
Package ‘GenomicRanges’
November 2, 2025

Title Representation and manipulation of genomic intervals

Description The ability to efficiently represent and manipulate genomic
annotations and alignments is playing a central role when it comes
to analyzing high-throughput sequencing data (a.k.a. NGS data).
The GenomicRanges package defines general purpose containers for
storing and manipulating genomic intervals and variables defined along
a genome. More specialized containers for representing and manipulating
short alignments against a reference genome, or a matrix-like
summarization of an experiment, are defined in the GenomicAlignments
and SummarizedExperiment packages, respectively. Both packages build
on top of the GenomicRanges infrastructure.

biocViews Genetics, Infrastructure, DataRepresentation, Sequencing,
Annotation, GenomeAnnotation, Coverage

URL https://bioconductor.org/packages/GenomicRanges

BugReports https://github.com/Bioconductor/GenomicRanges/issues

Version 1.63.0

License Artistic-2.0

Encoding UTF-8

Depends R (>= 4.0.0), methods, stats4, BiocGenerics (>= 0.53.2),
S4Vectors (>= 0.45.2), IRanges (>= 2.43.6), Seqinfo (>= 0.99.3)

Imports utils, stats

LinkingTo S4Vectors, IRanges

Suggests GenomeInfoDb, Biobase, AnnotationDbi, annotate, Biostrings
(>= 2.77.2), SummarizedExperiment (>= 1.39.1), Rsamtools,
GenomicAlignments, rtracklayer, BSgenome, GenomicFeatures,
txdbmaker, Gviz, VariantAnnotation, AnnotationHub, DESeq2,
DEXSeq, edgeR, KEGGgraph, RNAseqData.HNRNPC.bam.chr14,
pasillaBamSubset, KEGGREST, hgu95av2.db, hgu95av2probe,
BSgenome.Scerevisiae.UCSC.sacCer2, BSgenome.Hsapiens.UCSC.hg38,
BSgenome.Mmusculus.UCSC.mm10,
TxDb.Athaliana.BioMart.plantsmart22,
TxDb.Dmelanogaster.UCSC.dm3.ensGene,

1

https://bioconductor.org/packages/GenomicRanges
https://github.com/Bioconductor/GenomicRanges/issues

2 Contents

TxDb.Hsapiens.UCSC.hg38.knownGene,
TxDb.Mmusculus.UCSC.mm10.knownGene, RUnit, digest, knitr,
rmarkdown, BiocStyle

VignetteBuilder knitr

Collate normarg-utils.R utils.R phicoef.R transcript-utils.R
constraint.R strand-utils.R genomic-range-squeezers.R
GenomicRanges-class.R GenomicRanges-comparison.R
GRanges-class.R GPos-class.R GRangesFactor-class.R
DelegatingGenomicRanges-class.R GNCList-class.R
GenomicRangesList-class.R GRangesList-class.R
makeGRangesFromDataFrame.R makeGRangesListFromDataFrame.R
RangedData-methods.R findOverlaps-methods.R
intra-range-methods.R inter-range-methods.R coverage-methods.R
setops-methods.R subtract-methods.R nearest-methods.R
absoluteRanges.R tileGenome.R tile-methods.R genomicvars.R
zzz.R

git_url https://git.bioconductor.org/packages/GenomicRanges

git_branch devel

git_last_commit 1dfb82d

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-11-02

Author Patrick Aboyoun [aut],
Hervé Pagès [aut, cre],
Michael Lawrence [aut],
Sonali Arora [ctb],
Martin Morgan [ctb],
Kayla Morrell [ctb],
Valerie Obenchain [ctb],
Marcel Ramos [ctb],
Lori Shepherd [ctb],
Dan Tenenbaum [ctb],
Daniel van Twisk [ctb]

Maintainer Hervé Pagès <hpages.on.github@gmail.com>

Contents
absoluteRanges . 3
Constraints . 6
coverage-methods . 12
DelegatingGenomicRanges-class . 14
findOverlaps-methods . 14
genomic-range-squeezers . 19
GenomicRanges-comparison . 20
GenomicRangesList-class . 23

absoluteRanges 3

genomicvars . 25
GNCList-class . 29
GPos-class . 31
GRanges-class . 38
GRangesFactor-class . 45
GRangesList-class . 48
inter-range-methods . 52
intra-range-methods . 57
makeGRangesFromDataFrame . 60
makeGRangesListFromDataFrame . 65
nearest-methods . 66
phicoef . 70
setops-methods . 71
strand-utils . 75
subtract-methods . 78
tile-methods . 79
tileGenome . 81

Index 84

absoluteRanges Transform genomic ranges into "absolute" ranges

Description

absoluteRanges transforms the genomic ranges in x into absolute ranges i.e. into ranges counted
from the beginning of the virtual sequence obtained by concatenating all the sequences in the un-
derlying genome (in the order reported by seqlevels(x)).

relativeRanges performs the reverse transformation.

NOTE: These functions only work on small genomes. See Details section below.

Usage

absoluteRanges(x)
relativeRanges(x, seqlengths)

Related utility:
isSmallGenome(seqlengths)

Arguments

x For absoluteRanges: a GenomicRanges object with ranges defined on a small
genome (see Details section below).
For relativeRanges: an IntegerRanges object.

4 absoluteRanges

seqlengths An object holding sequence lengths. This can be a named integer (or numeric)
vector with no duplicated names as returned by seqlengths(), or any object
from which sequence lengths can be extracted with seqlengths().
For relativeRanges, seqlengths must describe a small genome (see Details
section below).

Details

Because absoluteRanges returns the absolute ranges in an IRanges object, and because an IRanges
object cannot hold ranges with an end > .Machine$integer.max (i.e. >= 2^31 on most plat-
forms), absoluteRanges cannot be used if the size of the underlying genome (i.e. the total length
of the sequences in it) is > .Machine$integer.max. Utility function isSmallGenome is pro-
vided as a mean for the user to check upfront whether the genome is small (i.e. its size is <=
.Machine$integer.max) or not, and thus compatible with absoluteRanges or not.

relativeRanges applies the same restriction by looking at the seqlengths argument.

Value

An IRanges object for absoluteRanges.

A GRanges object for relativeRanges.

absoluteRanges and relativeRanges both return an object that is parallel to the input object (i.e.
same length and names).

isSmallGenome returns TRUE if the total length of the underlying sequences is <= .Machine$integer.max
(e.g. Fly genome), FALSE if not (e.g. Human genome), or NA if it cannot be computed (because
some sequence lengths are NA).

Author(s)

H. Pagès

See Also

• GRanges objects.

• IntegerRanges objects in the IRanges package.

• Seqinfo objects and the seqlengths getter in the Seqinfo package.

• genomicvars for manipulating genomic variables.

• The tileGenome function for putting tiles on a genome.

Examples

TOY EXAMPLE

gr <- GRanges(Rle(c("chr2", "chr1", "chr3", "chr1"), 4:1),
IRanges(1:10, width=5),
seqinfo=Seqinfo(c("chr1", "chr2", "chr3"), c(100, 50, 20)))

absoluteRanges 5

ar <- absoluteRanges(gr)
ar

gr2 <- relativeRanges(ar, seqlengths(gr))
gr2

Sanity check:
stopifnot(all(gr == gr2))

ON REAL DATA

With a "small" genome

library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene
ex <- exons(txdb)
ex

isSmallGenome(ex)

Note that because isSmallGenome() can return NA (see Value section
above), its result should always be wrapped inside isTRUE() when
used in an if statement:
if (isTRUE(isSmallGenome(ex))) {

ar <- absoluteRanges(ex)
ar

ex2 <- relativeRanges(ar, seqlengths(ex))
ex2 # original strand is not restored

Sanity check:
strand(ex2) <- strand(ex) # restore the strand
stopifnot(all(ex == ex2))

}

With a "big" genome (but we can reduce it)

library(TxDb.Hsapiens.UCSC.hg38.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene
ex <- exons(txdb)
isSmallGenome(ex)
Not run:

absoluteRanges(ex) # error!

End(Not run)

However, if we are only interested in some chromosomes, we might
still be able to use absoluteRanges():
seqlevels(ex, pruning.mode="coarse") <- paste0("chr", 1:10)
isSmallGenome(ex) # TRUE!
ar <- absoluteRanges(ex)

6 Constraints

ex2 <- relativeRanges(ar, seqlengths(ex))

Sanity check:
strand(ex2) <- strand(ex)
stopifnot(all(ex == ex2))

Constraints Enforcing constraints thru Constraint objects

Description

Attaching a Constraint object to an object of class A (the "constrained" object) is meant to be a
convenient/reusable/extensible way to enforce a particular set of constraints on particular instances
of A.

THIS IS AN EXPERIMENTAL FEATURE AND STILL VERY MUCH A WORK-IN-PROGRESS!

Details

For the developer, using constraints is an alternative to the more traditional approach that consists
in creating subclasses of A and implementing specific validity methods for each of them. However,
using constraints offers the following advantages over the traditional approach:

• The traditional approach often tends to lead to a proliferation of subclasses of A.

• Constraints can easily be re-used across different classes without the need to create any new
class.

• Constraints can easily be combined.

All constraints are implemented as concrete subclasses of the Constraint class, which is a virtual
class with no slots. Like the Constraint virtual class itself, concrete Constraint subclasses cannot
have slots.

Here are the 7 steps typically involved in the process of putting constraints on objects of class A:

1. Add a slot named constraint to the definition of class A. The type of this slot must be
Constraint_OR_NULL. Note that any subclass of A will inherit this slot.

2. Implements the constraint() accessors (getter and setter) for objects of class A. This is
done by implementing the "constraint" method (getter) and replacement method (setter) for
objects of class A (see the examples below). As a convenience to the user, the setter should
also accept the name of a constraint (i.e. the name of its class) in addition to an instance of
that class. Note that those accessors will work on instances of any subclass of A.

3. Modify the validity method for class A so it also returns the result of checkConstraint(x,
constraint(x)) (append this result to the result returned by the validity method).

4. Testing: Create x, an instance of class A (or subclass of A). By default there is no constraint
on it (constraint(x) is NULL). validObject(x) should return TRUE.

Constraints 7

5. Create a new constraint (MyConstraint) by extending the Constraint class, typically with
setClass("MyConstraint", contains="Constraint"). This constraint is not enforcing
anything yet so you could put it on x (with constraint(x) <- "MyConstraint"), but not
much would happen. In order to actually enforce something, a "checkConstraint" method
for signature c(x="A", constraint="MyConstraint") needs to be implemented.

6. Implement a "checkConstraint" method for signature c(x="A", constraint="MyConstraint").
Like validity methods, "checkConstraint" methods must return NULL or a character vector
describing the problems found. Like validity methods, they should never fail (i.e. they should
never raise an error). Note that, alternatively, an existing constraint (e.g. SomeConstraint)
can be adapted to work on objects of class A by just defining a new "checkConstraint"
method for signature c(x="A", constraint="SomeConstraint"). Also, stricter constraints
can be built on top of existing constraints by extending one or more existing constraints (see
the examples below).

7. Testing: Try constraint(x) <- "MyConstraint". It will or will not work depending on
whether x satisfies the constraint or not. In the former case, trying to modify x in a way that
breaks the constraint on it will also raise an error.

Note

WARNING: This note is not true anymore as the constraint slot has been temporarily removed
from GenomicRanges objects (starting with package GenomicRanges >= 1.7.9).

Currently, only GenomicRanges objects can be constrained, that is:

• they have a constraint slot;

• they have constraint() accessors (getter and setter) for this slot;

• their validity method has been modified so it also returns the result of checkConstraint(x,
constraint(x)).

More classes in the GenomicRanges and IRanges packages will support constraints in the near
future.

Author(s)

H. Pagès

See Also

setClass, is, setMethod, showMethods, validObject, GenomicRanges-class

Examples

The examples below show how to define and set constraints on
GenomicRanges objects. Note that this is how the constraint()
setter is defined for GenomicRanges objects:
#setReplaceMethod("constraint", "GenomicRanges",
function(x, value)
{
if (isSingleString(value))
value <- new(value)

8 Constraints

if (!is(value, "Constraint_OR_NULL"))
stop("the supplied 'constraint' must be a ",
"Constraint object, a single string, or NULL")
x@constraint <- value
validObject(x)
x
}
#)

#selectMethod("constraint", "GenomicRanges") # the getter
#selectMethod("constraint<-", "GenomicRanges") # the setter

We'll use the GRanges instance 'gr' created in the GRanges examples
to test our constraints:
example(GRanges, echo=FALSE)
gr
#constraint(gr)

EXAMPLE 1: The HasRangeTypeCol constraint.

The HasRangeTypeCol constraint checks that the constrained object
has a unique "rangeType" metadata column and that this column
is a 'factor' Rle with no NAs and with the following levels
(in this order): gene, transcript, exon, cds, 5utr, 3utr.

setClass("HasRangeTypeCol", contains="Constraint")

Like validity methods, "checkConstraint" methods must return NULL or
a character vector describing the problems found. They should never
fail i.e. they should never raise an error.
setMethod("checkConstraint", c("GenomicRanges", "HasRangeTypeCol"),

function(x, constraint, verbose=FALSE)
{

x_mcols <- mcols(x)
idx <- match("rangeType", colnames(x_mcols))
if (length(idx) != 1L || is.na(idx)) {

msg <- c("'mcols(x)' must have exactly 1 column ",
"named \"rangeType\"")

return(paste(msg, collapse=""))
}
rangeType <- x_mcols[[idx]]
.LEVELS <- c("gene", "transcript", "exon", "cds", "5utr", "3utr")
if (!is(rangeType, "Rle") ||

anyNA(runValue(rangeType)) ||
!identical(levels(rangeType), .LEVELS))

{
msg <- c("'mcols(x)$rangeType' must be a ",

"'factor' Rle with no NAs and with levels: ",
paste(.LEVELS, collapse=", "))

return(paste(msg, collapse=""))
}
NULL

Constraints 9

}
)

#\dontrun{
#constraint(gr) <- "HasRangeTypeCol" # will fail
#}
checkConstraint(gr, new("HasRangeTypeCol")) # with GenomicRanges >= 1.7.9

levels <- c("gene", "transcript", "exon", "cds", "5utr", "3utr")
rangeType <- Rle(factor(c("cds", "gene"), levels=levels), c(8, 2))
mcols(gr)$rangeType <- rangeType
#constraint(gr) <- "HasRangeTypeCol" # OK
checkConstraint(gr, new("HasRangeTypeCol")) # with GenomicRanges >= 1.7.9

Use is() to check whether the object has a given constraint or not:
#is(constraint(gr), "HasRangeTypeCol") # TRUE
#\dontrun{
#mcols(gr)$rangeType[3] <- NA # will fail
#}
mcols(gr)$rangeType[3] <- NA
checkConstraint(gr, new("HasRangeTypeCol")) # with GenomicRanges >= 1.7.9

EXAMPLE 2: The GeneRanges constraint.

