closest

In addition to the closest feature in b, report its distance to a as an extra column.
The reported distance for overlapping features will be 0.

Like d, report the closest feature in b, and its distance to a as an extra column.
However unlike d, D conveys a notion of upstream that is useful with other argu-
ments. See details.

Ignore features in b that overlap a. That is, we want close, yet not touching
features only.

Ignore features in b that are upstream of features in a. This option requires D
and follows its orientation rules for determining what is “upstream”.

Ignore features in b that are downstream of features in a. This option requires D
and follows its orientation rules for determining what is “downstream”.

Choose first from features in b that are upstream of features in a. This option
requires D and follows its orientation rules for determining what is “upstream”.

Choose first from features in b that are downstream of features in a. This op-
tion requires D and follows its orientation rules for determining what is “down-
stream”.

Specify how ties for closest feature should be handled. This occurs when two
features in b have exactly the same “closeness” with a. By default, all such
features in b are reported. The modes options are “all”, “first” and “last”.

How multiple databases should be resolved, either “each” (find closest in each
b dataset independently) or “all” (combine all b datasets prior to the search).
Not supported yet. Report the k closest hits. Default is 1. If t is "all”, all ties
will still be reported.

When using multiple databases, provide an alias for each to use instead of their
integer index. If a single string, can be comma-separated.

When using multiple databases, use their complete filename instead of their in-
teger index.

Not yet supported, but related use cases are often solved by passing a single
argument to nearest. Require that the query and the closest hit have different
names. For BED, the 4th column is compared.

As with all commands, there are three interfaces to the closest command:

bedtools_closest Parses the bedtools command line and compiles it to the equivalent R code.

R_bedtools_closest Accepts R arguments corresponding to the command line arguments and
compiles the equivalent R code.

do_bedtools_closest Evaluates the result of R_bedtools_closest. Recommended only for
demonstration and testing. It is best to integrate the compiled code into an R script, after

studying it.

The generated code includes calls to utilities like nearest, precede and follow. nearest lacks the
ability to restrict its search by direction/overlap, so some complex code is generated to support all
of the argument combinations.

Arguments io, iu, id, fu, and fd require a notion of upstream/downstream to be defined via D,
which accepts one of these values:

bedtools_closest 5
ref Report distance with respect to the reference genome. B features with a lower (start, stop) are
“upstream”.

a Report distance with respect to A. When A is on the - strand, “upstream” means B has a higher
(start,stop).

b Report distance with respect to B. When B is on the - strand, “upstream” means A has a higher
(start,stop).

Value

A language object containing the compiled R code, evaluating to a Pairs object with the closest hits
from a and b. If d or D is TRUE, has a metadata column called “distance”.

Author(s)

Michael Lawrence

References

http://bedtools.readthedocs.io/en/latest/content/tools/closest.html

See Also

nearest-methods for the various ways to find the nearest ranges.

Examples

Not run:
setwd(system.file("unitTests"”, "data"”, "closest”, package="HelloRanges"))

End(Not run)

basic

bedtools_closest(”-a a.bed -b b.bed -d")

strand-specific

bedtools_closest(”-a strand-test-a.bed -b strand-test-b.bed -s")

break ties

bedtools_closest(”-a close-a.bed -b close-b.bed -t first")

multiple databases

bedtools_closest(”-a mql.bed -b mdb1.bed,mdb2.bed,mdb3.bed -names a,b,c")
ignoring upstream

bedtools_closest(”-a d.bed -b d_iu.bed -D ref -iu”

http://bedtools.readthedocs.io/en/latest/content/tools/closest.html

6 bedtools_complement

bedtools_complement bedtools_complement

Description

Finds regions of the genome that are not covered by a genomic dataset.

Usage

bedtools_complement(cmd = "--help")
R_bedtools_complement(i, g)
do_bedtools_complement(i, g)

Arguments

cmd String of bedtools command line arguments, as they would be entered at the
shell. There are a few incompatibilities between the docopt parser and the bed-
tools style. See argument parsing.

i Path to a BAM/BED/GFF/VCF/etc file, a BED stream, a file object, or a ranged
data structure, such as a GRanges. Use "stdin"” for input from another process
(presumably while running via Rscript). For streaming from a subprocess, pre-
fix the command string with “<”, e.g., "<grep foo file.bed"”. Any streamed
data is assumed to be in BED format.

g A genome file, identifier or Seqinfo object that defines the order and size of the
sequences.

Details
As with all commands, there are three interfaces to the complement command:

bedtools_complement Parses the bedtools command line and compiles it to the equivalent R code.

R_bedtools_complement Accepts R arguments corresponding to the command line arguments
and compiles the equivalent R code.

do_bedtools_complement Evaluates the result of R_bedtools_complement. Recommended only
for demonstration and testing. It is best to integrate the compiled code into an R script, after
studying it.

The generated code is subtracts, via setdiff, the ranges from the set of ranges representing the
entire genome.

While it may be tempting to call gaps instead, it is very unlikely to behave as expected. The
GenomicRanges set operations treat all three strand values (+, -, *) as separate spaces. gaps takes
as its universe the genome on all three strands, rather than just the “*” strand, resulting in extraneous
stranded ranges.

Value

A language object containing the compiled R code, evaluating to a GRanges object with the com-
plementary ranges.

https://CRAN.R-project.org/package=docopt

bedtools_coverage 7

Author(s)

Michael Lawrence

References

http://bedtools.readthedocs.io/en/latest/content/tools/complement.html

See Also

setops-methods for the various set operations.

Examples

Not run:
setwd(system.file("unitTests”, "data”, "coverage”, package="HelloRanges"))

End(Not run)
bedtools_complement(”-i a.bed -g test.genome")

bedtools_coverage bedtools_coverage

Description

Compute the coverage of one or more datasets over a set of query ranges.

Usage

bedtools_coverage(cmd = "--help")

R_bedtools_coverage(a, b, hist = FALSE, d = FALSE, counts = FALSE,
f = 1e-09, F = 1e-09, r = FALSE, e = FALSE,
s = FALSE, S = FALSE, split = FALSE, g = NA_character_,
header = FALSE, sortout = FALSE)

do_bedtools_coverage(a, b, hist = FALSE, d = FALSE, counts = FALSE,
f = 1e-09, F = 1e-09, r = FALSE, e = FALSE,
s = FALSE, S = FALSE, split = FALSE, g = NA_character_,
header = FALSE, sortout = FALSE)

Arguments

cmd String of bedtools command line arguments, as they would be entered at the
shell. There are a few incompatibilities between the docopt parser and the bed-
tools style. See argument parsing.

a Path to a BAM/BED/GFF/VCF/etc file, a BED stream, a file object, or a ranged
data structure, such as a GRanges. The coverage is computed over these ranges.
Use "stdin” for input from another process (presumably while running via
Rscript). For streaming from a subprocess, prefix the command string with
“<” e.g., "<grep foo file.bed". Any streamed data is assumed to be in BED
format.

http://bedtools.readthedocs.io/en/latest/content/tools/complement.html
https://CRAN.R-project.org/package=docopt

hist

split

header

sortout

Details

bedtools_coverage

Like a, except supports multiple datasets, either as a vector/list or a comma-
separated string. Also supports file glob patterns, i.e., strings containing the
wildcard, “*”. The coverage is computed by counting how many of these ranges
overlap positions in a.

Report a histogram of coverage for each feature in a as well as a summary his-
togram for all features in a. See below for the structure of the returned table.

Report the depth at each position in each a feature. Positions reported are one
based. Each position and depth follow the complete a feature.

Only report the count of overlaps, not fraction, etc. Restricted by f and r.
Minimum overlap required as a fraction of A [default: any overlap].
Minimum overlap required as a fraction of B [default: any overlap].

Require that the fraction of overlap be reciprocal for a and b. In other words, if
f is 0.90 and r is TRUE, this requires that b overlap at least 90% of a and that a
also overlaps at least 90% of b.

Require that the minimum fraction be satisfied for a OR b. In other words, if e
is TRUE with f=0.90 and F=0.10 this requires that either 90% of a is covered
OR 10% of b is covered. If FALSE, both fractions would have to be satisfied.

Force strandedness. That is, only count ranges in b that overlap a on the same
strand. By default, coverage is computed without respect to strand. Note that
this is the exact opposite of Bioconductor behavior.

Require opposite strandedness. That is, count the features in b that overlap a on
the opposite strand. By default, coverage is computed without respect to strand.

Treat split BAM (i.e., having an ‘N’ CIGAR operation) or BED12 entries as
compound ranges with gaps, i.e., as GRangesList objects.

A genome file, identifier or Seqinfo object that defines the order and size of the
sequences.

Ignored.
Sort the result by position.

As with all commands, there are three interfaces to the coverage command:

bedtools_coverage Parses the bedtools command line and compiles it to the equivalent R code.