The GeneRanges constraint is defined on top of the HasRangeTypeCol
constraint. It checks that all the ranges in the object are of type
"gene".

setClass("GeneRanges", contains="HasRangeTypeCol")

The checkConstraint() generic will check the HasRangeTypeCol constraint
first, and, only if it's statisfied, it will then check the GeneRanges
constraint.
setMethod("checkConstraint", c("GenomicRanges", "GeneRanges"),

function(x, constraint, verbose=FALSE)
{

rangeType <- mcols(x)$rangeType
if (!all(rangeType == "gene")) {

msg <- c("all elements in 'mcols(x)$rangeType' ",
"must be equal to \"gene\"")

return(paste(msg, collapse=""))
}
NULL

}
)

#\dontrun{
#constraint(gr) <- "GeneRanges" # will fail
#}
checkConstraint(gr, new("GeneRanges")) # with GenomicRanges >= 1.7.9

mcols(gr)$rangeType[] <- "gene"

10 Constraints

This replace the previous constraint (HasRangeTypeCol):
#constraint(gr) <- "GeneRanges" # OK
checkConstraint(gr, new("GeneRanges")) # with GenomicRanges >= 1.7.9

#is(constraint(gr), "GeneRanges") # TRUE
However, 'gr' still indirectly has the HasRangeTypeCol constraint
(because the GeneRanges constraint extends the HasRangeTypeCol
constraint):
#is(constraint(gr), "HasRangeTypeCol") # TRUE
#\dontrun{
#mcols(gr)$rangeType[] <- "exon" # will fail
#}
mcols(gr)$rangeType[] <- "exon"
checkConstraint(gr, new("GeneRanges")) # with GenomicRanges >= 1.7.9

EXAMPLE 3: The HasGCCol constraint.

The HasGCCol constraint checks that the constrained object has a
unique "GC" metadata column, that this column is of type numeric,
with no NAs, and that all the values in that column are >= 0 and <= 1.

setClass("HasGCCol", contains="Constraint")

setMethod("checkConstraint", c("GenomicRanges", "HasGCCol"),
function(x, constraint, verbose=FALSE)
{

x_mcols <- mcols(x)
idx <- match("GC", colnames(x_mcols))
if (length(idx) != 1L || is.na(idx)) {

msg <- c("'mcols(x)' must have exactly ",
"one column named \"GC\"")

return(paste(msg, collapse=""))
}
GC <- x_mcols[[idx]]
if (!is.numeric(GC) || anyNA(GC) || any(GC < 0) || any(GC > 1)) {

msg <- c("'mcols(x)$GC' must be a numeric vector ",
"with no NAs and with values between 0 and 1")

return(paste(msg, collapse=""))
}
NULL

}
)

This replace the previous constraint (GeneRanges):
#constraint(gr) <- "HasGCCol" # OK
checkConstraint(gr, new("HasGCCol")) # with GenomicRanges >= 1.7.9

#is(constraint(gr), "HasGCCol") # TRUE
#is(constraint(gr), "GeneRanges") # FALSE
#is(constraint(gr), "HasRangeTypeCol") # FALSE

Constraints 11

EXAMPLE 4: The HighGCRanges constraint.

The HighGCRanges constraint is defined on top of the HasGCCol
constraint. It checks that all the ranges in the object have a GC
content >= 0.5.

setClass("HighGCRanges", contains="HasGCCol")

The checkConstraint() generic will check the HasGCCol constraint
first, and, if it's statisfied, it will then check the HighGCRanges
constraint.
setMethod("checkConstraint", c("GenomicRanges", "HighGCRanges"),

function(x, constraint, verbose=FALSE)
{

GC <- mcols(x)$GC
if (!all(GC >= 0.5)) {

msg <- c("all elements in 'mcols(x)$GC' ",
"must be >= 0.5")

return(paste(msg, collapse=""))
}
NULL

}
)

#\dontrun{
#constraint(gr) <- "HighGCRanges" # will fail
#}
checkConstraint(gr, new("HighGCRanges")) # with GenomicRanges >= 1.7.9
mcols(gr)$GC[6:10] <- 0.5
#constraint(gr) <- "HighGCRanges" # OK
checkConstraint(gr, new("HighGCRanges")) # with GenomicRanges >= 1.7.9

#is(constraint(gr), "HighGCRanges") # TRUE
#is(constraint(gr), "HasGCCol") # TRUE

EXAMPLE 5: The HighGCGeneRanges constraint.

The HighGCGeneRanges constraint is the combination (AND) of the
GeneRanges and HighGCRanges constraints.

setClass("HighGCGeneRanges", contains=c("GeneRanges", "HighGCRanges"))

No need to define a method for this constraint: the checkConstraint()
generic will automatically check the GeneRanges and HighGCRanges
constraints.

#constraint(gr) <- "HighGCGeneRanges" # OK
checkConstraint(gr, new("HighGCGeneRanges")) # with GenomicRanges >= 1.7.9

#is(constraint(gr), "HighGCGeneRanges") # TRUE
#is(constraint(gr), "HighGCRanges") # TRUE
#is(constraint(gr), "HasGCCol") # TRUE

12 coverage-methods

#is(constraint(gr), "GeneRanges") # TRUE
#is(constraint(gr), "HasRangeTypeCol") # TRUE

See how all the individual constraints are checked (from less
specific to more specific constraints):
#checkConstraint(gr, constraint(gr), verbose=TRUE)
checkConstraint(gr, new("HighGCGeneRanges"), verbose=TRUE) # with

GenomicRanges
>= 1.7.9

See all the "checkConstraint" methods:
showMethods("checkConstraint")

coverage-methods Coverage of a GRanges or GRangesList object

Description

coverage methods for GRanges and GRangesList objects.

NOTE: The coverage generic function and methods for IntegerRanges and IntegerRangesList ob-
jects are defined and documented in the IRanges package. Methods for GAlignments and GAlign-
mentPairs objects are defined and documented in the GenomicAlignments package.

Usage

S4 method for signature 'GenomicRanges'
coverage(x, shift=0L, width=NULL, weight=1L,

method=c("auto", "sort", "hash", "naive"))

S4 method for signature 'GRangesList'
coverage(x, shift=0L, width=NULL, weight=1L,

method=c("auto", "sort", "hash", "naive"))

Arguments

x A GenomicRanges or GRangesList object.

shift, weight A numeric vector or a list-like object. If numeric, it must be parallel to x (recy-
cled if necessary). If a list-like object, it must have 1 list element per seqlevel in
x, and its names must be exactly seqlevels(x).
Alternatively, each of these arguments can also be specified as a single string
naming a metadata column in x (i.e. a column in mcols(x)) to be used as the
shift (or weight) vector.
See ?coverage in the IRanges package for more information about these argu-
ments.
Note that when x is a StitchedGPos object, each of these arguments can only be
a single number or a named list-like object.

coverage-methods 13

width Either NULL (the default), or an integer vector. If NULL, it is replaced with
seqlengths(x). Otherwise, the vector must have the length and names of
seqlengths(x) and contain NAs or non-negative integers.
See ?coverage in the IRanges package for more information about this argu-
ment.

method See ?coverage in the IRanges package for a description of this argument.

Details

When x is a GRangesList object, coverage(x, ...) is equivalent to coverage(unlist(x), ...).

Value

A named RleList object with one coverage vector per seqlevel in x.

Author(s)

H. Pagès and P. Aboyoun

See Also

• coverage in the IRanges package.

• coverage-methods in the GenomicAlignments package.

• RleList objects in the IRanges package.

• GRanges, GPos, and GRangesList objects.

Examples

Coverage of a GRanges object:
gr <- GRanges(

seqnames=Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
ranges=IRanges(1:10, end=10),
strand=Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)),
seqlengths=c(chr1=11, chr2=12, chr3=13))

cvg <- coverage(gr)
pcvg <- coverage(gr[strand(gr) == "+"])
mcvg <- coverage(gr[strand(gr) == "-"])
scvg <- coverage(gr[strand(gr) == "*"])
stopifnot(identical(pcvg + mcvg + scvg, cvg))

Coverage of a GPos object:
pos_runs <- GRanges(c("chr1", "chr1", "chr2"),

IRanges(c(1, 5, 9), c(10, 8, 15)))
gpos <- GPos(pos_runs)
coverage(gpos)

Coverage of a GRangesList object:
gr1 <- GRanges(seqnames="chr2",

ranges=IRanges(3, 6),
strand = "+")

14 findOverlaps-methods

gr2 <- GRanges(seqnames=c("chr1", "chr1"),
ranges=IRanges(c(7,13), width=3),
strand=c("+", "-"))

gr3 <- GRanges(seqnames=c("chr1", "chr2"),
ranges=IRanges(c(1, 4), c(3, 9)),
strand=c("-", "-"))

grl <- GRangesList(gr1=gr1, gr2=gr2, gr3=gr3)
stopifnot(identical(coverage(grl), coverage(unlist(grl))))

DelegatingGenomicRanges-class

DelegatingGenomicRanges objects

Description

The DelegatingGenomicRanges class implements the virtual GenomicRanges class using a dele-
gate GenomicRanges. This enables developers to create GenomicRanges subclasses that add spe-
cialized columns or other structure, while remaining agnostic to how the data are actually stored.
See the Extending GenomicRanges vignette.

Author(s)

M. Lawrence

findOverlaps-methods Finding overlapping genomic ranges

Description

Various methods for finding/counting overlaps between objects containing genomic ranges. This
man page describes the methods that operate on GenomicRanges and GRangesList objects.

NOTE: The findOverlaps generic function and methods for IntegerRanges and IntegerRanges-
List objects are defined and documented in the IRanges package. The methods for GAlignments,
GAlignmentPairs, and GAlignmentsList objects are defined and documented in the GenomicAlign-
ments package.

GenomicRanges and GRangesList objects also support countOverlaps, overlapsAny, and subsetByOverlaps
thanks to the default methods defined in the IRanges package and to the findOverlaps and
countOverlaps methods defined in this package and documented below.

findOverlaps-methods 15

Usage

S4 method for signature 'GenomicRanges,GenomicRanges'
findOverlaps(query, subject,

maxgap=-1L, minoverlap=0L,
type=c("any", "start", "end", "within", "equal"),
select=c("all", "first", "last", "arbitrary"),
ignore.strand=FALSE)

S4 method for signature 'GRangesList,GenomicRanges'
findOverlaps(query, subject,

maxgap=-1L, minoverlap=0L,
type=c("any", "start", "end", "within", "equal"),
select=c("all", "first", "last", "arbitrary"),
ignore.strand=FALSE)

S4 method for signature 'GenomicRanges,GRangesList'
findOverlaps(query, subject,

maxgap=-1L, minoverlap=0L,
type=c("any", "start", "end", "within", "equal"),
select=c("all", "first", "last", "arbitrary"),
ignore.strand=FALSE)

S4 method for signature 'GRangesList,GRangesList'
findOverlaps(query, subject,

maxgap=-1L, minoverlap=0L,
type=c("any", "start", "end", "within", "equal"),
select=c("all", "first", "last", "arbitrary"),
ignore.strand=FALSE)

S4 method for signature 'GenomicRanges,GenomicRanges'
countOverlaps(query, subject,

maxgap=-1L, minoverlap=0L,
type=c("any", "start", "end", "within", "equal"),
ignore.strand=FALSE)

Arguments

query, subject A GRanges or GRangesList object.
maxgap, minoverlap, type

See ?findOverlaps in the IRanges package for a description of these argu-
ments.
IMPORTANT NOTE about how minoverlap is interpreted when query or subject
is a GRangesList object: In this case, the total number of overlapping positions
between a given element in query and a given element in subject is taken into
account. For example, if query is a GRanges object, and subject a GRanges-
List object, then findOverlaps() will report an overlap between query[i] (a
single range) and subject[[j]] (multiple ranges) only if the total number of
positions in subject[[j]] that overlap with query[i] is equal to minoverlap

16 findOverlaps-methods

or greater. In other words, the full overlap across all the ranges in subject[[j]]
is looked at. See the Examples section below for an example illustrating this.

select When select is "all" (the default), the results are returned as a Hits object.
Otherwise the returned value is an integer vector parallel to query (i.e. same
length) containing the first, last, or arbitrary overlapping interval in subject,
with NA indicating intervals that did not overlap any intervals in subject.

ignore.strand When set to TRUE, the strand information is ignored in the overlap calculations.

Details

When the query and the subject are GRanges or GRangesList objects, findOverlaps uses the
triplet (sequence name, range, strand) to determine which features (see paragraph below for the
definition of feature) from the query overlap which features in the subject, where a strand value
of "*" is treated as occurring on both the "+" and "-" strand. An overlap is recorded when a
feature in the query and a feature in the subject have the same sequence name, have a compatible
pairing of strands (e.g. "+"/"+", "-"/"-", "*"/"+", "*"/"-", etc.), and satisfy the interval overlap
requirements.

In the context of findOverlaps, a feature is a collection of ranges that are treated as a single entity.
For GRanges objects, a feature is a single range; while for GRangesList objects, a feature is a list
element containing a set of ranges. In the results, the features are referred to by number, which run
from 1 to length(query)/length(subject).

For type="equal" with GRangesList objects, query[[i]] matches subject[[j]] iff for each
range in query[[i]] there is an identical range in subject[[j]], and vice versa.

Value

For findOverlaps: either a Hits object when select="all" or an integer vector otherwise.

For countOverlaps: an integer vector containing the tabulated query overlap hits.

Author(s)

P. Aboyoun, S. Falcon, M. Lawrence, and H. Pagès

See Also

• The Hits class in the S4Vectors package for representing a set of hits between 2 vector-like
objects.

• The findOverlaps generic function defined in the IRanges package.

• The GNCList constructor and class for preprocessing and representing a GenomicRanges or
object as a data structure based on Nested Containment Lists.

• The GRanges and GRangesList classes.

Examples

BASIC EXAMPLES

findOverlaps-methods 17

GRanges object:
gr <- GRanges(

seqnames=Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
ranges=IRanges(1:10, width=10:1, names=head(letters,10)),
strand=Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)),
score=1:10,
GC=seq(1, 0, length=10)

)
gr

GRangesList object:
gr1 <- GRanges(seqnames="chr2", ranges=IRanges(4:3, 6),

strand="+", score=5:4, GC=0.45)
gr2 <- GRanges(seqnames=c("chr1", "chr1"),

ranges=IRanges(c(7,13), width=3),
strand=c("+", "-"), score=3:4, GC=c(0.3, 0.5))

gr3 <- GRanges(seqnames=c("chr1", "chr2"),
ranges=IRanges(c(1, 4), c(3, 9)),
strand=c("-", "-"), score=c(6L, 2L), GC=c(0.4, 0.1))

grl <- GRangesList("gr1"=gr1, "gr2"=gr2, "gr3"=gr3)

Overlapping two GRanges objects:
table(!is.na(findOverlaps(gr, gr1, select="arbitrary")))
countOverlaps(gr, gr1)
findOverlaps(gr, gr1)
subsetByOverlaps(gr, gr1)

countOverlaps(gr, gr1, type="start")
findOverlaps(gr, gr1, type="start")
subsetByOverlaps(gr, gr1, type="start")

findOverlaps(gr, gr1, select="first")
findOverlaps(gr, gr1, select="last")

findOverlaps(gr1, gr)
findOverlaps(gr1, gr, type="start")
findOverlaps(gr1, gr, type="within")
findOverlaps(gr1, gr, type="equal")

MORE EXAMPLES

table(!is.na(findOverlaps(gr, gr1, select="arbitrary")))
countOverlaps(gr, gr1)
findOverlaps(gr, gr1)
subsetByOverlaps(gr, gr1)

Overlaps between a GRanges and a GRangesList object:

table(!is.na(findOverlaps(grl, gr, select="first")))
countOverlaps(grl, gr)

18 findOverlaps-methods

findOverlaps(grl, gr)
subsetByOverlaps(grl, gr)
countOverlaps(grl, gr, type="start")
findOverlaps(grl, gr, type="start")
subsetByOverlaps(grl, gr, type="start")
findOverlaps(grl, gr, select="first")

table(!is.na(findOverlaps(grl, gr1, select="first")))
countOverlaps(grl, gr1)
findOverlaps(grl, gr1)
subsetByOverlaps(grl, gr1)
countOverlaps(grl, gr1, type="start")
findOverlaps(grl, gr1, type="start")
subsetByOverlaps(grl, gr1, type="start")
findOverlaps(grl, gr1, select="first")

Overlaps between two GRangesList objects:
countOverlaps(grl, rev(grl))
findOverlaps(grl, rev(grl))
subsetByOverlaps(grl, rev(grl))

INTERPRETATION OF 'minoverlap' WHEN 'query' OR 'subject' IS A
GRangesList OBJECT

gr1 <- GRanges("chr5:1-26")
gr2 <- GRanges("chr5:31-40")
gr3 <- c(GRanges("chr5:11-20"), gr2)
grl123 <- GRangesList(gr1, gr2, gr3)
grl123

query <- GRanges("chr5:17-35")

findOverlaps(query, grl123[[1]], minoverlap=8) # 1 hit
findOverlaps(query, grl123[[2]], minoverlap=8) # no hit
findOverlaps(query, grl123[[3]], minoverlap=8) # no hit

Using GRangesList object 'grl123' as the subject:
findOverlaps(query, grl123, minoverlap=8)

As we can see, a hit is reported with the 3rd element in the subject.
That's because the total number of positions in this overlap is 9:
- positions 17 to 20 in the first range of grl123[[3]], so 4 positions
- positions 31 to 35 in its second range, so 5 positions

Sanity checks:
hits <- findOverlaps(query, grl123[[1]], minoverlap=8)
stopifnot(length(hits) == 1)
hits <- findOverlaps(query, grl123[[2]], minoverlap=8)
stopifnot(length(hits) == 0)
hits <- findOverlaps(query, grl123[[3]], minoverlap=8)
stopifnot(length(hits) == 0)
hits <- findOverlaps(query, grl123, minoverlap=8)

genomic-range-squeezers 19

stopifnot(identical(subjectHits(hits), c(1L, 3L)))
hits <- findOverlaps(query, grl123, minoverlap=9)
stopifnot(identical(subjectHits(hits), c(1L, 3L)))
hits <- findOverlaps(query, grl123, minoverlap=10)
stopifnot(identical(subjectHits(hits), 1L))
hits <- findOverlaps(query, grl123, minoverlap=11)
stopifnot(length(hits) == 0)

genomic-range-squeezers

Squeeze the genomic ranges out of a range-based object

Description

S4 generic functions for squeezing the genomic ranges out of a range-based object.

These are analog to range squeezers ranges and rglist defined in the IRanges package, except
that granges returns the ranges in a GRanges object (instead of an IRanges object for ranges), and
grglist returns them in a GRangesList object (instead of an IRangesList object for rglist).

Usage

granges(x, use.names=TRUE, use.mcols=FALSE, ...)
grglist(x, use.names=TRUE, use.mcols=FALSE, ...)

Arguments

x An object containing genomic ranges e.g. a GenomicRanges, RangedSumma-
rizedExperiment, GAlignments, GAlignmentPairs, or GAlignmentsList object,
or a Pairs object containing genomic ranges.

use.names, use.mcols, ...
See ranges in the IRanges package for a description of these arguments.

Details

See ranges in the IRanges package for some details.

For some objects (e.g. GAlignments and GAlignmentPairs objects defined in the GenomicAlign-
ments package), as(x, "GRanges") and as(x, "GRangesList"), are equivalent to granges(x,
use.names=TRUE, use.mcols=TRUE) and grglist(x, use.names=TRUE, use.mcols=TRUE), re-
spectively.

Value

A GRanges object for granges.

A GRangesList object for grglist.

If x is a vector-like object (e.g. GAlignments), the returned object is expected to be parallel to x,
that is, the i-th element in the output corresponds to the i-th element in the input.

If use.names is TRUE, then the names on x (if any) are propagated to the returned object. If
use.mcols is TRUE, then the metadata columns on x (if any) are propagated to the returned object.

20 GenomicRanges-comparison

Author(s)

H. Pagès

See Also

• GRanges and GRangesList objects.

• RangedSummarizedExperiment objects in the SummarizedExperiment packages.

• GAlignments, GAlignmentPairs, and GAlignmentsList objects in the GenomicAlignments
package.

Examples

See ?GAlignments in the GenomicAlignments package for examples of
"ranges" and "rglist" methods.

GenomicRanges-comparison

Comparing and ordering genomic ranges

Description

Methods for comparing and/or ordering GenomicRanges objects.

Usage

duplicated()

S4 method for signature 'GenomicRanges'
duplicated(x, incomparables=FALSE, fromLast=FALSE,

nmax=NA, method=c("auto", "quick", "hash"))

match() & selfmatch()

S4 method for signature 'GenomicRanges,GenomicRanges'
match(x, table, nomatch=NA_integer_, incomparables=NULL,

method=c("auto", "quick", "hash"), ignore.strand=FALSE)

S4 method for signature 'GenomicRanges'
selfmatch(x, method=c("auto", "quick", "hash"), ignore.strand=FALSE)

order() and related methods

S4 method for signature 'GenomicRanges'

GenomicRanges-comparison 21

is.unsorted(x, na.rm=FALSE, strictly=FALSE, ignore.strand=FALSE)

S4 method for signature 'GenomicRanges'
order(..., na.last=TRUE, decreasing=FALSE,

method=c("auto", "shell", "radix"))

S4 method for signature 'GenomicRanges'
sort(x, decreasing=FALSE, ignore.strand=FALSE, by)

S4 method for signature 'GenomicRanges'
rank(x, na.last=TRUE,

ties.method=c("average", "first", "last", "random", "max", "min"),
ignore.strand=FALSE)

Generalized parallel comparison of 2 GenomicRanges objects
--

S4 method for signature 'GenomicRanges,GenomicRanges'
pcompare(x, y)

Arguments

x, table, y GenomicRanges objects.

incomparables Not supported.
fromLast, method, nomatch, nmax, na.rm, strictly, na.last, decreasing

See ?`IPosRanges-comparison` in the IRanges package for a description of
these arguments.

ignore.strand Whether or not the strand should be ignored when comparing 2 genomic ranges.

... One or more GenomicRanges objects. The GenomicRanges objects after the
first one are used to break ties.

ties.method A character string specifying how ties are treated. Only "first" is supported
for now.

by An optional formula that is resolved against as.env(x); the resulting variables
are passed to order to generate the ordering permutation.

Details

Two elements of a GenomicRanges derivative (i.e. two genomic ranges) are considered equal
iff they are on the same underlying sequence and strand, and share the same start and width.
duplicated() and unique() on a GenomicRanges derivative are conforming to this.

The "natural order" for the elements of a GenomicRanges derivative is to order them (a) first by
sequence level, (b) then by strand, (c) then by start, (d) and finally by width. This way, the space of
genomic ranges is totally ordered. Note that, because we already do (c) and (d) for regular ranges
(see ?`IPosRanges-comparison`), genomic ranges that belong to the same underlying sequence
and strand are ordered like regular ranges.

pcompare(), ==, !=, <=, >=, < and > on GenomicRanges derivatives behave accordingly to this
"natural order".

22 GenomicRanges-comparison

is.unsorted(), order(), sort(), rank() on GenomicRanges derivatives also behave accord-
ingly to this "natural order".

Finally, note that some inter range transformations like reduce or disjoin also use this "natural
order" implicitly when operating on GenomicRanges derivatives.

Author(s)

H. Pagès, is.unsorted contributed by Pete Hickey

See Also

• The GenomicRanges class.

• IPosRanges-comparison in the IRanges package for comparing and ordering genomic ranges.

• findOverlaps-methods for finding overlapping genomic ranges.

• intra-range-methods and inter-range-methods for intra range and inter range transformations
of a GRanges object.

• setops-methods for set operations on GenomicRanges objects.

Examples

gr0 <- GRanges(
Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
IRanges(c(1:9,7L), end=10),
strand=Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)),
seqlengths=c(chr1=11, chr2=12, chr3=13)

)
gr <- c(gr0, gr0[7:3])
names(gr) <- LETTERS[seq_along(gr)]

A. ELEMENT-WISE (AKA "PARALLEL") COMPARISON OF 2 GenomicRanges OBJECTS

gr[2] == gr[2] # TRUE
gr[2] == gr[5] # FALSE
gr == gr[4]
gr >= gr[3]

B. match(), selfmatch(), %in%, duplicated(), unique()

table <- gr[1:7]
match(gr, table)
match(gr, table, ignore.strand=TRUE)

gr %in% table

duplicated(gr)
unique(gr)

GenomicRangesList-class 23

C. findMatches(), countMatches()

findMatches(gr, table)
countMatches(gr, table)

findMatches(gr, table, ignore.strand=TRUE)
countMatches(gr, table, ignore.strand=TRUE)

gr_levels <- unique(gr)
countMatches(gr_levels, gr)

D. order() AND RELATED METHODS

is.unsorted(gr)
order(gr)
sort(gr)
is.unsorted(sort(gr))

is.unsorted(gr, ignore.strand=TRUE)
gr2 <- sort(gr, ignore.strand=TRUE)
is.unsorted(gr2) # TRUE
is.unsorted(gr2, ignore.strand=TRUE) # FALSE

TODO: Broken. Please fix!
#sort(gr, by = ~ seqnames + start + end) # equivalent to (but slower than) above

score(gr) <- rev(seq_len(length(gr)))

TODO: Broken. Please fix!
#sort(gr, by = ~ score)

rank(gr, ties.method="first")
rank(gr, ties.method="first", ignore.strand=TRUE)

E. GENERALIZED ELEMENT-WISE COMPARISON OF 2 GenomicRanges OBJECTS

gr3 <- GRanges(c(rep("chr1", 12), "chr2"), IRanges(c(1:11, 6:7), width=3))
strand(gr3)[12] <- "+"
gr4 <- GRanges("chr1", IRanges(5, 9))

pcompare(gr3, gr4)
rangeComparisonCodeToLetter(pcompare(gr3, gr4))

GenomicRangesList-class

GenomicRangesList objects

24 GenomicRangesList-class

Description

The GenomicRangesList virtual class is a general container for storing a list of GenomicRanges
objects.

Most users are probably more interested in the GRangesList container, a GenomicRangesList deriva-
tive for storing a list of GRanges objects.

Details

The place of GenomicRangesList in the Vector class hierarchy:

Vector
^
|
List
^
|

RangesList
^ ^
/ \

/ \
/ \
/ \

/ \
/ \

IntegerRangesList GenomicRangesList
^ ^
| |

IRangesList GRangesList
^ ^ ^ ^

/ \ / \
/ \ / \
/ \ / \

SimpleIRangesList \ SimpleGRangesList \
CompressedIRangesList CompressedGRangesList

Note that the Vector class hierarchy has many more classes. In particular Vector, List, IRangesList,
and IntegerRangesList have other subclasses not shown here.

Author(s)

H. Pagès and M. Lawrence

See Also

• GRangesList objects.

• GenomicRanges and GRanges objects.

genomicvars 25

genomicvars Manipulating genomic variables

Description

A genomic variable is a variable defined along a genome. Here are 2 ways a genomic variable is
generally represented in Bioconductor:

1. as a named RleList object with one list element per chromosome;

2. as a metadata column on a disjoint GRanges object.

This man page documents tools for switching from one form to the other.

Usage

bindAsGRanges(...)
mcolAsRleList(x, varname)
binnedAverage(bins, numvar, varname, na.rm=FALSE)

Arguments

... One or more genomic variables in the form of named RleList objects.

x A disjoint GRanges object with metadata columns on it. A GRanges object is
said to be disjoint if it contains ranges that do not overlap with each other. This
can be tested with isDisjoint. See ?`isDisjoint,GenomicRanges-method`
for more information about the isDisjoint method for GRanges objects.

varname The name of the genomic variable.
For mcolAsRleList this must be the name of the metadata column on x to be
turned into an RleList object.
For binnedAverage this will be the name of the metadata column that contains
the binned average in the returned object.

bins A GRanges object representing the genomic bins. Typically obtained by calling
tileGenome with cut.last.tile.in.chrom=TRUE.

numvar A named RleList object representing a numerical variable defined along the
genome covered by bins (which is the genome described by seqinfo(bins)).

na.rm A logical value indicating whether NA values should be stripped before the aver-
age is computed.

Details

bindAsGRanges allows to switch the representation of one or more genomic variables from the
named RleList form to the metadata column on a disjoint GRanges object form by binding the
supplied named RleList objects together and putting them on the same GRanges object. This trans-
formation is lossless.