R_bedtools_coverage Accepts R arguments corresponding to the command line arguments and
compiles the equivalent R code.

do_bedtools_coverage Evaluates the result of R_bedtools_coverage. Recommended only for
demonstration and testing. It is best to integrate the compiled code into an R script, after

studying it.

Typically, we compute coverage with coverage, but features like fractional overlap restriction and
histograms add (educational) complexity. One key trick is the [,List,GenomicRanges method,
which lets us extract coverage vectors for specific regions (see the generated code).

bedtools_coverage 9

Value

A language object containing the compiled R code, evaluating to a GRanges object with coverage
information. The exact type of information depends on the mode:

default Three metadata columns: “count” (the number of overlapping ranges), “cov-
ered” (the number of bases covered in the query), “fraction” (the fraction of
bases covered).

d Metadata column “coverage” is an RleList with position-level coverage (depth).
This is what we typically refer to as coverage in Bioconductor.

hist Metadata column “coverage” is a list of DataFrames. Each DataFrame contains
a histogram of the coverage depth over that range, with columns “coverage” (the
coverage value), “count” (the number of positions with that coverage), “len” (the
length of the region, all the same) and “fraction” (the fraction of positions at that
coverage). There is also a “coverage” component on metadata(ans) with the
same histogram aggregated over all query ranges.

Author(s)

Michael Lawrence

References

http://bedtools.readthedocs.io/en/latest/content/tools/coverage.html

See Also

coverage-methods for ways to compute coverage.

Examples

Not run:
setwd(system.file("unitTests"”, "data", "coverage"”, package="HelloRanges"))

End(Not run)

default behavior

bedtools_coverage(”-a a.bed -b b.bed")

histogram

bedtools_coverage(”-a a.bed -b b.bed -hist -g test.genome")
per-position depth

bedtools_coverage(”-a a.bed -b b.bed -d -g test.genome")

http://bedtools.readthedocs.io/en/latest/content/tools/coverage.html

10 bedtools_flank

bedtools_flank bedtools_flank

Description

Compute flanking regions.

Usage
bedtools_flank(cmd = "--help")
R_bedtools_flank(i, b =0, 1 =0, r = @, s = FALSE, pct = FALSE,
g = NULL, header = FALSE)
do_bedtools_flank(i, b =9, 1 =@, r = 0, s = FALSE, pct = FALSE,
g = NULL, header = FALSE)
Arguments
cmd String of bedtools command line arguments, as they would be entered at the

shell. There are a few incompatibilities between the docopt parser and the bed-
tools style. See argument parsing.

i Path to a BAM/BED/GFF/VCF/etc file, a BED stream, a file object, or a ranged
data structure, such as a GRanges. Use "stdin" for input from another process
(presumably while running via Rscript). For streaming from a subprocess, pre-
fix the command string with “<”, e.g., "<grep foo file.bed"”. Any streamed
data is assumed to be in BED format.

b Increase the BED/GFF/VCEF range by the same number base pairs in each direc-
tion. Integer.

1 The number of base pairs to subtract from the start coordinate. Integer.

r The number of base pairs to add to the end coordinate. Integer.

s Define 1 and r based on strand. For example. if used, 1 is 500 for a negative-
stranded feature, it will add 500 bp to the end coordinate.

pct Define 1 and r as a fraction of the feature length. E.g. if used on a 1000bp
feature, and 1 is 0.50, will add 500 bp upstream..

g Genome file, identifier or Seqinfo object that defines the order and size of the
sequences.

header Ignored.

Details

As with all commands, there are three interfaces to the flank command:

bedtools_flank Parses the bedtools command line and compiles it to the equivalent R code.

R_bedtools_flank Accepts R arguments corresponding to the command line arguments and com-
piles the equivalent R code.

https://CRAN.R-project.org/package=docopt

bedtools_genomecov 11

do_bedtools_flank Evaluates the result of R_bedtools_flank. Recommended only for demon-
stration and testing. It is best to integrate the compiled code into an R script, after studying
it.

We compute the flanks with flank, although flank only computes one side at a time, so we may
call it multiple times.

Value

A language object containing the compiled R code, evaluating to a GRanges object.

Author(s)

Michael Lawrence

References

http://bedtools.readthedocs.io/en/latest/content/tools/flank.html

See Also

intra-range-methods for flank.

Examples

Not run:
setwd(system.file("unitTests"”, "data", "flank”, package="HelloRanges"))

End(Not run)

5 on both sides

r <- bedtools_flank("-i a.bed -b 5 -g tiny.genome")

5 on left side

bedtools_flank("-i a.bed -1 5 -r @ -g tiny.genome")

define left/right in terms of transcription direction
bedtools_flank("-i a.bed -1 5 -r @ -s -g tiny.genome")

bedtools_genomecov bedtools_genomecov

Description

Compute coverage over the genome. By default, this computes a per-chromosome histogram of the
coverage, but options allow for per-position coverage to be returned in different ways.

http://bedtools.readthedocs.io/en/latest/content/tools/flank.html

12

Usage

bedtools_genomecov

bedtools_genomecov(cmd = "--help")
R_bedtools_genomecov(i, g = NA_character_, d = FALSE, dz = FALSE,

bg = FALSE, bga = FALSE, split = FALSE,
strand = c("any”, "+", "-"), 5% = FALSE, ~3° = FALSE,
max = NULL, scale = 1, pc = FALSE, fs = NULL)

do_bedtools_genomecov(i, g = NA_character_, d = FALSE, dz = FALSE,

Arguments

cmd

dz
bg

bga
split

strand
5

3

max

scale

pc

fs

bg = FALSE, bga = FALSE, split = FALSE,
strand = c("any”, "+", "-"), 5% = FALSE, ~3° = FALSE,
max = NULL, scale = 1, pc = FALSE, fs = NULL)

String of bedtools command line arguments, as they would be entered at the
shell. There are a few incompatibilities between the docopt parser and the bed-
tools style. See argument parsing.

Path to a BAM/BED/GFF/VCF/etc file, a BED stream, a file object, or a ranged
data structure, such as a GRanges. Use "stdin" for input from another process
(presumably while running via Rscript). For streaming from a subprocess, pre-
fix the command string with “<”, e.g., "<grep foo file.bed"”. Any streamed
data is assumed to be in BED format.

Genome file, identifier or Seqinfo object that defines the order and size of the
sequences.

Report the depth at each genome position. This causes a GPos object to be
returned.

Same as d, except the zero coverage positions are dropped.

Like d, except returns a GRanges object, which is useful for operating on runs
of coverage. Zero coverage runs are dropped.

Like bg, except the zero coverage runs are retained.

Treat split BAM (i.e., having an ‘N’ CIGAR operation) or BED12 entries as
compound ranges with gaps, i.e., as GRangesList objects.

Calculate coverage of intervals from a specific strand.

Calculate coverage of 5’ positions (instead of entire interval).

Calculate coverage of 3’ positions (instead of entire interval).

Combine all positions with a depth >= max into a single bin in the histogram.

Scale the coverage by a constant factor. Each coverage value is multiplied by
this factor before being reported. Useful for normalizing coverage by, e.g., reads
per million (RPM).

Calculates coverage of intervals from left point of a pair reads to the right point.
Works for BAM files only.

Forces to use the given fragment size instead of read length.

https://CRAN.R-project.org/package=docopt

bedtools_genomecov 13

Details
As with all commands, there are three interfaces to the genomecov command:

bedtools_genomecov Parses the bedtools command line and compiles it to the equivalent R code.

R_bedtools_genomecov Accepts R arguments corresponding to the command line arguments and
compiles the equivalent R code.

do_bedtools_genomecov Evaluates the result of R_bedtools_genomecov. Recommended only
for demonstration and testing. It is best to integrate the compiled code into an R script, after
studying it.

We typically compute the coverage with coverage. Computing the histogram requires more work.

Value

A language object containing the compiled R code, evaluating to an object that depends on the

mode:

default A DataFrame that is a per-chromosome histogram of the coverage that includes
the whole genome margin. Includes columns “seqnames” (the chromosome
name, or “genome”), “coverage” (the coverage value), “count” (the count of
positions covered at that value), “len” (the length of the chromosome/genome),
“fraction” (the fraction of bases covered at the value).

d, dz A GPos object with per-position coverage values.

bg, bga A GRanges object with coverage runs.

Author(s)

Michael Lawrence

References

http://bedtools.readthedocs.io/en/latest/content/tools/genomecov.html

See Also

intra-range-methods for genomecov.