26 genomicvars

mcolAsRleList performs the opposite transformation and is also lossless (however the circularity
flags and genome information in seqinfo(x) won’t propagate). It works for any metadata column
on x that can be put in Rle form i.e. that is an atomic vector or a factor.

binnedAverage computes the binned average of a numerical variable defined along a genome.

Value

For bindAsGRanges: a GRanges object with 1 metadata column per supplied genomic variable.

For mcolAsRleList: a named RleList object with 1 list element per seqlevel in x.

For binnedAverage: input GRanges object bins with an additional metadata column named varname
containing the binned average.

Author(s)

H. Pagès

See Also

• RleList objects in the IRanges package.

• coverage,GenomicRanges-method for computing the coverage of a GRanges object.

• The tileGenome function for putting tiles on a genome.

• GRanges objects and isDisjoint,GenomicRanges-method for the isDisjoint method for Ge-
nomicRanges objects.

Examples

A. TWO WAYS TO REPRESENT A GENOMIC VARIABLE

1) As a named RleList object

Let's create a genomic variable in the "named RleList" form:
library(BSgenome.Scerevisiae.UCSC.sacCer2)
set.seed(55)
my_var <- RleList(

lapply(seqlengths(Scerevisiae),
function(seqlen) {

tmp <- sample(50L, seqlen, replace=TRUE)
Rle(cumsum(tmp - rev(tmp)))

}
),
compress=FALSE)

my_var

2) As a metadata column on a disjoint GRanges object
--
gr1 <- bindAsGRanges(my_var=my_var)
gr1

genomicvars 27

gr2 <- GRanges(c("chrI:1-150",
"chrI:211-285",
"chrI:291-377",
"chrV:51-60"),

score=c(0.4, 8, -10, 2.2),
id=letters[1:4],
seqinfo=seqinfo(Scerevisiae))

gr2

Going back to the "named RleList" form:
mcolAsRleList(gr1, "my_var")
score <- mcolAsRleList(gr2, "score")
score
id <- mcolAsRleList(gr2, "id")
id
bindAsGRanges(score=score, id=id)

Bind 'my_var', 'score', and 'id' together:
gr3 <- bindAsGRanges(my_var=my_var, score=score, id=id)

Sanity checks:
stopifnot(identical(my_var, mcolAsRleList(gr3, "my_var")))
stopifnot(identical(score, mcolAsRleList(gr3, "score")))
stopifnot(identical(id, mcolAsRleList(gr3, "id")))
gr2b <- bindAsGRanges(score=score, id=id)
seqinfo(gr2b) <- seqinfo(gr2)
stopifnot(identical(gr2, gr2b))

B. BIND TOGETHER THE COVERAGES OF SEVERAL BAM FILES

library(pasillaBamSubset)
library(GenomicAlignments)
untreated1_cvg <- coverage(BamFile(untreated1_chr4()))
untreated3_cvg <- coverage(BamFile(untreated3_chr4()))
all_cvg <- bindAsGRanges(untreated1=untreated1_cvg,

untreated3=untreated3_cvg)

Keep regions with coverage:
all_cvg[with(mcols(all_cvg), untreated1 + untreated3 >= 1)]

Plot the coverage profiles with the Gviz package:
library(Gviz)
plotNumvars <- function(numvars, region, name="numvars", ...)
{

stopifnot(is(numvars, "GRanges"))
stopifnot(is(region, "GRanges"), length(region) == 1L)
gtrack <- GenomeAxisTrack()
dtrack <- DataTrack(numvars,

chromosome=as.character(seqnames(region)),
name=name,

28 genomicvars

groups=colnames(mcols(numvars)), type="l", ...)
plotTracks(list(gtrack, dtrack), from=start(region), to=end(region))

}
plotNumvars(all_cvg, GRanges("chr4:1-25000"),

"coverage", col=c("red", "blue"))
plotNumvars(all_cvg, GRanges("chr4:1.03e6-1.08e6"),

"coverage", col=c("red", "blue"))

Sanity checks:
stopifnot(identical(untreated1_cvg, mcolAsRleList(all_cvg, "untreated1")))
stopifnot(identical(untreated3_cvg, mcolAsRleList(all_cvg, "untreated3")))

C. COMPUTE THE BINNED AVERAGE OF A NUMERICAL VARIABLE DEFINED ALONG A
GENOME

In some applications (e.g. visualization), there is the need to compute
the average of a genomic variable for a set of predefined fixed-width
regions (sometimes called "bins").
Let's use tileGenome() to create such a set of bins:
bins1 <- tileGenome(seqinfo(Scerevisiae), tilewidth=100,

cut.last.tile.in.chrom=TRUE)

Compute the binned average for 'my_var' and 'score':
bins1 <- binnedAverage(bins1, my_var, "binned_var")
bins1
bins1 <- binnedAverage(bins1, score, "binned_score")
bins1

Binned average in "named RleList" form:
binned_var1 <- mcolAsRleList(bins1, "binned_var")
binned_var1
stopifnot(all.equal(mean(my_var), mean(binned_var1))) # sanity check

mcolAsRleList(bins1, "binned_score")

With bigger bins:
bins2 <- tileGenome(seqinfo(Scerevisiae), tilewidth=50000,

cut.last.tile.in.chrom=TRUE)
bins2 <- binnedAverage(bins2, my_var, "binned_var")
bins2 <- binnedAverage(bins2, score, "binned_score")
bins2

binned_var2 <- mcolAsRleList(bins2, "binned_var")
binned_var2
stopifnot(all.equal(mean(my_var), mean(binned_var2))) # sanity check

mcolAsRleList(bins2, "binned_score")

Not surprisingly, the "binned" variables are much more compact in
memory than the original variables (they contain much less runs):
object.size(my_var)

GNCList-class 29

object.size(binned_var1)
object.size(binned_var2)

D. SANITY CHECKS

bins3 <- tileGenome(c(chr1=10, chr2=8), tilewidth=5,
cut.last.tile.in.chrom=TRUE)

my_var3 <- RleList(chr1=Rle(c(1:3, NA, 5:7)), chr2=Rle(c(-3, NA, -3, NaN)))
bins3 <- binnedAverage(bins3, my_var3, "binned_var3", na.rm=TRUE)
binned_var3 <- mcols(bins3)$binned_var3
stopifnot(

identical(mean(my_var3$chr1[1:5], na.rm=TRUE),
binned_var3[1]),

identical(mean(c(my_var3$chr1, 0, 0, 0)[6:10], na.rm=TRUE),
binned_var3[2]),

#identical(mean(c(my_var3$chr2, 0), na.rm=TRUE),
binned_var3[3]),
identical(0, binned_var3[4])

)

GNCList-class GNCList objects

Description

The GNCList class is a container for storing the Nested Containment List representation of a vector
of genomic ranges (typically represented as a GRanges object). To preprocess a GRanges object,
simply call the GNCList constructor function on it. The resulting GNCList object can then be used
for efficient overlap-based operations on the genomic ranges.

Usage

GNCList(x)

Arguments

x The GRanges (or more generally GenomicRanges) object to preprocess.

Details

The IRanges package also defines the NCList and NCLists constructors and classes for prepro-
cessing and representing a IntegerRanges or IntegerRangesList object as a data structure based on
Nested Containment Lists.

Note that GNCList objects (introduced in BioC 3.1) are replacements for GIntervalTree objects
(BioC < 3.1).

See ?NCList in the IRanges package for some important differences between the new algorithm
based on Nested Containment Lists and the old algorithm based on interval trees. In particular, the

30 GNCList-class

new algorithm supports preprocessing of a GenomicRanges object with ranges defined on circular
sequences (e.g. on the mitochnodrial chromosome). See below for some examples.

Value

A GNCList object.

Author(s)

H. Pagès

References

Alexander V. Alekseyenko and Christopher J. Lee – Nested Containment List (NCList): a new al-
gorithm for accelerating interval query of genome alignment and interval databases. Bioinformatics
(2007) 23 (11): 1386-1393. doi: 10.1093/bioinformatics/btl647

See Also

• The NCList and NCLists constructors and classs defined in the IRanges package.

• findOverlaps for finding/counting interval overlaps between two range-based objects.

• GRanges objects.

Examples

The examples below are for illustration purpose only and do NOT
reflect typical usage. This is because, for a one time use, it is
NOT advised to explicitely preprocess the input for findOverlaps()
or countOverlaps(). These functions will take care of it and do a
better job at it (by preprocessing only what's needed when it's
needed, and release memory as they go).

PREPROCESS QUERY OR SUBJECT

query <- GRanges(Rle(c("chrM", "chr1", "chrM", "chr1"), 4:1),
IRanges(1:10, width=5), strand=rep(c("+", "-"), 5))

subject <- GRanges(Rle(c("chr1", "chr2", "chrM"), 3:1),
IRanges(6:1, width=5), strand="+")

Either the query or the subject of findOverlaps() can be preprocessed:

ppsubject <- GNCList(subject)
hits1a <- findOverlaps(query, ppsubject)
hits1a
hits1b <- findOverlaps(query, ppsubject, ignore.strand=TRUE)
hits1b

ppquery <- GNCList(query)
hits2a <- findOverlaps(ppquery, subject)

GPos-class 31

hits2a
hits2b <- findOverlaps(ppquery, subject, ignore.strand=TRUE)
hits2b

Note that 'hits1a' and 'hits2a' contain the same hits but not
necessarily in the same order.
stopifnot(identical(sort(hits1a), sort(hits2a)))
Same for 'hits1b' and 'hits2b'.
stopifnot(identical(sort(hits1b), sort(hits2b)))

WITH CIRCULAR SEQUENCES

seqinfo <- Seqinfo(c("chr1", "chr2", "chrM"),
seqlengths=c(100, 50, 10),
isCircular=c(FALSE, FALSE, TRUE))

seqinfo(query) <- seqinfo[seqlevels(query)]
seqinfo(subject) <- seqinfo[seqlevels(subject)]

ppsubject <- GNCList(subject)
hits3 <- findOverlaps(query, ppsubject)
hits3

Circularity introduces more hits:

stopifnot(all(hits1a %in% hits3))
new_hits <- setdiff(hits3, hits1a)
new_hits # 1 new hit
query[queryHits(new_hits)]
subject[subjectHits(new_hits)] # positions 11:13 on chrM are the same

as positions 1:3

Sanity checks:
stopifnot(identical(new_hits, Hits(9, 6, 10, 6, sort.by.query=TRUE)))
ppquery <- GNCList(query)
hits4 <- findOverlaps(ppquery, subject)
stopifnot(identical(sort(hits3), sort(hits4)))

GPos-class Memory-efficient representation of genomic positions

Description

The GPos class is a container for storing a set of genomic positions (a.k.a. genomic loci). It exists in
2 flavors: UnstitchedGPos and StitchedGPos. Each flavor uses a particular internal representation:

• In an UnstitchedGPos instance the positions are stored as an integer vector.

• In a StitchedGPos instance the positions are stored as an IRanges object where each range
represents a run of consecutive positions (i.e. a run of positions that are adjacent and in

32 GPos-class

ascending order). This storage is particularly memory-efficient when the vector of positions
contains long runs of consecutive positions.

Because genomic positions can be seen as genomic ranges of width 1, the GPos class extends the
GenomicRanges virtual class (via the GRanges class).

Usage

Constructor function
GPos(seqnames=NULL, pos=NULL, strand=NULL,

..., seqinfo=NULL, seqlengths=NULL, stitch=NA)

Arguments

seqnames, strand, ..., seqinfo, seqlengths
See documentation of the GRanges() constructor function for a description of
these arguments.

pos NULL, or an integer or numeric vector, or an IRanges or IPos object (or other
IntegerRanges derivative). If not NULL, GPos() will try to turn it into an IPos
derivative with IPos(pos, stitch=stitch).
When pos is an IRanges object (or other IntegerRanges derivative), each range
in it is interpreted as a run of consecutive positions.

stitch TRUE, FALSE, or NA (the default).
Controls which internal representation should be used: StitchedGPos (when
stitch is TRUE) or UnstitchedGPos (when stitch is FALSE).
When stitch is NA (the default), which internal representation will be used de-
pends on the flavour of the IPos derivative returned by IPos(pos): UnstitchedG-
Pos if IPos(pos) returns an UnstitchedIPos instance, and StitchedGPos if it
returns a StitchedIPos instance.

Details

Even though a GRanges object can be used for storing genomic positions, using a GPos object is
more efficient. In particular the memory footprint of an UnstitchedGPos object is typically about
half that of a GRanges object.

OTOH the memory footprint of a StitchedGPos object can vary a lot but will never be worse than
that of a GRanges object. However it will reduce dramatically if the vector of positions contains
long runs of consecutive positions. In the worst case scenario (i.e. when the object contains no
consecutive positions) its memory footprint will be the same as that of a GRanges object.

Like for any Vector derivative, the length of a GPos object cannot exceed .Machine$integer.max
(i.e. 2^31 on most platforms). GPos() will return an error if pos contains too many positions.

Value

An UnstitchedGPos or StitchedGPos object.

GPos-class 33

Accessors

Getters: GPos objects support the same set of getters as other GenomicRanges derivatives
(i.e. seqnames(), ranges(), start(), end(), strand(), mcols(), seqinfo(), etc...), plus the
pos() getter which is equivalent to start() or end(). See ?GenomicRanges for the list of getters
supported by GenomicRanges derivatives.
Note that ranges() returns an IPos derivative instead of the IRanges object that one gets with
other GenomicRanges derivatives. To get an IRanges object, you need to call ranges() again on
this IPos derivative i.e. do ranges(ranges(x)) on GPos object x.

Setters: Like GRanges objects, GPos derivatives support the following setters:

• The seqnames() and strand() setters.
• The names(), mcols() and metadata() setters.
• The family of setters that operate on the seqinfo component of an object: seqlevels(),
seqlevelsStyle(), seqlengths(), isCircular(), genome(), and seqinfo(). These set-
ters are defined and documented in the Seqinfo and GenomeInfoDb packages.

However, there is no pos() setter for GPos derivatives at the moment (although one might be
added in the future).

Coercion

From UnstitchedGPos to StitchedGPos and vice-versa: coercion back and forth between UnstitchedG-
Pos and StitchedGPos is supported via as(x, "StitchedGPos") and as(x, "UnstitchedGPos").
This is the most efficient and recommended way to switch between the 2 internal representations.
Note that this switch can have dramatic consequences on memory usage so is for advanced users
only. End users should almost never need to do this switch when following a typical workflow.

From GenomicRanges to UnstitchedGPos, StitchedGPos, or GPos: A GenomicRanges derivative x
in which all the ranges have a width of 1 can be coerced to an UnstitchedGPos or StitchedGPos ob-
ject with as(x, "UnstitchedGPos") or as(x, "StitchedGPos"), respectively. For convenience
as(x, "GPos") is supported and is equivalent to as(x, "UnstitchedGPos").

From GPos to GRanges: A GPos derivative x can be coerced to a GRanges object with as(x,
"GRanges"). However be aware that the resulting object can use thousands times (or more) memory
than x! See "MEMORY USAGE" in the Examples section below.

From GPos to ordinary R objects: Like with any other GenomicRanges derivative, as.character(),
as.factor(), and as.data.frame() work on a GPos derivative x. Note however that as.data.frame(x)
returns a data frame with a pos column (containing pos(x)) instead of the start, end, and width
columns that one gets with other GenomicRanges derivatives.

Subsetting

A GPos derivative can be subsetted exactly like a GRanges object.

Concatenation

GPos derivatives can be concatenated with c() or append(). See ?c in the S4Vectors package for
more information about concatenating Vector derivatives.

34 GPos-class

Splitting and Relisting

Like with any other GRanges object, split() and relist() work on a GPos derivative.

Note

Internal representation of GPos objects has changed in GenomicRanges 1.29.10 (Bioc 3.6). Update
any old object x with: x <- updateObject(x, verbose=TRUE).

Author(s)

Hervé Pagès; based on ideas borrowed from Georg Stricker <georg.stricker@in.tum.de> and
Julien Gagneur <gagneur@in.tum.de>

See Also

• The IPos class in the IRanges package for storing a set of integer positions (i.e. integer ranges
of width 1).

• The GRanges class for storing a set of genomic ranges of arbitrary width.

• Seqinfo objects and the seqinfo accessor and family in the Seqinfo package for access-
ing/modifying information about the underlying sequences of a GenomicRanges derivative.

• GenomicRanges-comparison for comparing and ordering genomic ranges and/or positions.

• findOverlaps-methods for finding overlapping genomic ranges and/or positions.

• intra-range-methods and inter-range-methods for intra range and inter range transformations
of GenomicRanges derivatives.

• coverage-methods for computing the coverage of a set of genomic ranges and/or positions.

• nearest-methods for finding the nearest genomic range/position neighbor.

• The snpsBySeqname, snpsByOverlaps, and snpsById methods for SNPlocs objects defined
in the BSgenome package for extractors that return a GPos derivative.

• SummarizedExperiment objects and derivatives in the SummarizedExperiment package.

Examples

showClass("GPos") # shows the known subclasses

BASIC EXAMPLES

Example 1:
gpos1a <- GPos(seqnames=Rle(c("chr1", "chr2", "chr1"), c(10, 6, 4)),

pos=c(44:53, 5:10, 2:5))
gpos1a # unstitched

length(gpos1a)
seqnames(gpos1a)
pos(gpos1a) # same as 'start(gpos1a)' and 'end(gpos1a)'
strand(gpos1a)

GPos-class 35

as.character(gpos1a)
as.data.frame(gpos1a)
as(gpos1a, "GRanges")
as.data.frame(as(gpos1a, "GRanges"))
gpos1a[9:17]

gpos1b <- GPos(seqnames=Rle(c("chr1", "chr2", "chr1"), c(10, 6, 4)),
pos=c(44:53, 5:10, 2:5), stitch=TRUE)

gpos1b # stitched

'gpos1a' and 'gpos1b' are semantically equivalent, only their
internal representations differ:
all(gpos1a == gpos1b)

gpos1c <- GPos(c("chr1:44-53", "chr2:5-10", "chr1:2-5"))
gpos1c # stitched

identical(gpos1b, gpos1c)

Example 2:
pos_runs <- GRanges("chrI", IRanges(c(1, 6, 12, 17), c(5, 10, 16, 20)),

strand=c("*", "-", "-", "+"))
gpos2 <- GPos(pos_runs)
gpos2 # stitched
strand(gpos2)

Example 3:
gpos3A <- gpos3B <- GPos(c("chrI:1-1000", "chrI:1005-2000"))
npos <- length(gpos3A)

mcols(gpos3A)$sample <- Rle("sA")
sA_counts <- sample(10, npos, replace=TRUE)
mcols(gpos3A)$counts <- sA_counts

mcols(gpos3B)$sample <- Rle("sB")
sB_counts <- sample(10, npos, replace=TRUE)
mcols(gpos3B)$counts <- sB_counts

gpos3 <- c(gpos3A, gpos3B)
gpos3

Example 4:
library(BSgenome.Scerevisiae.UCSC.sacCer2)
genome <- BSgenome.Scerevisiae.UCSC.sacCer2
gpos4 <- GPos(seqinfo(genome))
gpos4 # all the positions along the genome are represented
mcols(gpos4)$dna <- do.call("c", unname(as.list(genome)))
gpos4

Note however that, like for any Vector derivative, the length of a
GPos derivative cannot exceed '.Machine$integer.max' (i.e. 2^31 on
most platforms) so the above only works with a "small" genome.
For example it doesn't work with the Human genome:

36 GPos-class

library(TxDb.Hsapiens.UCSC.hg38.knownGene)
Not run:

GPos(seqinfo(TxDb.Hsapiens.UCSC.hg38.knownGene)) # error!

End(Not run)

You can use isSmallGenome() to check upfront whether the genome is
"small" or not.
isSmallGenome(genome) # TRUE
isSmallGenome(TxDb.Hsapiens.UCSC.hg38.knownGene) # FALSE

MEMORY USAGE

Coercion to GRanges works...
gr4 <- as(gpos4, "GRanges")
gr4
... but is generally not a good idea:
object.size(gpos4)
object.size(gr4) # 8 times bigger than the StitchedGPos object!

Shuffling the order of the positions impacts memory usage:
gpos4r <- rev(gpos4)
object.size(gpos4r) # significantly
gpos4s <- sample(gpos4)
object.size(gpos4s) # even worse!

If one anticipates a lot of shuffling of the genomic positions,
then an UnstitchedGPos object should be used instead:
gpos4b <- as(gpos4, "UnstitchedGPos")
object.size(gpos4b) # initial size is bigger than stitched version
object.size(rev(gpos4b)) # size didn't change
object.size(sample(gpos4b)) # size increased, but is still < stitched

version

AN IMPORTANT NOTE: In the worst situations, GPos still performs as
good as a GRanges object.
object.size(as(gpos4r, "GRanges")) # same size as 'gpos4r'
object.size(as(gpos4s, "GRanges")) # same size as 'gpos4s'

Best case scenario is when the object is strictly sorted (i.e.
positions are in strict ascending order).
This can be checked with:
is.unsorted(gpos4, strict=TRUE) # 'gpos4' is strictly sorted

USING MEMORY-EFFICIENT METADATA COLUMNS

In order to keep memory usage as low as possible, it is recommended
to use a memory-efficient representation of the metadata columns that
we want to set on the object. Rle's are particularly well suited for
this, especially if the metadata columns contain long runs of

GPos-class 37

identical values. This is the case for example if we want to use a
GPos object to represent the coverage of sequencing reads along a
genome.

Example 5:
library(pasillaBamSubset)
library(Rsamtools) # for the BamFile() constructor function
bamfile1 <- BamFile(untreated1_chr4())
bamfile2 <- BamFile(untreated3_chr4())
gpos5 <- GPos(seqinfo(bamfile1))
library(GenomicAlignments) # for "coverage" method for BamFile objects
cvg1 <- unlist(coverage(bamfile1), use.names=FALSE)
cvg2 <- unlist(coverage(bamfile2), use.names=FALSE)
mcols(gpos5) <- DataFrame(cvg1, cvg2)
gpos5

object.size(gpos5) # lightweight

Keep only the positions where coverage is at least 10 in one of the
2 samples:
gpos5[mcols(gpos5)$cvg1 >= 10 | mcols(gpos5)$cvg2 >= 10]

USING A GPos OBJECT IN A RangedSummarizedExperiment OBJECT

Because the GPos class extends the GenomicRanges virtual class, a
GPos derivative can be used as the rowRanges component of a
RangedSummarizedExperiment object.

As a 1st example, we show how the counts for samples sA and sB in
'gpos3' can be stored in a SummarizedExperiment object where the rows
correspond to unique genomic positions and the columns to samples:
library(SummarizedExperiment)
counts <- cbind(sA=sA_counts, sB=sB_counts)
mcols(gpos3A) <- NULL
rse3 <- SummarizedExperiment(list(counts=counts), rowRanges=gpos3A)
rse3
rowRanges(rse3)
head(assay(rse3))

Finally we show how the coverage data from Example 5 can be easily
stored in a lightweight SummarizedExperiment derivative:
cvg <- mcols(gpos5)
mcols(gpos5) <- NULL
rse5 <- SummarizedExperiment(list(cvg=cvg), rowRanges=gpos5)
rse5
rowRanges(rse5)
assay(rse5)

Keep only the positions where coverage is at least 10 in one of the
2 samples:
rse5[assay(rse5)$cvg1 >= 10 | assay(rse5)$cvg2 >= 10]

38 GRanges-class

GRanges-class GRanges objects

Description

The GRanges class is a container for the genomic locations and their associated annotations.

Details

GRanges is a vector of genomic locations and associated annotations. Each element in the vector
is comprised of a sequence name, an interval, a strand, and optional metadata columns (e.g. score,
GC content, etc.). This information is stored in four components:

seqnames a ’factor’ Rle object containing the sequence names.

ranges an IRanges object containing the ranges.

strand a ’factor’ Rle object containing the strand information.

mcols a DataFrame object containing the metadata columns. Columns cannot be named "seqnames",
"ranges", "strand", "seqlevels", "seqlengths", "isCircular", "start", "end", "width",
or "element".

seqinfo a Seqinfo object containing information about the set of genomic sequences present in the
GRanges object.

Constructor

GRanges(seqnames=NULL, ranges=NULL, strand=NULL, ..., seqinfo=NULL, seqlengths=NULL):
Creates a GRanges object.

seqnames NULL, or an Rle object, character vector, or factor containing the sequence names.
ranges NULL, or an IRanges object containing the ranges.
strand NULL, or an Rle object, character vector, or factor containing the strand information.
... Metadata columns to set on the GRanges object. All the metadata columns must be

vector-like objects of the same length as the object to construct. They cannot be named
"start", "end", "width", or "element".

seqinfo Either NULL, or a Seqinfo object, or a character vector of unique sequence names
(a.k.a. seqlevels), or a named numeric vector of sequence lengths. When not NULL,
seqinfo must be compatible with the sequence names in seqnames, that is, it must have
one entry for each unique sequence name in seqnames. Note that it can have additional
entries i.e. entries for seqlevels not present in seqnames.

seqlengths NULL, or an integer vector named with levels(seqnames) and containing the
lengths (or NA) for each level in levels(seqnames).

If ranges is not supplied and/or NULL then the constructor proceeds in 2 steps:

1. An initial GRanges object is created with as(seqnames, "GRanges").
2. Then this GRanges object is updated according to whatever non-NULL remaining argu-

ments were passed to the call to GRanges().

As a consequence of this behavior, GRanges(x) is equivalent to as(x, "GRanges").

GRanges-class 39

Accessors

In the following code snippets, x is a GRanges object.

length(x): Get the number of elements.

seqnames(x), seqnames(x) <- value: Get or set the sequence names. value can be an Rle object,
a character vector, or a factor.

ranges(x), ranges(x) <- value: Get or set the ranges. value can be an IntegerRanges object.

start(x), start(x) <- value: Get or set start(ranges(x)).

end(x), end(x) <- value: Get or set end(ranges(x)).

width(x), width(x) <- value: Get or set width(ranges(x)).

strand(x), strand(x) <- value: Get or set the strand. value can be an Rle object, character
vector, or factor.

names(x), names(x) <- value: Get or set the names of the elements.

mcols(x, use.names=FALSE), mcols(x) <- value: Get or set the metadata columns. If use.names=TRUE
and the metadata columns are not NULL, then the names of x are propagated as the row names
of the returned DataFrame object. When setting the metadata columns, the supplied value
must be NULL or a data-frame-like object (i.e. DataFrame or data.frame) holding element-wise
metadata.

elementMetadata(x), elementMetadata(x) <- value, values(x), values(x) <- value: Alternatives
to mcols functions. Their use is discouraged.

seqinfo(x), seqinfo(x) <- value: Get or set the information about the underlying sequences.
value must be a Seqinfo object.

seqlevels(x), seqlevels(x, pruning.mode=c("error", "coarse", "fine", "tidy")) <- value:
Get or set the sequence levels. seqlevels(x) is equivalent to seqlevels(seqinfo(x)) or
to levels(seqnames(x)), those 2 expressions being guaranteed to return identical character
vectors on a GRanges object. value must be a character vector with no NAs. See ?seqlevels
for more information.

seqlengths(x), seqlengths(x) <- value: Get or set the sequence lengths. seqlengths(x) is
equivalent to seqlengths(seqinfo(x)). value can be a named non-negative integer or nu-
meric vector eventually with NAs.

isCircular(x), isCircular(x) <- value: Get or set the circularity flags. isCircular(x) is
equivalent to isCircular(seqinfo(x)). value must be a named logical vector eventually
with NAs.

genome(x), genome(x) <- value: Get or set the genome identifier or assembly name for each se-
quence. genome(x) is equivalent to genome(seqinfo(x)). value must be a named character
vector eventually with NAs.

seqlevelsStyle(x), seqlevelsStyle(x) <- value: Get or set the seqname style for x. See the
seqlevelsStyle generic getter and setter in the GenomeInfoDb package for more information.

score(x), score(x) <- value: Get or set the “score” column from the element metadata.

granges(x, use.names=FALSE, use.mcols=FALSE): Squeeze the genomic ranges out of Genom-
icRanges object x and return them in a GRanges object parallel to x (i.e. same length as x).
If use.mcols is TRUE, the metadata columns are propagated. If x is a GenomicRanges deriva-
tive with extra column slots, these will be propagated as metadata columns on the returned
GRanges object.