Examples

Not run:
setwd(system.file("unitTests"”, "data"”, "genomecov”, package="HelloRanges"))

End(Not run)

get coverage runs as a GRanges

bedtools_genomecov("-i y.bed -bg -g test.genome")

get coverage depth as a GPos, dropping zero values, ignore junctions
bedtools_genomecov(”-i three_blocks.bam -dz -split"”)

custom fragment size

bedtools_genomecov("-i chip.bam -bg -fs 100")

http://bedtools.readthedocs.io/en/latest/content/tools/genomecov.html

14 bedtools_getfasta

bedtools_getfasta bedtools_getfasta

Description

Query sequence from a FASTA file given a set of ranges, including compound regions like tran-
scripts and junction reads. This assumes the sequence is DNA.

Usage
bedtools_getfasta(cmd = "--help"”)
R_bedtools_getfasta(fi, bed, s = FALSE, split = FALSE)
do_bedtools_getfasta(fi, bed, s = FALSE, split = FALSE)
Arguments
cmd String of bedtools command line arguments, as they would be entered at the
shell. There are a few incompatibilities between the docopt parser and the bed-
tools style. See argument parsing.
fi Path to a FASTA file, or an XStringSet object.
bed Path to a BAM/BED/GFF/VCF/etc file, a BED stream, a file object, or a ranged
data structure, such as a GRanges, as the query. Use "stdin"” for input from
another process (presumably while running via Rscript). For streaming from a
subprocess, prefix the command string with “<”, e.g., "<grep foo file.bed".
Any streamed data is assumed to be in BED format.
s Force strandedness. If the feature occupies the antisense strand, the sequence
will be reverse complemented.
split Given BED12 or BAM input, extract and concatenate the sequences from the
blocks (e.g., exons).
Details

As with all commands, there are three interfaces to the getfasta command:

bedtools_getfasta Parses the bedtools command line and compiles it to the equivalent R code.

R_bedtools_getfasta Accepts R arguments corresponding to the command line arguments and
compiles the equivalent R code.

do_bedtools_getfasta Evaluates the result of R_bedtools_getfasta. Recommended only for
demonstration and testing. It is best to integrate the compiled code into an R script, after
studying it.

It is recommended to retrieve reference sequence using a BSgenome package, either custom or
provided by Bioconductor. Call getSeq to query for specific regions of the BSgenome object. If
one must access a file, consider converting it to 2bit or FA (razip) format for indexed access using
import and its which argument.

But if one must access a FASTA file, we need to read all of it with readDNAStringSet and extract
regions using x[gr], where gr is a GRanges or GRangesList.

https://CRAN.R-project.org/package=docopt

bedtools_groupby 15

Value

A language object containing the compiled R code, evaluating to a DNAStringSet object.

Author(s)

Michael Lawrence

References

http://bedtools.readthedocs.io/en/latest/content/tools/getfasta.html

See Also

getSeq, the primary sequence query interface.

Examples

Not run:
setwd(system.file("unitTests"”, "data", "getfasta”, package="HelloRanges"))

End(Not run)
simple query
bedtools_getfasta(”--fi t.fa -bed blocks.bed")
get spliced transcript/read sequence
bedtools_getfasta(”"--fi t.fa -bed blocks.bed -split”)

bedtools_groupby bedtools_groupby

Description

Query sequence from a FASTA file given a set of ranges, including compound regions like tran-
scripts and junction reads. This assumes the sequence is DNA.

Usage
bedtools_groupby(cmd = "--help”)
R_bedtools_groupby(i, g = 1:3, ¢, o = "sum”, delim=","
do_bedtools_groupby(i, g = 1:3, ¢, o = "sum”, delim=",")
Arguments
cmd String of bedtools command line arguments, as they would be entered at the

shell. There are a few incompatibilities between the docopt parser and the bed-
tools style. See argument parsing.

http://bedtools.readthedocs.io/en/latest/content/tools/getfasta.html
https://CRAN.R-project.org/package=docopt

16

delim

Details

bedtools_groupby

Path to a BAM/BED/GFF/VCF/etc file, a BED stream, a file object, or a ranged
data structure, such as a GRanges. Use "stdin" for input from another process
(presumably while running via Rscript). For streaming from a subprocess, pre-
fix the command string with “<”, e.g., "<grep foo file.bed"”. Any streamed
data is assumed to be in BED format.

Column index(es) for grouping the input. Columns may be comma-separated.
By default, the grouping is by range.

Specify columns (by integer index) from the input file to operate upon (see o
option, below). Multiple columns can be specified in a comma-delimited list.

Specify the operations (by name) that should be applied to the columns indicated
in c¢. Multiple operations can be specified in a comma-delimited list. Recycling
is used to align c and o. See the details for the available operations.

Delimiter character used to collapse strings.

As with all commands, there are three interfaces to the groupby command:

bedtools_groupby Parses the bedtools command line and compiles it to the equivalent R code.

R_bedtools_groupby Accepts R arguments corresponding to the command line arguments and
compiles the equivalent R code.

do_bedtools_groupby Evaluates the result of R_bedtools_groupby. Recommended only for
demonstration and testing. It is best to integrate the compiled code into an R script, after

studying it.

The workhorse for aggregation in R is aggregate and we have extended its interface to make it
more convenient. See aggregate for details.

The following operations are supported (with R translation):

sum sum(X)
min min(X)

max max(X)

absmin min(abs(X))

absmax max(abs(X))

mean mean(X)

median median(X)

mode distmode(X)
antimode distmode(X, anti=TRUE)

collapse unstrsplit(X, delim)

distinct unstrsplit(unique(X), delim)

count lengths(X)

count_distinct lengths(unique(X))
sstdev sd(X) freqtable(X) firstdrop(heads(X, 1L)) lastdrop(tails(X, 1L))

bedtools_groupby 17

For the sake of simplicity, and because the use cases are not clear, we do not support aggregation of
every column. Here are some of the restrictions:

* No support for the last column of GFF (the ragged list of attributes).
* No support for the INFO, FORMAT and GENO fields of VCF.
* No support for the FLAG field of BAM (bedtools does not support this either).

Value

A language object containing the compiled R code, generally evaluating to a DataFrame, with a
column for each grouping variable and each summarized variable. As a special case, if there are no
grouping variables specified, then the grouping is by range, and an aggregated GRanges is returned.

Note

We admit that using column subscripts for ¢ makes code hard to read. All the more reason to just
write R code.

Author(s)

Michael Lawrence

References

http://bedtools.readthedocs.io/en/latest/content/tools/groupby.html

See Also

aggregate-methods for general aggregation.

Examples

Not run:
setwd(system.file("unitTests"”, "data"”, "groupby”, package="HelloRanges"))

End(Not run)

aggregation by range

bedtools_groupby(”-i values3.header.bed -c 5")

average variant qualities by chromosome and reference base
Not run:

indexTabix(bgzip("a_vcfSVtest.vcf"”, overwrite=TRUE), "vcf")

End(Not run)
bedtools_groupby(”-i a_vcfSVtest.vcf.bgz -g 1,4 -c 6 -0 mean”)

http://bedtools.readthedocs.io/en/latest/content/tools/groupby.html

18

bedtools_intersect

bedtools_intersect bedtools_intersect

Description

Finds and/or counts the intersections between two ranged datasets.

Usage

bedtools_intersect(cmd = "--help")
R_bedtools_intersect(a, b, ubam = FALSE, bed = FALSE, wa = FALSE, wb = FALSE,

loj = FALSE, wo = FALSE, wao = FALSE, u = FALSE,
c = FALSE, v = FALSE, f = 1e-09, F = 1e-09,
r = FALSE, e = FALSE, s = FALSE, S = FALSE,
split = FALSE, g = NA_character_, header = FALSE,
names = NULL, filenames = FALSE, sortout = FALSE)

do_bedtools_intersect(a, b, ubam = FALSE, bed = FALSE, wa = FALSE, wb = FALSE,

Arguments

cmd

ubam
bed

wa
wb
loj

loj = FALSE, wo = FALSE, wao = FALSE, u = FALSE,
c = FALSE, v = FALSE, f = 1e-09, F = 1e-09,
r = FALSE, e = FALSE, s = FALSE, S = FALSE,
split = FALSE, g = NA_character_, header = FALSE,
names = NULL, filenames = FALSE, sortout = FALSE)

String of bedtools command line arguments, as they would be entered at the
shell. There are a few incompatibilities between the docopt parser and the bed-
tools style. See argument parsing.

Path to a BAM/BED/GFF/VCF/etc file, a BED stream, a file object, or a ranged
data structure, such as a GRanges. Each feature in a is compared to b in search
of overlaps. Use "stdin" for input from another process (presumably while
running via Rscript). For streaming from a subprocess, prefix the command
string with “<”, e.g., "<grep foo file.bed"”. Any streamed data is assumed to
be in BED format.

Like a, except supports multiple datasets, either as a vector/list or a comma-
separated string. Also supports file glob patterns, i.e., strings containing the
wildcard, “*”.