40 GRanges-class

Coercion

In the code snippets below, x is a GRanges object.

as(from, "GRanges"): Creates a GRanges object from a character vector, a factor, or IntegerRanges-
List object.
When from is a character vector (or a factor), each element in it must represent a genomic
range in format chr1:2501-2800 (unstranded range) or chr1:2501-2800:+ (stranded range).
.. is also supported as a separator between the start and end positions. Strand can be +,
-, *, or missing. The names on from are propagated to the returned GRanges object. See
as.character() and as.factor() below for the reverse transformations.
Coercing a data.frame or DataFrame into a GRanges object is also supported. See makeGRangesFromDataFrame
for the details.

as(from, "IntegerRangesList"): Creates a IntegerRangesList object from a GRanges object.
The strand and metadata columns become inner metadata columns (i.e. metadata columns
on the ranges). The seqlengths(from), isCircular(from), and genome(from) vectors
become the metadata columns.

as.character(x, ignore.strand=FALSE): Turn GRanges object x into a character vector where
each range in x is represented by a string in format chr1:2501-2800:+. If ignore.strand is
TRUE or if all the ranges in x are unstranded (i.e. their strand is set to *), then all the strings
in the output are in format chr1:2501-2800.
The names on x are propagated to the returned character vector. Its metadata (metadata(x))
and metadata columns (mcols(x)) are ignored.
See as(from, "GRanges") above for the reverse transformation.

as.factor(x): Equivalent to

factor(as.character(x), levels=as.character(sort(unique(x))))

See as(from, "GRanges") above for the reverse transformation.
Note that table(x) is supported on a GRanges object. It is equivalent to, but much faster
than, table(as.factor(x)).

as.data.frame(x, row.names = NULL, optional = FALSE, ...): Creates a data.frame with columns
seqnames (factor), start (integer), end (integer), width (integer), strand (factor), as well as
the additional metadata columns stored in mcols(x). Pass an explicit stringsAsFactors=TRUE/FALSE
argument via ... to override the default conversions for the metadata columns in mcols(x).

as(from, "Grouping"): Creates a ManyToOneGrouping object that groups from by seqname, strand,
start and end (same as the default sort order). This makes it convenient, for example, to ag-
gregate a GenomicRanges object by range.

In the code snippets below, x is a Seqinfo object.

as(x, "GRanges"), as(x, "GenomicRanges"), as(x, "IntegerRangesList"): Turns Seqinfo ob-
ject x (with no NA lengths) into a GRanges or IntegerRangesList.

Subsetting

In the code snippets below, x is a GRanges object.

x[i]: Return a new GRanges object made of the elements selected by i.

GRanges-class 41

x[i, j]: Like the above, but allow the user to conveniently subset the metadata columns thru j.

x[i] <- value: Replacement version of x[i].

x$name, x$name <- value: Shortcuts for mcols(x)$name and mcols(x)$name <- value, respec-
tively. Provided as a convenience, for GRanges objects *only*, and as the result of strong
popular demand. Note that those methods are not consistent with the other $ and $<- meth-
ods in the IRanges/GenomicRanges infrastructure, and might confuse some users by making
them believe that a GRanges object can be manipulated as a data.frame-like object. Therefore
we recommend using them only interactively, and we discourage their use in scripts or pack-
ages. For the latter, use mcols(x)$name and mcols(x)$name <- value, instead of x$name
and x$name <- value, respectively.

See ?`[` in the S4Vectors package for more information about subsetting Vector derivatives and
for an important note about the x[i, j] form.

Note that a GRanges object can be used as a subscript to subset a list-like object that has names
on it. In that case, the names on the list-like object are interpreted as sequence names. In the code
snippets below, x is a list or List object with names on it, and the subscript gr is a GRanges object
with all its seqnames being valid x names.

x[gr]: Return an object of the same class as x and parallel to gr. More precisely, it’s conceptually
doing:

lapply(gr, function(gr1) x[[seqnames(gr1)]][ranges(gr1)])

Concatenation

c(x, ..., ignore.mcols=FALSE): Concatenate GRanges object x and the GRanges objects in
... together. See ?c in the S4Vectors package for more information about concatenating
Vector derivatives.

Splitting

split(x, f, drop=FALSE): Splits GRanges object x according to f to create a GRangesList ob-
ject. If f is a list-like object then drop is ignored and f is treated as if it was rep(seq_len(length(f)),
sapply(f, length)), so the returned object has the same shape as f (it also receives the
names of f). Otherwise, if f is not a list-like object, empty list elements are removed from the
returned object if drop is TRUE.

Displaying

In the code snippets below, x is a GRanges object.

show(x): By default the show method displays 5 head and 5 tail elements. This can be changed
by setting the global options showHeadLines and showTailLines. If the object length is less
than (or equal to) the sum of these 2 options plus 1, then the full object is displayed. Note that
these options also affect the display of GAlignments and GAlignmentPairs objects (defined
in the GenomicAlignments package), as well as other objects defined in the IRanges and
Biostrings packages (e.g. IRanges and DNAStringSet objects).

42 GRanges-class

Author(s)

P. Aboyoun and H. Pagès

See Also

• The IRanges class in the IRanges package for storing a set of integer ranges.

• The GPos class for representing a set of genomic positions (i.e. genomic ranges of width 1,
a.k.a. genomic loci).

• makeGRangesFromDataFrame for making a GRanges object from a data.frame or DataFrame
object.

• Seqinfo objects and the seqinfo accessor and family in the Seqinfo package for access-
ing/modifying information about the underlying sequences of a GenomicRanges derivative.

• GenomicRanges-comparison for comparing and ordering genomic ranges and/or positions.

• findOverlaps-methods for finding overlapping genomic ranges and/or positions.

• intra-range-methods and inter-range-methods for intra range and inter range transformations
of GenomicRanges derivatives.

• coverage-methods for computing the coverage of a set of genomic ranges and/or positions.

• setops-methods for set operations on GRanges objects.

• subtract for subtracting a set of genomic ranges from a GRanges object (similar to bedtools
subtract).

• nearest-methods for finding the nearest genomic range/position neighbor.

• absoluteRanges for transforming genomic ranges into absolute ranges (i.e. into ranges on
the sequence obtained by virtually concatenating all the sequences in a genome).

• tileGenome for putting tiles on a genome.

• genomicvars for manipulating genomic variables.

• GRangesList objects.

• Vector, Rle, and DataFrame objects in the S4Vectors package.

Examples

showClass("GRanges") # shows the known subclasses

CONSTRUCTION

Specifying the bare minimum i.e. seqnames and ranges only. The
GRanges object will have no names, no strand information, and no
metadata columns:
gr0 <- GRanges(Rle(c("chr2", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),

IRanges(1:10, width=10:1))
gr0

Specifying names, strand, metadata columns. They can be set on an
existing object:
names(gr0) <- head(letters, 10)

GRanges-class 43

strand(gr0) <- Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2))
mcols(gr0)$score <- 1:10
mcols(gr0)$GC <- seq(1, 0, length=10)
gr0

... or specified at construction time:
gr <- GRanges(Rle(c("chr2", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),

IRanges(1:10, width=10:1, names=head(letters, 10)),
Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)),
score=1:10, GC=seq(1, 0, length=10))

stopifnot(identical(gr0, gr))

Specifying the seqinfo. It can be set on an existing object:
seqinfo <- Seqinfo(paste0("chr", 1:3), c(1000, 2000, 1500), NA, "mock1")
seqinfo(gr0) <- merge(seqinfo(gr0), seqinfo)
seqlevels(gr0) <- seqlevels(seqinfo)

... or specified at construction time:
gr <- GRanges(Rle(c("chr2", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),

IRanges(1:10, width=10:1, names=head(letters, 10)),
Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)),
score=1:10, GC=seq(1, 0, length=10),
seqinfo=seqinfo)

stopifnot(identical(gr0, gr))

COERCION

From GRanges:
as.character(gr)
as.factor(gr)
as.data.frame(gr)

From character to GRanges:
x1 <- "chr2:56-125"
as(x1, "GRanges")
as(rep(x1, 4), "GRanges")
x2 <- c(A=x1, B="chr1:25-30:-")
as(x2, "GRanges")

From data.frame to GRanges:
df <- data.frame(chrom="chr2", start=11:15, end=20:24)
gr3 <- as(df, "GRanges")

Alternatively, coercion to GRanges can be done by just calling the
GRanges() constructor on the object to coerce:
gr1 <- GRanges(x1) # same as as(x1, "GRanges")
gr2 <- GRanges(x2) # same as as(x2, "GRanges")
gr3 <- GRanges(df) # same as as(df, "GRanges")

Sanity checks:
stopifnot(identical(as(x1, "GRanges"), gr1))
stopifnot(identical(as(x2, "GRanges"), gr2))

44 GRanges-class

stopifnot(identical(as(df, "GRanges"), gr3))

SUMMARIZING ELEMENTS

table(seqnames(gr))
table(strand(gr))
sum(width(gr))
table(gr)
summary(mcols(gr)[,"score"])

The number of lines displayed in the 'show' method are controlled
with two global options:
longGR <- sample(gr, 25, replace=TRUE)
longGR
options(showHeadLines=7)
options(showTailLines=2)
longGR

Revert to default values
options(showHeadLines=NULL)
options(showTailLines=NULL)

INVERTING THE STRAND

invertStrand(gr)

RENAMING THE UNDERLYING SEQUENCES

seqlevels(gr)
seqlevels(gr) <- sub("chr", "Chrom", seqlevels(gr))
gr
seqlevels(gr) <- sub("Chrom", "chr", seqlevels(gr)) # revert

COMBINING OBJECTS

gr2 <- GRanges(seqnames=Rle(c('chr1', 'chr2', 'chr3'), c(3, 3, 4)),

IRanges(1:10, width=5),
strand='-',
score=101:110, GC=runif(10),
seqinfo=seqinfo)

gr3 <- GRanges(seqnames=Rle(c('chr1', 'chr2', 'chr3'), c(3, 4, 3)),
IRanges(101:110, width=10),
strand='-',
score=21:30,
seqinfo=seqinfo)

some.gr <- c(gr, gr2)

c(gr, gr2, gr3)
c(gr, gr2, gr3, ignore.mcols=TRUE)

GRangesFactor-class 45

USING A GRANGES OBJECT AS A SUBSCRIPT TO SUBSET ANOTHER OBJECT

Subsetting *by* a GRanges subscript is supported only if the object
to subset is a named list-like object:
x <- RleList(chr1=101:120, chr2=2:-8, chr3=31:40)
x[gr]

GRangesFactor-class GRangesFactor objects

Description

A GRangesFactor object is a Factor derivative where the levels are a GRanges object.

See ?Factor and in the S4Vectors package for general information about Factor objects.

Usage

GRangesFactor(x, levels, index=NULL, ...) # constructor function

Arguments

x, levels Like with the Factor() constructor function, at least one of x and levels must
be specified. If index is NULL, both can be specified.
When x and/or levels are specified, they must be GRanges objects or deriva-
tives. In addition, levels cannot contain duplicate ranges (i.e. anyDuplicated(levels)
must return 0).
When x and levels are both specified, they should both be GRanges objects
or GRanges derivatives of the same class, and all the elements in x must be
represented in levels (i.e. the integer vector returned by match(x, levels)
should contain no NAs).

index NULL or an integer (or numeric) vector of valid positive indices (no NAs) into
levels.

... Optional metadata columns.

Details

Like with the Factor() constructor function, there are 4 different ways to use the GRangesFactor()
constructor function. See Details section in the man page for Factor objects for more information.

Value

A GRangesFactor object.

46 GRangesFactor-class

Accessors

GRangesFactor objects support the accessors documented in the man page for Factor objects.

In addition, the following getters are supported for convenience: seqnames(), start(), end(),
width(), strand(), seqinfo(), granges(), and ranges(). When called on GRangesFactor ob-
ject x, they all behave as if they were called on unfactor(x).

Decoding a Factor

Because a GRangesFactor object x is a Factor derivative, unfactor(x) can be used to decode it.
unfactor(x) returns an object of the same class as levels(x) (i.e. a GRanges object or derivative)
and same length as x.

See ?unfactor for more information.

Coercion

GRangesFactor objects support the coercions documented in the man page for Factor objects.

In addition, coercion back and forth between GRanges and GRangesFactor is supported via as(x,
"GRanges") and as(x, "GRangesFactor").

Subsetting

A GRangesFactor object can be subsetted with [, like a Factor object.

Concatenation

2 or more GRangesFactor objects can be concatenated with c(). The result of this concatenation is
another GRangesFactor object.

See Concatenation section in ?Factor.

Comparing & ordering

See Comparing & Ordering section in ?Factor.

Author(s)

Hervé Pagès

See Also

• GRanges objects.

• Factor objects in the S4Vectors package for the parent class of GRangesFactor.

• anyDuplicated in the BiocGenerics package.

GRangesFactor-class 47

Examples

showClass("GRangesFactor") # GRangesFactor extends Factor

CONSTRUCTOR & ACCESSORS

set.seed(123)
ir0 <- IRanges(sample(5, 8, replace=TRUE), width=10, names=letters[1:8])
gr0 <- GRanges("chrA", ir0, ID=paste0("ID", 1:8))

Use explicit levels:
gr1 <- GRanges("chrA", IRanges(1:6, width=10))
grf1 <- GRangesFactor(gr0, levels=gr1)
grf1
length(grf1)
names(grf1)
levels(grf1) # gr1
nlevels(grf1)
as.integer(grf1) # encoding

If we don't specify the levels, they'll be set to unique(gr0):
grf2 <- GRangesFactor(gr0)
grf2
length(grf2)
names(grf2)
levels(grf2) # unique(gr0)
nlevels(grf2)
as.integer(grf2)

DECODING

unfactor(grf1)

stopifnot(identical(gr0, unfactor(grf1)))
stopifnot(identical(gr0, unfactor(grf2)))

unfactor(grf1, use.names=FALSE)
unfactor(grf1, ignore.mcols=TRUE)

COERCION

grf2b <- as(gr0, "GRangesFactor") # same as GRangesFactor(gr0)
stopifnot(identical(grf2, grf2b))

as.factor(grf2)
as.factor(grf1)

as.character(grf1) # same as unfactor(as.factor(grf1)),
and also same as as.character(unfactor(grf1))

48 GRangesList-class

CONCATENATION

gr3 <- GRanges("chrA", IRanges(c(5, 2, 8:6), width=10))
grf3 <- GRangesFactor(levels=gr3, index=2:4)
grf13 <- c(grf1, grf3)
grf13
levels(grf13)

stopifnot(identical(c(unfactor(grf1), unfactor(grf3)), unfactor(grf13)))

COMPARING & ORDERING

grf1 == grf2 # same as unfactor(grf1) == unfactor(grf2)

order(grf1) # same as order(unfactor(grf1))
order(grf2) # same as order(unfactor(grf2))

The levels of the GRangesFactor influence the order of the table:
table(grf1)
table(grf2)

GRangesList-class GRangesList objects

Description

The GRangesList class is a container for storing a collection of GRanges objects. It is a subclass
of GenomicRangesList. It exists in 2 flavors: SimpleGRangesList and CompressedGRangesList.
Each flavor uses a particular internal representation. The CompressedGRangesList flavor is the
default. It is particularly efficient for storing a large number of list elements and operating on them.

Constructors

GRangesList(..., compress=TRUE): Creates a GRangesList object using the GRanges objects
supplied in ..., either consecutively or in a list. By default a CompressedGRangesList in-
stance is returned, that is, a GRangesList object of the CompressedGRangesList flavor. Use
compress=FALSE to get a SimpleGRangesList instance instead.

makeGRangesListFromFeatureFragments(seqnames=Rle(factor()), fragmentStarts=list(), fragmentEnds=list(), fragmentWidths=list(), strand=character(0), sep=","):
Constructs a GRangesList object from a list of fragmented features. See the Examples section
below.

Accessors

In the code snippets below, x is a GRangesList object.

length(x): Get the number of list elements.

names(x), names(x) <- value: Get or set the names on x.

GRangesList-class 49

seqnames(x), seqnames(x) <- value: Get or set the sequence names in the form of an RleList.
value can be an RleList or CharacterList object.

ranges(x, use.mcols=FALSE), ranges(x) <- value: Get or set the ranges in the form of a Com-
pressedIRangesList. value can be an IntegerRangesList object.

start(x), start(x) <- value: Get or set start(ranges(x)).

end(x), end(x) <- value: Get or set end(ranges(x)).

width(x), width(x) <- value: Get or set width(ranges(x)).

strand(x), strand(x) <- value: Get or set the strand in the form of an RleList object. value
can be an RleList, CharacterList or single character. value as a single character converts all
ranges in x to the same value; for selective strand conversion (i.e., mixed + and -) use RleList
or CharacterList.

mcols(x, use.names=FALSE), mcols(x) <- value: Get or set the metadata columns. value can
be NULL, or a data.frame-like object (i.e. DataFrame or data.frame) holding element-wise
metadata.

elementNROWS(x): Get a vector of the length of each of the list element.

isEmpty(x): Returns a logical indicating either if the GRangesList has no elements or if all its
elements are empty.

seqinfo(x), seqinfo(x) <- value: Get or set the information about the underlying sequences.
value must be a Seqinfo object.

seqlevels(x), seqlevels(x, pruning.mode=c("error", "coarse", "fine", "tidy")) <- value:
Get or set the sequence levels. seqlevels(x) is equivalent to seqlevels(seqinfo(x)) or
to levels(seqnames(x)), those 2 expressions being guaranteed to return identical charac-
ter vectors on a GRangesList object. value must be a character vector with no NAs. See
?seqlevels for more information.

seqlengths(x), seqlengths(x) <- value: Get or set the sequence lengths. seqlengths(x) is
equivalent to seqlengths(seqinfo(x)). value can be a named non-negative integer or nu-
meric vector eventually with NAs.

isCircular(x), isCircular(x) <- value: Get or set the circularity flags. isCircular(x) is
equivalent to isCircular(seqinfo(x)). value must be a named logical vector eventually
with NAs.

genome(x), genome(x) <- value: Get or set the genome identifier or assembly name for each se-
quence. genome(x) is equivalent to genome(seqinfo(x)). value must be a named character
vector eventually with NAs.

seqlevelsStyle(x), seqlevelsStyle(x) <- value: Get or set the seqname style for x. See the
seqlevelsStyle generic getter and setter in the GenomeInfoDb package for more information.

score(x), score(x) <- value: Get or set the score metadata column.

Coercion

In the code snippets below, x is a GRangesList object.

as.data.frame(x, row.names=NULL, optional=FALSE, ..., value.name="value", use.outer.mcols=FALSE, group_name.as.factor=FALSE):
Coerces x to a data.frame. See as.data.frame on the List man page for details (?List).

as.list(x, use.names = TRUE): Creates a list containing the elements of x.

50 GRangesList-class

as(x, "IRangesList"): Turns x into an IRangesList object.

When x is a list of GRanges, it can be coerced to a GRangesList.

as(x, "GRangesList"): Turns x into a GRangesList.

Subsetting

In the following code snippets, x is a GRangesList object.

x[i, j], x[i, j] <- value: Get or set elements i with optional metadata columns mcols(x)[,j],
where i can be missing; an NA-free logical, numeric, or character vector; a logical-Rle object,
or an AtomicList object.

x[[i]], x[[i]] <- value: Get or set element i, where i is a numeric or character vector of length
1.

x$name, x$name <- value: Get or set element name, where name is a name or character vector of
length 1.

head(x, n = 6L): If n is non-negative, returns the first n elements of the GRangesList object. If n
is negative, returns all but the last abs(n) elements of the GRangesList object.

rep(x, times, length.out, each): Repeats the values in x through one of the following conven-
tions:

times Vector giving the number of times to repeat each element if of length length(x), or
to repeat the whole vector if of length 1.

length.out Non-negative integer. The desired length of the output vector.

each Non-negative integer. Each element of x is repeated each times.

subset(x, subset): Returns a new object of the same class as x made of the subset using logical
vector subset, where missing values are taken as FALSE.

tail(x, n = 6L): If n is non-negative, returns the last n list elements of the GRangesList object. If
n is negative, returns all but the first abs(n) list elements of the GRangesList object.

Combining

In the code snippets below, x is a GRangesList object.

c(x, ...): Combines x and the GRangesList objects in ... together. Any object in ... must
belong to the same class as x, or to one of its subclasses, or must be NULL. The result is an
object of the same class as x.

append(x, values, after = length(x)): Inserts the values into x at the position given by after,
where x and values are of the same class.

unlist(x, recursive = TRUE, use.names = TRUE): Concatenates the elements of x into a single
GRanges object.

GRangesList-class 51

Looping

In the code snippets below, x is a GRangesList object.

endoapply(X, FUN, ...): Similar to lapply, but performs an endomorphism, i.e. returns an ob-
ject of class(X).

lapply(X, FUN, ...): Like the standard lapply function defined in the base package, the lapply
method for GRangesList objects returns a list of the same length as X, with each element being
the result of applying FUN to the corresponding element of X.

Map(f, ...): Applies a function to the corresponding elements of given GRangesList objects.

mapply(FUN, ..., MoreArgs=NULL, SIMPLIFY=TRUE, USE.NAMES=TRUE): Like the standard mapply
function defined in the base package, the mapply method for GRangesList objects is a multi-
variate version of sapply.

mendoapply(FUN, ..., MoreArgs = NULL): Similar to mapply, but performs an endomorphism
across multiple objects, i.e. returns an object of class(list(...)[[1]]).

Reduce(f, x, init, right = FALSE, accumulate = FALSE): Uses a binary function to succes-
sively combine the elements of x and a possibly given initial value.

f A binary argument function.

init An R object of the same kind as the elements of x.

right A logical indicating whether to proceed from left to right (default) or from right to left.

nomatch The value to be returned in the case when "no match" (no element satisfying the
predicate) is found.

sapply(X, FUN, ..., simplify=TRUE, USE.NAMES=TRUE): Like the standard sapply function de-
fined in the base package, the sapply method for GRangesList objects is a user-friendly ver-
sion of lapply by default returning a vector or matrix if appropriate.

Author(s)

P. Aboyoun & H. Pagès

See Also

• GRanges objects.

• seqinfo in the Seqinfo package.

• IntegerRangesList objects in the IRanges package.

• RleList objects in the IRanges package.

• DataFrameList objects in the IRanges package.

• intra-range-methods, inter-range-methods, coverage-methods, setops-methods, and findOverlaps-
methods.

• GenomicRangesList objects.

52 inter-range-methods

Examples

Construction with GRangesList():
gr1 <- GRanges("chr2", IRanges(3, 6),

strand="+", score=5L, GC=0.45)
gr2 <- GRanges(c("chr1", "chr1"), IRanges(c(7,13), width=3),

strand=c("+", "-"), score=3:4, GC=c(0.3, 0.5))
gr3 <- GRanges(c("chr1", "chr2"), IRanges(c(1, 4), c(3, 9)),

strand=c("-", "-"), score=c(6L, 2L), GC=c(0.4, 0.1))
grl <- GRangesList(gr1=gr1, gr2=gr2, gr3=gr3)
grl

Summarizing elements:
elementNROWS(grl)
table(seqnames(grl))

Extracting subsets:
grl[seqnames(grl) == "chr1",]
grl[seqnames(grl) == "chr1" & strand(grl) == "+",]

Renaming the underlying sequences:
seqlevels(grl)
seqlevels(grl) <- sub("chr", "Chrom", seqlevels(grl))
grl

Coerce to IRangesList (seqnames and strand information is lost):
as(grl, "IRangesList")

isDisjoint():
isDisjoint(grl)

disjoin():
disjoin(grl) # metadata columns and order NOT preserved

Construction with makeGRangesListFromFeatureFragments():
filepath <- system.file("extdata", "feature_frags.txt",

package="GenomicRanges")
featfrags <- read.table(filepath, header=TRUE, stringsAsFactors=FALSE)
grl2 <- with(featfrags,

makeGRangesListFromFeatureFragments(seqnames=targetName,
fragmentStarts=targetStart,
fragmentWidths=blockSizes,
strand=strand))

names(grl2) <- featfrags$RefSeqID
grl2

inter-range-methods Inter range transformations of a GRanges or GRangesList object

inter-range-methods 53

Description

This man page documents inter range transformations of a GenomicRanges object (i.e. of an object
that belongs to the GenomicRanges class or one of its subclasses, this includes for example GRanges
objects), or a GRangesList object.

See ?`intra-range-methods` and ?`inter-range-methods` in the IRanges package for a quick
introduction to intra range and inter range transformations.

See ?`intra-range-methods` for intra range transformations of a GenomicRanges object or
GRangesList object.

Usage

S4 method for signature 'GenomicRanges'
range(x, ..., with.revmap=FALSE, ignore.strand=FALSE, na.rm=FALSE)
S4 method for signature 'GRangesList'
range(x, ..., with.revmap=FALSE, ignore.strand=FALSE, na.rm=FALSE)

S4 method for signature 'GenomicRanges'
reduce(x, drop.empty.ranges=FALSE, min.gapwidth=1L, with.revmap=FALSE,

with.inframe.attrib=FALSE, ignore.strand=FALSE)
S4 method for signature 'GRangesList'
reduce(x, drop.empty.ranges=FALSE, min.gapwidth=1L, with.revmap=FALSE,

with.inframe.attrib=FALSE, ignore.strand=FALSE)

S4 method for signature 'GenomicRanges'
gaps(x, start=1L, end=seqlengths(x), ignore.strand=FALSE)

S4 method for signature 'GenomicRanges'
disjoin(x, with.revmap=FALSE, ignore.strand=FALSE)
S4 method for signature 'GRangesList'
disjoin(x, with.revmap=FALSE, ignore.strand=FALSE)

S4 method for signature 'GenomicRanges'
isDisjoint(x, ignore.strand=FALSE)
S4 method for signature 'GRangesList'
isDisjoint(x, ignore.strand=FALSE)

S4 method for signature 'GenomicRanges'
disjointBins(x, ignore.strand=FALSE)

Arguments

x A GenomicRanges or GenomicRangesList object.
drop.empty.ranges, min.gapwidth, with.revmap, with.inframe.attrib,
start, end

See ?`inter-range-methods` in the IRanges package.

ignore.strand TRUE or FALSE. Whether the strand of the input ranges should be ignored or not.
See details below.

54 inter-range-methods

... For range, additional GenomicRanges objects to consider. Ignored otherwise.

na.rm Ignored.

Details

On a GRanges object: range returns an object of the same type as x containing range bounds
for each distinct (seqname, strand) pairing. The names (names(x)) and the metadata columns in
x are dropped.
reduce returns an object of the same type as x containing reduced ranges for each distinct (seq-
name, strand) pairing. The names (names(x)) and the metadata columns in x are dropped. See
?reduce for more information about range reduction and for a description of the optional argu-
ments.
gaps returns an object of the same type as x containing complemented ranges for each distinct
(seqname, strand) pairing. The names (names(x)) and the metadata columns in x are dropped.
For the start and end arguments of this gaps method, it is expected that the user will supply a
named integer vector (where the names correspond to the appropriate seqlevels). See ?gaps for
more information about range complements and for a description of the optional arguments.
disjoin returns an object of the same type as x containing disjoint ranges for each distinct (se-
qname, strand) pairing. The names (names(x)) and the metadata columns in x are dropped. If
with.revmap=TRUE, a metadata column that maps the ouput ranges to the input ranges is added
to the returned object. See ?disjoin for more information.
isDisjoint returns a logical value indicating whether the ranges in x are disjoint (i.e. non-
overlapping).
disjointBins returns bin indexes for the ranges in x, such that ranges in the same bin do not
overlap. If ignore.strand=FALSE, the two features cannot overlap if they are on different strands.

On a GRangesList/GenomicRangesList object: When they are supported on GRangesList
object x, the above inter range transformations will apply the transformation to each of the list
elements in x and return a list-like object parallel to x (i.e. with 1 list element per list element in
x). If x has names on it, they’re propagated to the returned object.

Author(s)

H. Pagès and P. Aboyoun

See Also

• The GenomicRanges and GRanges classes.

• The IntegerRanges class in the IRanges package.

• The inter-range-methods man page in the IRanges package.

• GenomicRanges-comparison for comparing and ordering genomic ranges.

• endoapply in the S4Vectors package.