Not supported yet. Write uncompressed BAM output. The default is write
compressed BAM output.

When using BAM input, return a GRanges (with a “blocks” column) instead of
a GAlignments. For VCF input, return a VRanges instead of a VCF object.
Return the original entry in a for each overlap.

Return the original entry in b for each overlap.

Perform a ‘left outer join’. That is, for each feature in a report each overlap with

IRk

b. If no overlaps are found, report an empty range for b on the “.” sequence.
Implies wa=TRUE and wb=TRUE.

https://CRAN.R-project.org/package=docopt

bedtools_intersect 19

WO Return the number of base pairs of overlap between the two features as the
“overlap_width” metadata column. Implies wa=TRUE and wb=TRUE.

wao Like wo, except it additionally implies 10j=TRUE.

u Like wa, except only the unique entries in a are returned.

c Like wa, except also count the number of hits in b for each range in a and return

the count as the “overlap_count” metadata column.

Like wa, except only report those entries in a that have no overlap in b.
Minimum overlap required as a fraction of a [default: any overlap].
Minimum overlap required as a fraction of b [default: any overlap].

SOmoh <

Require that the fraction of overlap be reciprocal for a and b. In other words, if
f is 0.90 and r is TRUE, this requires that b overlap at least 90% of a and that a
also overlaps at least 90% of b.

e Require that the minimum fraction be satisfied for a OR b. In other words, if e
is TRUE with f=0.90 and F=0.10 this requires that either 90% of a is covered
OR 10% of b is covered. If FALSE, both fractions would have to be satisfied.

s Require same strandedness. That is, find the intersect feature in b that overlaps a

on the same strand. By default, overlaps are reported without respect to strand.
Note that this is the exact opposite of Bioconductor behavior.

S Require opposite strandedness. That is, find the intersect feature in b that over-
laps a on the opposite strand. By default, overlaps are reported without respect
to strand.

split Treat split BAM (i.e., having an ‘N’ CIGAR operation) or BED12 entries as
compound ranges with gaps, i.e., as GRangesList objects.

g A genome file, identifier or Seqinfo object that defines the order and size of the
sequences.

header Ignored.

names When using multiple databases, provide an alias for each to use instead of their
integer index. If a single string, can be comma-separated.

filenames When using multiple databases, use their complete filename instead of their in-
teger index.

sortout Sort the result by genomic coordinate.

Details

As with all commands, there are three interfaces to the intersect command:

bedtools_intersect Parses the bedtools command line and compiles it to the equivalent R code.

R_bedtools_intersect Accepts R arguments corresponding to the command line arguments and
compiles the equivalent R code.

do_bedtools_intersect Evaluates the result of R_bedtools_intersect. Recommended only
for demonstration and testing. It is best to integrate the compiled code into an R script, after
studying it.

This is by far the most complex bedtools command, and it offers a dizzying list of parameters,
many of which are redundant or mutually exclusive. The complexity of the generated code is highest
when using the fractional restriction feature, since no such support exists in the GenomicRanges
overlap routines.

20 bedtools_jaccard

Value

A language object containing the compiled R code, evaluating to a ranges object, the exact type of
which depends on the arguments. If both wa and wb are TRUE, return a Pairs object with the original,
matched up ranges, possibly with metadata columns. By default, the return value is a GAlignments
for BAM input, a VCF object for VCF input, or a GRanges for any other type of input. If bed is
TRUE, BAM input is converted to a GRanges, containing a “blocks” column (encoding the junctions)
if the input is BAM. If the input is VCF, bed=TRUE converts the input to a VRanges.

Author(s)

Michael Lawrence

References

http://bedtools.readthedocs.io/en/latest/content/tools/intersect.html

See Also

setops-methods for set operations including intersect, findOverlaps-methods for different ways to
detect overlaps.

Examples

Not run:
setwd(system.file("unitTests"”, "data"”, "intersect”, package="HelloRanges"))

End(Not run)

return intersecting ranges

bedtools_intersect("-a a.bed -b a.bed")

add count

bedtools_intersect("-a a.bed -b b.bed -c")

restrict by strand and fraction of overlap
bedtools_intersect(”-a a.bed -b b.bed -c -s -f 0.1")

return original 'a' ranges

bedtools_intersect(”-a a.bed -b b.bed -wa")

return both 'a' and 'b' ranges, along with overlap widths
bedtools_intersect(”-a a.bed -b b.bed -wo")

same as above, except left outer join
bedtools_intersect("-a a.bed -b b.bed -wao")

consider read junction structure

bedtools_intersect("”-a three_blocks.bam -b three_blocks_nomatch.bed -split”)

bedtools_jaccard bedtools_jaccard

Description

Compare two sets of genomic regions using the Jaccard statistic, defined as the total width of the
intersection, divided by the total width of the union.

http://bedtools.readthedocs.io/en/latest/content/tools/intersect.html

bedtools_jaccard

Usage

21

bedtools_jaccard(cmd = "--help”)

R_bedtools_jaccard(a, b, f = 1e-09, F = 1e-09, r

= FALSE, e = FALSE,
FALSE)

s = FALSE, S = FALSE, split
do_bedtools_jaccard(a, b, f = 1e-09, F = 1e-09, r = FALSE, e = FALSE,
s = FALSE, S = FALSE, split = FALSE)

Arguments

cmd

split

Details

String of bedtools command line arguments, as they would be entered at the
shell. There are a few incompatibilities between the docopt parser and the bed-
tools style. See argument parsing.

Path to a BAM/BED/GFF/VCF/etc file, a BED stream, a file object, or a ranged
data structure, such as a GRanges. Use "stdin" for input from another process
(presumably while running via Rscript). For streaming from a subprocess, pre-
fix the command string with “<”, e.g., "<grep foo file.bed"”. Any streamed
data is assumed to be in BED format.

Like a, except supports multiple datasets, either as a vector/list or a comma-
separated string. Also supports file glob patterns, i.e., strings containing the
wildcard, “*”.

Minimum overlap required as a fraction of a [default: any overlap].
Minimum overlap required as a fraction of b [default: any overlap].

Require that the fraction of overlap be reciprocal for a and b. In other words, if
f 15 0.90 and r is TRUE, this requires that b overlap at least 90% of a and that a
also overlaps at least 90% of b.

Require that the minimum fraction be satisfied for a OR b. In other words, if e
is TRUE with f=0.90 and F=0.10 this requires that either 90% of a is covered
OR 10% of b is covered. If FALSE, both fractions would have to be satisfied.

Require same strandedness. That is, find the jaccard feature in b that overlaps a
on the same strand. By default, overlaps are reported without respect to strand.
Note that this is the exact opposite of Bioconductor behavior.

Require opposite strandedness. That is, find the jaccard feature in b that overlaps
a on the opposite strand. By default, overlaps are reported without respect to
strand.

Treat split BAM (i.e., having an ‘N’ CIGAR operation) or BED12 entries as
compound ranges with gaps, i.e., as GRangesList objects.

As with all commands, there are three interfaces to the jaccard command:

bedtools_jaccard Parses the bedtools command line and compiles it to the equivalent R code.

R_bedtools_jaccard Accepts R arguments corresponding to the command line arguments and
compiles the equivalent R code.

https://CRAN.R-project.org/package=docopt

22 bedtools_jaccard

do_bedtools_jaccard Evaluates the result of R_bedtools_jaccard. Recommended only for
demonstration and testing. It is best to integrate the compiled code into an R script, after
studying it.

This is mostly just intersect and union, except when fractional overlap restrictions are involved.

Value

A language object containing the compiled R code, evaluating to a a DataFrame with four columns:

intersection total width of intersection
union total width of union

jaccard the jaccard statistic

n_intersections
the number of ranges representing the intersection

Author(s)

Michael Lawrence

References

http://bedtools.readthedocs.io/en/latest/content/tools/jaccard.html

See Also

setops-methods for set operations including intersect and union.

Examples

Not run:
setwd(system.file("unitTests"”, "data"”, "jaccard”, package="HelloRanges"))

End(Not run)

basic

bedtools_jaccard(”-a a.bed -b a.bed")

excluding the gaps in compound ranges

bedtools_jaccard(”-a three_blocks_match.bed -b e.bed -split")

strand and fractional overlap restriction

bedtools_jaccard(”-a aMixedStrands.bed -b bMixedStrands.bed -s -f 0.8")

http://bedtools.readthedocs.io/en/latest/content/tools/jaccard.html

bedtools_makewindows 23

bedtools_makewindows bedtools_makewindows

Description

Generate a partitioning/tiling or set of sliding windows over the genome or a set of ranges.

Usage

bedtools_makewindows(cmd = "--help”)
R_bedtools_makewindows(b, g = NA_character_, w, s, n)
do_bedtools_makewindows(b, g = NA_character_, w, s, n)

Arguments

cmd String of bedtools command line arguments, as they would be entered at the
shell. There are a few incompatibilities between the docopt parser and the bed-
tools style. See argument parsing.

b Path to a BAM/BED/GFF/VCF/etc file, a BED stream, a file object, or a ranged
data structure, such as a GRanges. Use "stdin"” for input from another process
(presumably while running via Rscript). For streaming from a subprocess, pre-
fix the command string with “<”, e.g., "<grep foo file.bed"”. Any streamed
data is assumed to be in BED format. Windows are generated with each range.
Exclusive with g.

g A genome file, identifier or Seqinfo object that defines the order and size of the
sequences. Specifying this generates windows over the genome. Exclusive with
b.
w Window size, exclusive with n.
S Step size (generates sliding windows).
n Number of windows, exclusive with w.
Details

As with all commands, there are three interfaces to the makewindows command:

bedtools_makewindows Parses the bedtools command line and compiles it to the equivalent R
code.

R_bedtools_makewindows Accepts R arguments corresponding to the command line arguments
and compiles the equivalent R code.

do_bedtools_makewindows Evaluates the result of R_bedtools_makewindows. Recommended
only for demonstration and testing. It is best to integrate the compiled code into an R script,
after studying it.

We view the generation of a partitioning (or tiling) as a distinct use case from the generation of
sliding windows. The two use cases correspond to the tile and slidingWindows functions, re-
spectively.

https://CRAN.R-project.org/package=docopt

24 bedtools_map

Value
A language object containing the compiled R code, evaluating to a a GRangesList containing the
windows for each range (or chromosome).

Author(s)

Michael Lawrence

References

http://bedtools.readthedocs.io/en/latest/content/tools/makewindows.html

See Also

tile-methods for generating windows.

Examples

Not run:
setwd(system.file("unitTests”, "data"”, "makewindows”, package="HelloRanges"))

End(Not run)

tiles of width 5000

bedtools_makewindows("-b input.bed -w 5000")

sliding windows, 5kb wide, every 2kb
bedtools_makewindows("-b input.bed -w 5000 -s 2000")
3 tiles in each range

bedtools_makewindows("-b input.bed -n 3")

3 tiles for each chromosome of the genome
bedtools_makewindows("-g test.genome -n 3")

bedtools_map bedtools_map

Description

Group ranges by overlap with query ranges and aggregate. By default, the scores are summed.

Usage

bedtools_map(cmd = "--help"”)
R_bedtools_map(a, b, ¢ = "5", o = "sum”, f = 1e-09, F = 1e-09,
r = FALSE, e = FALSE, s = FALSE, S = FALSE, header = FALSE,
split = FALSE, g = NA_character_, delim=","
do_bedtools_map(a, b, ¢ = "5", o = "sum", f = 1e-09, F = 1e-09,
r = FALSE, e = FALSE, s = FALSE, S = FALSE, header = FALSE,
split = FALSE, g = NA_character_, delim=",")

http://bedtools.readthedocs.io/en/latest/content/tools/makewindows.html

bedtools_map

Arguments

cmd

header

split

delim

Details

25

String of bedtools command line arguments, as they would be entered at the
shell. There are a few incompatibilities between the docopt parser and the bed-
tools style. See argument parsing.

Path to a BAM/BED/GFF/VCF/etc file, a BED stream, a file object, or a ranged
data structure, such as a GRanges. Use "stdin"” for input from another process
(presumably while running via Rscript). For streaming from a subprocess, pre-
fix the command string with “<”, e.g., "<grep foo file.bed"”. Any streamed
data is assumed to be in BED format. Windows are generated with each range.
Exclusive with g. A summary of b is computed for each range.

Like a, except supports multiple datasets, either as a vector/list or a comma-
separated string. Also supports file glob patterns, i.e., strings containing the
wildcard, “*”. Ranges that map to the same range in a are aggregated.

Specify columns (by integer index) from the input file to operate upon (see o
option, below). Multiple columns can be specified in a comma-delimited list.
Defaults to the score column.

Specify the operations (by name) that should be applied to the columns indicated
in c. Multiple operations can be specified in a comma-delimited list. Recycling
is used to align ¢ and o. See bedtools_groupby for the available operations.
Defaults to the “sum” operation.

Minimum overlap required as a fraction of a [default: any overlap].
Minimum overlap required as a fraction of b [default: any overlap].

Require that the fraction of overlap be reciprocal for a and b. In other words, if
f is 0.90 and r is TRUE, this requires that b overlap at least 90% of a and that a
also overlaps at least 90% of b.

Require that the minimum fraction be satisfied for a OR b. In other words, if e
is TRUE with f=0.90 and F=0.10 this requires that either 90% of a is covered
OR 10% of b is covered. If FALSE, both fractions would have to be satisfied.

Require same strandedness. That is, find the jaccard feature in b that overlaps a
on the same strand. By default, overlaps are reported without respect to strand.
Note that this is the exact opposite of Bioconductor behavior.

Require opposite strandedness. That is, find the jaccard feature in b that overlaps
a on the opposite strand. By default, overlaps are reported without respect to
strand.

Ignored.

Treat split BAM (i.e., having an ‘N’ CIGAR operation) or BED12 entries as
compound ranges with gaps, i.e., as GRangesList objects.

A genome file, identifier or Seqinfo object that defines the order and size of the
sequences.

Delimiter character used to collapse strings.

As with all commands, there are three interfaces to the map command:

https://CRAN.R-project.org/package=docopt

26 bedtools_map

bedtools_map Parses the bedtools command line and compiles it to the equivalent R code.

R_bedtools_map Accepts R arguments corresponding to the command line arguments and com-
piles the equivalent R code.

do_bedtools_map Evaluates the result of R_bedtools_map. Recommended only for demonstra-

tion and testing. It is best to integrate the compiled code into an R script, after studying it.
Computing overlaps with findOverlaps generates a Hits object, which we can pass directly to
aggregate to aggregate the subject features that overlap the same range in the query.

There are several commands in the bedtools suite that might be approximately implemented
by passing multiple files to b and specifying the aggregate expression table(b). That counts
how many ranges from each database/sample overlap a given query. The covered commands are:
bedtools annotate -counts, bedtools multicov and bedtools tag.

Value
A language object containing the compiled R code, evaluating to a DataFrame with a “grouping”
column corresponding to as(hits, "List"), and a column for each summary.

Note
We do not support the bedtools null argument, because it seems more sensible to just let R decide
on the value of statistics when a group is empty.

Author(s)

Michael Lawrence

References

http://bedtools.readthedocs.io/en/latest/content/tools/map.html

See Also

findOverlaps-methods for finding hits, Hits-class for manipulating them, aggregate-methods for
aggregating them.

Examples

Not run:
setwd(system.file("unitTests"”, "data”, "map"”, package="HelloRanges"))

End(Not run)

default behavior

bedtools_map(”-a ivls.bed -b values.bed")

take the mode of the scores

bedtools_map(”-a ivls.bed -b values.bed -o mode")

collapse the chromosome names

bedtools_map(”-a ivls.bed -b test.gff2 -c 1 -o collapse”)

collapse the names, restricted by fractional overlap
bedtools_map(”-a ivls2.bed -b values5.bed -c 4 -o collapse -f 0.7")

http://bedtools.readthedocs.io/en/latest/content/tools/map.html

bedtools_merge

27

bedtools_merge

bedtools_merge

Description

Collapse overlapping and adjacent ranges into a single range, i.e., reduce the ranges. Then, group
the original ranges by reduced range and aggregate. By default, the scores are summed.

Usage
bedtools_merge(cmd = "--help"”)
R_bedtools_merge(i, s = FALSE, S = c("any”, "+", "=-"), d = 0L, c = NULL,
o = "sum", delim = ")"
do_bedtools_merge(i, s = FALSE, S = c("any", "+", "=-"), d = @L, ¢ = NULL,
o = "sum”, delim = ",”
Arguments

cmd String of bedtools command line arguments, as they would be entered at the
shell. There are a few incompatibilities between the docopt parser and the bed-
tools style. See argument parsing.

i Path to a BAM/BED/GFF/VCF/etc file, a BED stream, a file object, or a ranged
data structure, such as a GRanges. Use "stdin" for input from another process
(presumably while running via Rscript). For streaming from a subprocess, pre-
fix the command string with “<”, e.g., "<grep foo file.bed"”. Any streamed
data is assumed to be in BED format. These are the ranges that are merged.

s Require same strandedness. That is, find the jaccard feature in b that overlaps a
on the same strand. By default, overlaps are reported without respect to strand.
Note that this is the exact opposite of Bioconductor behavior.

S Force merge for one specific strand only. Follow with + or - to force merge from
only the forward or reverse strand, respectively. By default, merging is done
without respect to strand.

d Maximum distance between features allowed for features to be merged. Default
is 0. That is, overlapping and/or book-ended features are merged.

c Specify columns (by integer index) from the input file to operate upon (see o
option, below). Multiple columns can be specified in a comma-delimited list.

o Specify the operations (by name) that should be applied to the columns indicated
in c. Multiple operations can be specified in a comma-delimited list. Recycling
is used to align c and o. See bedtools_groupby for the available operations.
Defaults to the “sum” operation.

delim Delimiter character used to collapse strings.

https://CRAN.R-project.org/package=docopt

28 bedtools_merge

Details
As with all commands, there are three interfaces to the merge command:

bedtools_merge Parses the bedtools command line and compiles it to the equivalent R code.

R_bedtools_merge Accepts R arguments corresponding to the command line arguments and com-
piles the equivalent R code.

do_bedtools_merge Evaluates the result of R_bedtools_merge. Recommended only for demon-
stration and testing. It is best to integrate the compiled code into an R script, after studying
it.

The workhorse for reduction is reduce. Passing with.revmap=TRUE to reduce causes it to return

a list of integers, which can be passed directly to aggregate to aggregate the original ranges.

Since the grouping information is preserved in the result, this function serves as a proxy for bedtools
cluster.

Value

A language object containing the compiled R code, evaluating to a DataFrame with a “grouping”
column corresponding to as(hits, "List"), and a column for each summary.

Author(s)

Michael Lawrence

References

http://bedtools.readthedocs.io/en/latest/content/tools/merge.html

See Also

bedtools_groupby for more details on bedtools-style aggregation, reduce for merging, aggregate-
methods for aggregating.

Examples

Not run:
setwd(system.file("unitTests”, "data", "merge"”, package="HelloRanges"))

End(Not run)

default behavior, sum the score

bedtools_merge(”-i a.bed")

count the segnames

bedtools_merge(”-i a.bed -¢c 1 -0 count")

collapse the names using "|" as the delimiter
bedtools_merge(”-i a.names.bed -delim \"|\" -c 4 -o collapse”)
collapse the names and sum the scores
bedtools_merge(”-i a.full.bed -c 4,5 -o collapse,sum”)
count and sum the scores

bedtools_merge("-i a.full.bed -c 5 -o count,sum")

only merge the positive strand features
bedtools_merge(”-i a.full.bed -S +")

http://bedtools.readthedocs.io/en/latest/content/tools/merge.html

bedtools_multiinter

29

bedtools_multiinter bedtools_multiinter

Description

Summarize the ranges according to disjoin and annotate each disjoint range with the samples that

overlap the range.

Usage

bedtools_multiinter(cmd = "--help")
R_bedtools_multiinter(i, header=FALSE, names=NULL, g=NA_character_,

empty=FALSE)

do_bedtools_multiinter(i, header=FALSE, names=NULL, g=NA_character_,

Arguments

cmd

header

names

empty

Details

empty=FALSE)

String of bedtools command line arguments, as they would be entered at the
shell. There are a few incompatibilities between the docopt parser and the bed-
tools style. See argument parsing.

Paths to BAM/BED/GFF/VCF/etc files (vector or comma-separated), or a list of
objects.

Ignored.

Provide an alias for each to use for each i instead of their integer index. If a
single string, can be comma-separated.

A genome file, identifier or Seqinfo object that defines the order and size of the
sequences.

Report empty regions (i.e., regions not covered in any of the files). This essen-
tially yields a partitioning of the genome (and thus requires g to be specified).

As with all commands, there are three interfaces to the multiinter command:

bedtools_multiinter Parses the bedtools command line and compiles it to the equivalent R code.

R_bedtools_multiinter Accepts R arguments corresponding to the command line arguments
and compiles the equivalent R code.

do_bedtools_multiinter Evaluates the result of R_bedtools_multiinter. Recommended only
for demonstration and testing. It is best to integrate the compiled code into an R script, after

studying it.

The workhorse is disjoin. Passing with.revmap=TRUE to disjoin causes it to return a list of
integers, which we use to extract the sample identifiers. The empty case requires a bit more code,
because we have to combine the disjoint ranges with the gaps.

https://CRAN.R-project.org/package=docopt

30 bedtools_nuc

Value

1332
1

A language object containing the compiled R code, evaluating to a GRanges with a column
indicating the sample memberships.

Author(s)

Michael Lawrence

References

http://bedtools.readthedocs.io/en/latest/content/tools/multiinter.html

See Also

disjoin for forming disjoint ranges.

Examples

Not run:
setwd(system.file("unitTests"”, "data”, "multiinter”, package="HelloRanges"))

End(Not run)

default behavior

bedtools_multiinter(”-i a.bed,b.bed,c.bed")

custom names

bedtools_multiinter(”-i a.bed,b.bed,c.bed -names A,B,C")

include empty regions, i.e., partition the genome

bedtools_multiinter(”-i a.bed,b.bed,c.bed -names A,B,C -empty -g test.genome")

bedtools_nuc bedtools_nuc

Description

Summarize DNA sequences over the specified ranges.

Usage

bedtools_nuc(cmd = "--help"”)
R_bedtools_nuc(fi, bed, s = FALSE, pattern = NULL, fullHeader = FALSE)
do_bedtools_nuc(fi, bed, s = FALSE, pattern = NULL, fullHeader = FALSE)

http://bedtools.readthedocs.io/en/latest/content/tools/multiinter.html

bedtools_nuc 31

Arguments
cmd String of bedtools command line arguments, as they would be entered at the
shell. There are a few incompatibilities between the docopt parser and the bed-
tools style. See argument parsing.
fi Path to a FASTA file, or an XStringSet.
bed Path to a BAM/BED/GFF/VCF/etc file, a BED stream, a file object, or a ranged
data structure, such as a GRanges, as the query. Use "stdin"” for input from
another process (presumably while running via Rscript). For streaming from a
subprocess, prefix the command string with “<”, e.g., "<grep foo file.bed".
Any streamed data is assumed to be in BED format.
s Force strandedness. If the feature occupies the antisense strand, the sequence
will be reverse complemented.
pattern Optional sequence pattern to count in each subsequence.
fullHeader Use the full FASTA header as the names. By default, use just the first word.
Details

As with all commands, there are three interfaces to the nuc command:

bedtools_nuc Parses the bedtools command line and compiles it to the equivalent R code.

R_bedtools_nuc Accepts R arguments corresponding to the command line arguments and com-
piles the equivalent R code.

do_bedtools_nuc Evaluates the result of R_bedtools_nuc. Recommended only for demonstra-
tion and testing. It is best to integrate the compiled code into an R script, after studying it.

Computes AT/GC percentage and counts each type of base. Relies on Biostrings utilities like
letterFrequency and alphabetFrequency. The counting of pattern occurrences uses vcountPattern.
Value

A language object containing the compiled R code, evaluating to a DataFrame with summary statis-
tics including the AC and GT percentage, and the counts of each type of base. Also includes the
count of pattern, if specified.

Author(s)

Michael Lawrence

References

http://bedtools.readthedocs.io/en/latest/content/tools/nuc.html

See Also

letterFrequency for summarizing sequences, matchPattern for pattern matching.

https://CRAN.R-project.org/package=docopt
http://bedtools.readthedocs.io/en/latest/content/tools/nuc.html

32

Examples

Not run:

bedtools_shift

n n

setwd(system.file("unitTests"”, "data”, "nuc"”, package="HelloRanges"))

End(Not run)

default behavior, note the two dashes in '--fi'
bedtools_nuc("--fi test.fasta -bed a.bed")

with pattern counting

bedtools_nuc("--fi test.fasta -bed a.bed -pattern ATA")

bedtools_shift

bedtools_shift

Description

Compute shifting regions.

Usage
bedtools_shift(cmd = "--help")
R_bedtools_shift(i, s = @, m = 0@, p = @, pct = FALSE, g = NULL, header = FALSE)
do_bedtools_shift(i, s =@, m =0, p = @, pct = FALSE, g = NULL, header = FALSE)

Arguments

cmd

header

String of bedtools command line arguments, as they would be entered at the
shell. There are a few incompatibilities between the docopt parser and the bed-
tools style. See argument parsing.

Path to a BAM/BED/GFF/VCF/etc file, a BED stream, a file object, or a ranged
data structure, such as a GRanges. Use "stdin” for input from another process
(presumably while running via Rscript). For streaming from a subprocess, pre-
fix the command string with “<”, e.g., "<grep foo file.bed"”. Any streamed
data is assumed to be in BED format.

Amount to shift all features.
Amount to shift negative strand features.
Amount to shift positive strand features.

Define 1 and r as a fraction of the feature length. E.g. if used on a 1000bp
feature, and 1 is 0.50, will shift 500 bp upstream..

Genome file, identifier or Seqinfo object that defines the order and size of the
sequences.

Ignored.

https://CRAN.R-project.org/package=docopt

bedtools_shift 33

Details

As with all commands, there are three interfaces to the shift command:

bedtools_shift Parses the bedtools command line and compiles it to the equivalent R code.

R_bedtools_shift Accepts R arguments corresponding to the command line arguments and com-
piles the equivalent R code.

do_bedtools_shift Evaluates the result of R_bedtools_shift. Recommended only for demon-
stration and testing. It is best to integrate the compiled code into an R script, after studying
it.

This is a fairly straight-forward application of shift.

Value

A language object containing the compiled R code, evaluating to a GRanges, or similar, object. In
principle, this is an endomorphism.

Author(s)

Michael Lawrence

References

http://bedtools.readthedocs.io/en/latest/content/tools/shift.html

See Also

intra-range-methods for shif't.

Examples

Not run:
setwd(system.file("unitTests"”, "data", "shift"”, package="HelloRanges"))

End(Not run)

shift all ranges by 5

bedtools_shift("-i a.bed -s 5 -g tiny.genome")

shift only the negative strand features by 5
bedtools_shift("-i a.bed -p @ -m 5 -g tiny.genome")

http://bedtools.readthedocs.io/en/latest/content/tools/shift.html

34

bedtools_slop

bedtools_slop bedtools_slop

Description

Widen ranges on the left and/or right side.

Usage
bedtools_slop(cmd = "--help")
R_bedtools_slop(i, b =0, 1 =0, r =0, s = FALSE, pct = FALSE,
g = NULL, header = FALSE)
do_bedtools_slop(i, b =@, 1 =0, r = 0, s = FALSE, pct = FALSE,
g = NULL, header = FALSE)
Arguments
cmd String of bedtools command line arguments, as they would be entered at the
shell. There are a few incompatibilities between the docopt parser and the bed-
tools style. See argument parsing.
i Path to a BAM/BED/GFF/VCF/etc file, a BED stream, a file object, or a ranged
data structure, such as a GRanges. Use "stdin" for input from another process
(presumably while running via Rscript). For streaming from a subprocess, pre-
fix the command string with “<”, e.g., "<grep foo file.bed"”. Any streamed
data is assumed to be in BED format.
b Widen the same number base pairs in each direction.
1 The number of base pairs to subtract from the start coordinate.
r The number of base pairs to add to the end coordinate.
s Define 1 and r based on strand. For example. if TRUE, 1=500 for a negative-
stranded feature will add 500 bp to the end coordinate.
pct Define 1 and r as a fraction of the feature length. E.g. if used on a 1000bp
feature, and 1 is 0.50, will add 500 bp upstream.
g Genome file, identifier or Seqinfo object that defines the order and size of the
sequences.
header Ignored.
Details

As with all commands, there are three interfaces to the slop command:

bedtools_slop Parses the bedtools command line and compiles it to the equivalent R code.

R_bedtools_slop Accepts R arguments corresponding to the command line arguments and com-
piles the equivalent R code.

https://CRAN.R-project.org/package=docopt

bedtools_subtract 35

do_bedtools_slop Evaluates the result of R_bedtools_slop. Recommended only for demon-
stration and testing. It is best to integrate the compiled code into an R script, after studying
it.

This is a fairly straight-forward application of resize and the + operator on GRanges.

Value
A language object containing the compiled R code, evaluating to a GRanges, or similar, object. In
principle, this is an endomorphism.

Author(s)

Michael Lawrence

References

http://bedtools.readthedocs.io/en/latest/content/tools/slop.html

See Also

intra-range-methods for resize.

Examples

Not run:
setwd(system.file("unitTests”, "data”, "slop”, package="HelloRanges"))

End(Not run)

widen on both ends

bedtools_slop("-i a.bed -b 5 -g tiny.genome")

widen only on the left end

bedtools_slop("-i a.bed -1 5 -r @ -g tiny.genome")

bedtools_subtract bedtools_subtract

Description

Subtracts one set of ranges from another, either by position or range.

Usage

bedtools_subtract(cmd = "--help")

R_bedtools_subtract(a, b, f = 1e-09, F = 1e-09, r = FALSE, e = FALSE,
s = FALSE, S = FALSE, A = FALSE, N = FALSE,
g = NA_character_)

do_bedtools_subtract(a, b, f = 1e-09, F = 1e-09, r = FALSE, e = FALSE,
s = FALSE, S = FALSE, A = FALSE, N = FALSE,
g = NA_character_)

http://bedtools.readthedocs.io/en/latest/content/tools/slop.html

36 bedtools_subtract

Arguments

cmd String of bedtools command line arguments, as they would be entered at the
shell. There are a few incompatibilities between the docopt parser and the bed-
tools style. See argument parsing.

a Path to a BAM/BED/GFF/VCF/etc file, a BED stream, a file object, or a ranged
data structure, such as a GRanges. Each feature in a is compared to b in search
of overlaps. Use "stdin"” for input from another process (presumably while
running via Rscript). For streaming from a subprocess, prefix the command
string with “<”, e.g., "<grep foo file.bed"”. Any streamed data is assumed to

be in BED format.

b Like a, except supports multiple datasets, either as a vector/list or a comma-
separated string. Also supports file glob patterns, i.e., strings containing the
wildcard, “*”.

f Minimum overlap required as a fraction of a [default: any overlap].

F Minimum overlap required as a fraction of b [default: any overlap].

r Require that the fraction of overlap be reciprocal for a and b. In other words, if

f is 0.90 and r is TRUE, this requires that b overlap at least 90% of a and that a
also overlaps at least 90% of b.

e Require that the minimum fraction be satisfied for a OR b. In other words, if e
is TRUE with f=0.90 and F=0.1@ this requires that either 90% of a is covered
OR 10% of b is covered. If FALSE, both fractions would have to be satisfied.

s Require same strandedness. That is, find the subtract feature in b that overlaps a
on the same strand. By default, overlaps are reported without respect to strand.
Note that this is the exact opposite of Bioconductor behavior.

S Require opposite strandedness. That is, find the subtract feature in b that over-
laps a on the opposite strand. By default, overlaps are reported without respect
to strand.

A Remove entire feature if any overlap. If a feature in a overlaps one in b, the
entire feature is removed.

N Same as A=TRUE except when considering f the numerator in the fraction is the
sum of the overlap for all overlapping features in b.

g A genome file, identifier or Seqinfo object that defines the order and size of the
sequences.

Details

As with all commands, there are three interfaces to the subtract command:

bedtools_subtract Parses the bedtools command line and compiles it to the equivalent R code.

R_bedtools_subtract Accepts R arguments corresponding to the command line arguments and
compiles the equivalent R code.

do_bedtools_subtract Evaluates the result of R_bedtools_subtract. Recommended only for
demonstration and testing. It is best to integrate the compiled code into an R script, after
studying it.

https://CRAN.R-project.org/package=docopt

bedtools_unionbedg 37

We typically subtract sets of ranges using setdiff; however, that will not work here, because we
cannot merge the ranges in a.

The algorithm has two modes: by position (where ranges are clipped) and by range (where ranges
are discarded entirely). The position mode is the default. We find overlaps, optionally restrict them,
and for each range in a, we subtract all of the qualifying intersections in b.

When A or N are TRUE, we use the second mode. In the simplest case, that is just subsetByOverlaps
with invert=TRUE, but fractional overlap restrictions and N make that more complicated.

Value

A language object containing the compiled R code, evaluating to a GRanges object, except when A
or N are TRUE, where the value might be a GRanges, GAlignments or VCF object, depending on the
input.

Author(s)

Michael Lawrence

References

http://bedtools.readthedocs.io/en/latest/content/tools/subtract.html

See Also

setops-methods for set operations including setdiff, findOverlaps-methods for different ways to
detect overlaps.

Examples

Not run:
setwd(system.file("unitTests"”, "data"”, "subtract”, package="HelloRanges"))

End(Not run)

simple case, position-wise subtraction
bedtools_subtract(”-a a.bed -b b.bed")

fractional overlap restriction
bedtools_subtract(”-a a.bed -b b.bed -f 0.5")

range-wise subtraction

bedtools_subtract(”-a a.bed -b b.bed -A -f 0.5")

bedtools_unionbedg bedtools_unionbedg

Description

Summarize the ranges according to disjoin and construct a matrix of scores (disjoint range by
sample/file). Empty cells are filled with NA.

http://bedtools.readthedocs.io/en/latest/content/tools/subtract.html

38 bedtools_unionbedg

Usage
bedtools_unionbedg(cmd = "--help")
R_bedtools_unionbedg(i, header=FALSE, names=NULL, g=NA_character_,
empty=FALSE)
do_bedtools_unionbedg(i, header=FALSE, names=NULL, g=NA_character_,
empty=FALSE)
Arguments
cmd String of bedtools command line arguments, as they would be entered at the
shell. There are a few incompatibilities between the docopt parser and the bed-
tools style. See argument parsing.
i Paths to BAM/BED/GFF/VCF/etc files (vector or comma-separated), or a list of
objects.
header Ignored.
names Provide an alias for each to use for each i instead of their integer index. If a
single string, can be comma-separated.
g A genome file, identifier or Seqinfo object that defines the order and size of the
sequences.
empty Report empty regions (i.e., regions not covered in any of the files). This essen-
tially yields a partitioning of the genome (and thus requires g to be specified).
Details

As with all commands, there are three interfaces to the unionbedg command:

bedtools_unionbedg Parses the bedtools command line and compiles it to the equivalent R code.

R_bedtools_unionbedg Accepts R arguments corresponding to the command line arguments and
compiles the equivalent R code.

do_bedtools_unionbedg Evaluates the result of R_bedtools_unionbedg. Recommended only
for demonstration and testing. It is best to integrate the compiled code into an R script, after
studying it.

This is essentially the same operation as bedtools_multiinter, except we build a score matrix and
embed it into a SummarizedExperiment. This is a bit tricky and relies on the as.matrix,AtomicList-method
coercion.

Value

A language object containing the compiled R code, evaluating to a RangedSummarizedExperiment
with an assay called “score”.

Author(s)

Michael Lawrence

https://CRAN.R-project.org/package=docopt

distmode 39

References

http://bedtools.readthedocs.io/en/latest/content/tools/unionbedg.html

See Also

disjoin for forming disjoint ranges, RangedSummarizedExperiment-class for SummarizedExperi-
ment objects.

Examples

Not run:
setwd(system.file("unitTests"”, "data"”, "unionbedg"”, package="HelloRanges"))

End(Not run)

combine three samples

bedtools_unionbedg(”-i a.bedGraph,b.bedGraph,c.bedGraph -names A,B,C")

include empty ranges (filled with NAs)

bedtools_unionbedg("-i a.bedGraph,b.bedGraph,c.bedGraph -names A,B,C -empty -g test.genome")

distmode Compute the mode of a distribution

Description
Computes the mode (and “antimode”) of a distribution. It is not clear whether this is a generally
useful statistic, but bedtools defined it, so we did for completeness.

Usage
distmode(x, anti = FALSE)

Arguments

X The vector for which the mode is computed.

anti Whether to return the value with the least representation, instead of the highest.

Details

There are methods for List subclasses and ordinary vectors/factors. The List methods are useful for
aggregation.

Value

The value that is the most (or least) prevalent in the x.

Author(s)

Michael Lawrence

http://bedtools.readthedocs.io/en/latest/content/tools/unionbedg.html

40 pair

See Also

Not to be confused with the data mode of a vector.

bedtools_map for an example in the context of aggregation.

Examples

distmode(c(1L, 2L, 1L))

pair Pair up two vectors

Description

Creates a Pairs from two vectors, optionally via a left outer join.

Usage

pair(x, y, ...)

S4 method for signature 'Vector,Vector'

pair(x, y, by = findMatches(x, y), all.x = FALSE,
NA.VALUE = y[NAD)

Arguments
X The “first” vector.
y The “second” vector.
by The Hits-class object that matches up the elements into pairs.
all.x If TRUE, keep every member of x, even if it has no hits. The “second” component
is filled with the NA. VALUE.
NA . VALUE The value to fill holes in y when all.x is TRUE.
Arguments for methods.
Details

This might move to S4Vectors at some point. It is distinct from simple Pairs construction, because
it performs transformations like a left outer join. More options might be added in the future.

T3

For GRanges and other ranged objects, pair adds “.” to the seqlevels, because that is the seqname
of the missing GRanges.

Value

A Pairs object

Author(s)

Michael Lawrence

pair 41

See Also

Pairs-class, created by this function. bedtools_intersect, whose 1oj argument motivated the
creation of this function.

Index

aggregate, 16, 26, 28

aggregate-methods, 26, 28

alphabetFrequency, 31

argparsing, 2

argument parsing, 3,6, 7, 10, 12, 14, 15, 18,
21,23,25,27,29,31, 32, 34, 36, 38

bedtools_closest, 3
bedtools_complement, 6
bedtools_coverage, 7
bedtools_flank, 10
bedtools_genomecov, 11
bedtools_getfasta, 14
bedtools_groupby, 15, 25, 27, 28
bedtools_intersect, 18, 41
bedtools_jaccard, 20
bedtools_makewindows, 23
bedtools_map, 24, 40
bedtools_merge, 27
bedtools_multiinter, 29, 38
bedtools_nuc, 30
bedtools_shift, 32
bedtools_slop, 34
bedtools_subtract, 35
bedtools_unionbedg, 37

coverage, 8, 13
coverage-methods, 9

disjoin, 29, 30, 37, 39

distmode, /6, 39

distmode, CompressedAtomicList-method
(distmode), 39

distmode, factor-method (distmode), 39

distmode,SimpleList-method (distmode),
39

distmode, vector-method (distmode), 39

do_bedtools_closest (bedtools_closest),
3

42

do_bedtools_complement
(bedtools_complement), 6
do_bedtools_coverage
(bedtools_coverage), 7
do_bedtools_flank (bedtools_flank), 10
do_bedtools_genomecov
(bedtools_genomecov), 11
do_bedtools_getfasta
(bedtools_getfasta), 14
do_bedtools_groupby (bedtools_groupby),
15
do_bedtools_intersect
(bedtools_intersect), 18
do_bedtools_jaccard (bedtools_jaccard),
20
do_bedtools_makewindows
(bedtools_makewindows), 23
do_bedtools_map (bedtools_map), 24
do_bedtools_merge (bedtools_merge), 27
do_bedtools_multiinter
(bedtools_multiinter), 29
do_bedtools_nuc (bedtools_nuc), 30
do_bedtools_shift (bedtools_shift), 32
do_bedtools_slop (bedtools_slop), 34
do_bedtools_subtract
(bedtools_subtract), 35
do_bedtools_unionbedg
(bedtools_unionbedg), 37

findOverlaps, 26
findOverlaps-methods, 20, 26, 37
flank, 11

follow, 4

gaps, 6
getSeq, 14, 15

Hits, 26
Hits-class, 26

import, 14

INDEX
intersect, 22 R_bedtools_unionbedg
intra-range-methods, /1, 13, 33, 35 (bedtools_unionbedg), 37
RangedSummarizedExperiment-class, 39
letterFrequency, 3/ readDNAStringSet, /4
duce, 27, 28
matchPattern, 3/ i:sﬁgz 35
mode, 40 ’
nearest. 4 setdiff, 6, 37
nearest:methods 5 setops-methods, 7, 20, 22, 37
’ shift, 33

pair, 40 slidingWindows, 23
pair,GAlignments,GenomicRanges-method subsetByOverlaps, 37

(pair), 40 e 23
pair,GenomicRanges,GenomicRanges-method t% €

(pair), 40 tile-methods, 24
pair,Summar.izedExperimen’c,GenomicRanges-me’choL(Jjnion’22

(pair), 40
pair,Vector,Vector-method (pair), 40 vcountPattern, 3/
Pairs, 40
pipe, 2
precede, 4

R_bedtools_closest (bedtools_closest), 3
R_bedtools_complement
(bedtools_complement), 6
R_bedtools_coverage
(bedtools_coverage), 7
R_bedtools_flank (bedtools_flank), 10
R_bedtools_genomecov
(bedtools_genomecov), 11
R_bedtools_getfasta
(bedtools_getfasta), 14
R_bedtools_groupby (bedtools_groupby),
15
R_bedtools_intersect
(bedtools_intersect), 18
R_bedtools_jaccard (bedtools_jaccard),
20
R_bedtools_makewindows
(bedtools_makewindows), 23
R_bedtools_map (bedtools_map), 24
R_bedtools_merge (bedtools_merge), 27
R_bedtools_multiinter
(bedtools_multiinter), 29
R_bedtools_nuc (bedtools_nuc), 30
R_bedtools_shift (bedtools_shift), 32
R_bedtools_slop (bedtools_slop), 34
R_bedtools_subtract
(bedtools_subtract), 35

43

	argparsing
	bedtools_closest
	bedtools_complement
	bedtools_coverage
	bedtools_flank
	bedtools_genomecov
	bedtools_getfasta
	bedtools_groupby
	bedtools_intersect
	bedtools_jaccard
	bedtools_makewindows
	bedtools_map
	bedtools_merge
	bedtools_multiinter
	bedtools_nuc
	bedtools_shift
	bedtools_slop
	bedtools_subtract
	bedtools_unionbedg
	distmode
	pair
	Index