Examples

gr <- GRanges(
seqnames=Rle(paste("chr", c(1, 2, 1, 3), sep=""), c(1, 3, 2, 4)),

inter-range-methods 55

ranges=IRanges(1:10, width=10:1, names=letters[1:10]),
strand=Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)),
score=1:10,
GC=seq(1, 0, length=10)

)
gr

gr1 <- GRanges(seqnames="chr2", ranges=IRanges(3, 6),
strand="+", score=5L, GC=0.45)

gr2 <- GRanges(seqnames="chr1",
ranges=IRanges(c(10, 7, 19), width=5),
strand=c("+", "-", "+"), score=3:5, GC=c(0.3, 0.5, 0.66))

gr3 <- GRanges(seqnames=c("chr1", "chr2"),
ranges=IRanges(c(1, 4), c(3, 9)),
strand=c("-", "-"), score=c(6L, 2L), GC=c(0.4, 0.1))

grl <- GRangesList(gr1=gr1, gr2=gr2, gr3=gr3)
grl

range()

On a GRanges object:
range(gr)
range(gr, with.revmap=TRUE)

On a GRangesList object:
range(grl)
range(grl, ignore.strand=TRUE)
range(grl, with.revmap=TRUE, ignore.strand=TRUE)

reduce()

reduce(gr)

gr2 <- reduce(gr, with.revmap=TRUE)
revmap <- mcols(gr2)$revmap # an IntegerList

Use the mapping from reduced to original ranges to group the original
ranges by reduced range:
relist(gr[unlist(revmap)], revmap)

Or use it to split the DataFrame of original metadata columns by
reduced range:
relist(mcols(gr)[unlist(revmap),], revmap) # a SplitDataFrameList

[For advanced users] Use this reverse mapping to compare the reduced
ranges with the ranges they originate from:
expanded_gr2 <- rep(gr2, elementNROWS(revmap))
reordered_gr <- gr[unlist(revmap)]
codes <- pcompare(expanded_gr2, reordered_gr)
All the codes should translate to "d", "e", "g", or "h" (the 4 letters

56 inter-range-methods

indicating that the range on the left contains the range on the right):
alphacodes <-

rangeComparisonCodeToLetter(pcompare(expanded_gr2, reordered_gr))
stopifnot(all(alphacodes %in% c("d", "e", "g", "h")))

On a big GRanges object with a lot of seqlevels:
mcols(gr) <- NULL
biggr <- c(gr, GRanges("chr1", IRanges(c(4, 1), c(5, 2)), strand="+"))
seqlevels(biggr) <- paste0("chr", 1:2000)
biggr <- rep(biggr, 25000)
set.seed(33)
seqnames(biggr) <-

sample(factor(seqlevels(biggr), levels=seqlevels(biggr)),
length(biggr), replace=TRUE)

biggr2 <- reduce(biggr, with.revmap=TRUE)
revmap <- mcols(biggr2)$revmap
expanded_biggr2 <- rep(biggr2, elementNROWS(revmap))
reordered_biggr <- biggr[unlist(revmap)]
codes <- pcompare(expanded_biggr2, reordered_biggr)
alphacodes <-

rangeComparisonCodeToLetter(pcompare(expanded_biggr2, reordered_biggr))
stopifnot(all(alphacodes %in% c("d", "e", "g", "h")))
table(alphacodes)

On a GRangesList object:
reduce(grl) # Doesn't really reduce anything but note the reordering

of the inner elements in the 2nd and 3rd list elements:
the ranges are reordered by sequence name first (which
should appear in the same order as in 'seqlevels(grl)'),
and then by strand.

reduce(grl, ignore.strand=TRUE) # 2nd list element got reduced

gaps()

gaps(gr, start=3, end=12)
gaps(gr, start=3, end=12, ignore.strand=TRUE)

Note that if the lengths of the underlying sequences are known, then
by default 'gaps(gr)' returns the regions of the sequences that are
not covered by 'gr':
seqlengths(gr) # lengths of underlying sequences are not known
seqlengths(gr) <- c(chr1=50, chr2=30, chr3=18)

gaps(gr)

gaps(gr, ignore.strand=TRUE)

disjoin(), isDisjoint(), disjointBins()

disjoin(gr)

intra-range-methods 57

disjoin(gr, with.revmap=TRUE)
disjoin(gr, with.revmap=TRUE, ignore.strand=TRUE)
isDisjoint(gr)
stopifnot(isDisjoint(disjoin(gr)))
disjointBins(gr)
stopifnot(all(sapply(split(gr, disjointBins(gr)), isDisjoint)))

On a GRangesList object:
disjoin(grl) # doesn't really disjoin anything but note the reordering
disjoin(grl, with.revmap=TRUE)

intra-range-methods Intra range transformations of a GRanges or GRangesList object

Description

This man page documents intra range transformations of a GenomicRanges object (i.e. of an object
that belongs to the GenomicRanges class or one of its subclasses, this includes for example GRanges
objects), or a GRangesList object.

See ?`intra-range-methods` and ?`inter-range-methods` in the IRanges package for a quick
introduction to intra range and inter range transformations.

Intra range methods for GAlignments and GAlignmentsList objects are defined and documented in
the GenomicAlignments package.

See ?`inter-range-methods` for inter range transformations of a GenomicRanges or GRanges-
List object.

Usage

S4 method for signature 'GenomicRanges'
shift(x, shift=0L, use.names=TRUE)

S4 method for signature 'GenomicRanges'
narrow(x, start=NA, end=NA, width=NA, use.names=TRUE)

S4 method for signature 'GenomicRanges'
resize(x, width, fix="start", use.names=TRUE, ignore.strand=FALSE)

S4 method for signature 'GenomicRanges'
flank(x, width, start=TRUE, both=FALSE, use.names=TRUE,

ignore.strand=FALSE)

S4 method for signature 'GenomicRanges'
promoters(x, upstream=2000, downstream=200, use.names=TRUE)
S4 method for signature 'GenomicRanges'
terminators(x, upstream=2000, downstream=200, use.names=TRUE)

S4 method for signature 'GenomicRanges'

58 intra-range-methods

restrict(x, start=NA, end=NA, keep.all.ranges=FALSE, use.names=TRUE)

S4 method for signature 'GenomicRanges'
trim(x, use.names=TRUE)

Arguments

x A GenomicRanges object.
shift, use.names, start, end, width, both, fix, keep.all.ranges, upstream,
downstream

See ?`intra-range-methods`.

ignore.strand TRUE or FALSE. Whether the strand of the input ranges should be ignored or not.
See details below.

Details

shift: behaves like the shift method for IntegerRanges objects. See ?`intra-range-methods`
for the details.

narrow: on a GenomicRanges object behaves like on an IntegerRanges object. See ?`intra-range-methods`
for the details.
A major difference though is that it returns a GenomicRanges object instead of an Inte-
gerRanges object. The returned object is parallel (i.e. same length and names) to the original
object x.

resize: returns an object of the same type and length as x containing intervals that have been
resized to width width based on the strand(x) values. Elements where strand(x) == "+"
or strand(x) == "*" are anchored at start(x) and elements where strand(x) == "-" are
anchored at the end(x). The use.names argument determines whether or not to keep the
names on the ranges.

flank: returns an object of the same type and length as x containing intervals of width width that
flank the intervals in x. The start argument takes a logical indicating whether x should be
flanked at the "start" (TRUE) or the "end" (FALSE), which for strand(x) != "-" is start(x)
and end(x) respectively and for strand(x) == "-" is end(x) and start(x) respectively.
The both argument takes a single logical value indicating whether the flanking region width
positions extends into the range. If both=TRUE, the resulting range thus straddles the end
point, with width positions on either side.

promoters: assumes that the ranges in x represent transcript regions and returns the ranges of the
corresponding promoter regions. The result is another GenomicRanges derivative parallel to
the input, that is, of the same length as x and with the i-th element in the output corresponding
to the i-th element in the input.
The promoter regions extend around the transcription start sites (TSS) which are located at
start(x) for ranges on the + or * strand, and at end(x) for ranges on the - strand. The
upstream and downstream arguments define the number of nucleotides in the 5’ and 3’ direc-
tion, respectively. More precisely, the output range is defined as

(start(x) - upstream) to (start(x) + downstream - 1)

for ranges on the + or * strand, and as

intra-range-methods 59

(end(x) - downstream + 1) to (end(x) + upstream)

for ranges on the - strand.
Be aware that the returned object might contain out-of-bound ranges i.e. ranges that start be-
fore the first nucleotide position and/or end after the last nucleotide position of the underlying
sequence.
The returned object will always have the same class as x, except when x is a GPos object in
which case a GRanges instance is returned.

terminators: like promoters but returns the ranges of the terminator regions. These regions
extend around the transcription end sites (TES) which are located at end(x) for ranges on the
+ or * strand, and at start(x) for ranges on the - strand.

restrict: returns an object of the same type and length as x containing restricted ranges for dis-
tinct seqnames. The start and end arguments can be a named numeric vector of seqnames
for the ranges to be resticted or a numeric vector or length 1 if the restriction operation is to be
applied to all the sequences in x. See ?`intra-range-methods` for more information about
range restriction and for a description of the optional arguments.

trim: trims out-of-bound ranges located on non-circular sequences whose length is not NA.

Author(s)

P. Aboyoun, V. Obenchain, and H. Pagès

See Also

• GenomicRanges, GRanges, and GRangesList objects.

• The intra-range-methods man page in the IRanges package.

• The IntegerRanges class in the IRanges package.

Examples

A. ON A GRanges OBJECT

gr <- GRanges(

seqnames=Rle(paste("chr", c(1, 2, 1, 3), sep=""), c(1, 3, 2, 4)),
ranges=IRanges(1:10, width=10:1, names=letters[1:10]),
strand=Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)),
score=1:10,
GC=seq(1, 0, length=10)

)
gr

shift(gr, 1)
narrow(gr[-10], start=2, end=-2)
resize(gr, width=10)
flank(gr, width=10)
restrict(gr, start=3, end=7)

60 makeGRangesFromDataFrame

gr <- GRanges("chr1", IRanges(rep(10, 3), width=8), c("+", "-", "*"))
promoters(gr, 2, 5)
promoters(gr, upstream=0, downstream=1) # TSS
terminators(gr, 2, 5)
terminators(gr, upstream=0, downstream=1) # TES

B. ON A GRangesList OBJECT

gr1 <- GRanges("chr2", IRanges(3, 6))
gr2 <- GRanges(c("chr1", "chr1"), IRanges(c(7,13), width=3),

strand=c("+", "-"))
gr3 <- GRanges(c("chr1", "chr2"), IRanges(c(1, 4), c(3, 9)),

strand="-")
grl <- GRangesList(gr1= gr1, gr2=gr2, gr3=gr3)
grl

resize(grl, width=20)
flank(grl, width=20)
restrict(grl, start=3)

makeGRangesFromDataFrame

Make a GRanges object from a data.frame or DataFrame

Description

makeGRangesFromDataFrame and makeGPosFromDataFrame both take a data-frame-like object as
input and try to automatically find the columns that describe genomic ranges (for makeGRangesFromDataFrame)
or genomic positions (for makeGPosFromDataFrame). If successful, they return them in a GRanges
or GPos object.

The two functions are also the workhorses behind the coercion methods from data.frame (or DataFrame)
to GRanges or GPos.

Usage

makeGRangesFromDataFrame(df, keep.extra.columns=FALSE,
ignore.strand=FALSE, seqinfo=NULL,
seqnames.field=c("seqnames", "seqname",

"chromosome", "chrom", "chr", "chromosome_name",
"seqid"),

start.field="start",
end.field=c("end", "stop"),
strand.field="strand",
starts.in.df.are.0based=FALSE,
na.rm=FALSE)

makeGPosFromDataFrame(df, keep.extra.columns=FALSE,

makeGRangesFromDataFrame 61

ignore.strand=FALSE, seqinfo=NULL,
seqnames.field=c("seqnames", "seqname",

"chromosome", "chrom", "chr", "chromosome_name",
"seqid"),

pos.field=c("pos", "position", "positions"),
strand.field="strand",
na.rm=FALSE)

Arguments

df A data.frame or DataFrame object. If not, then the function first tries to turn df
into a data frame with as.data.frame(df).

keep.extra.columns

TRUE or FALSE (the default). If TRUE, then the columns in df that are not used
to form the genomic ranges or genomic positions of the returned GRanges or
GPos object are returned as metadata columns on the object. Otherwise, they
are ignored.
Note that if df has a width column, then makeGRangesFromDataFrame will
always ignore it.

ignore.strand TRUE or FALSE (the default). If TRUE, then the strand of the returned GRanges or
GPos object is set to "*".

seqinfo Either NULL, or a Seqinfo object, or a character vector of unique sequence names
(a.k.a. seqlevels), or a named numeric vector of sequence lengths. When not
NULL, seqinfo must be compatible with the genomic ranges in df, that is, it
must have one entry for each unique sequence name represented in df. Note
that it can have additional entries i.e. entries for seqlevels not represented in df.

seqnames.field A character vector of recognized names for the column in df that contains the
chromosome name (a.k.a. sequence name) associated with each genomic range.
Only the first name in seqnames.field that is found in colnames(df) is used.
If no one is found, then an error is raised.

start.field A character vector of recognized names for the column in df that contains the
start positions of the genomic ranges. Only the first name in start.field that
is found in colnames(df) is used. If no one is found, then an error is raised.

end.field A character vector of recognized names for the column in df that contains the
end positions of the genomic ranges. Only the first name in start.field that
is found in colnames(df) is used. If no one is found, then an error is raised.

pos.field A character vector of recognized names for the column in df that contains the
genomic positions to use to make the GPos object. Only the first name in
pos.field that is found in colnames(df) is used. If no one is found, then
an error is raised.

strand.field A character vector of recognized names for the column in df that contains the
strand associated with each genomic range. Only the first name in strand.field
that is found in colnames(df) is used. If no one is found or if ignore.strand
is TRUE, then the strand of the returned GRanges object is set to "*".

starts.in.df.are.0based

TRUE or FALSE (the default). If TRUE, then the start positions of the genomic
ranges in df are considered to be 0-based and are converted to 1-based in the

62 makeGRangesFromDataFrame

returned GRanges object. This feature is intended to make it more convenient to
handle input that contains data obtained from resources using the "0-based start"
convention. A notorious example of such resource is the UCSC Table Browser
(http://genome.ucsc.edu/cgi-bin/hgTables).

na.rm TRUE or FALSE (the default).
If TRUE, then rows in the df with missing start, end, or position values (i.e. the
value is NA) are ignored. Otherwise, they trigger an error.

Value

A GRanges or GPos object.

If na.rm is set to FALSE (the default), then the returned object is guaranteed to have one element per
row in the input. However, if na.rm is set to TRUE, then the length of the returned object can be less
than nrow(df).

If the seqinfo argument was supplied, the returned object will have exactly the seqlevels specified
in seqinfo and in the same order. Otherwise, the seqlevels are ordered according to the output of
the rankSeqlevels function (except if df contains the seqnames in the form of a factor or factor-
Rle, in which case the levels() of the seqnames become the seqlevels of the returned object as-is,
that is, without any re-ordering).

If df has non-automatic row names (i.e. rownames(df) is not NULL and is not seq_len(nrow(df))),
then they will be used to set names on the returned GRanges or GPos object.

Note

Coercing a data.frame or DataFrame df to GRanges (with as(df, "GRanges")), or calling GRanges(df),
are both equivalent to calling makeGRangesFromDataFrame(df, keep.extra.columns=TRUE).

Coercing a data.frame or DataFrame df to GPos (with as(df, "GPos")) is equivalent to calling
makeGPosFromDataFrame(df, keep.extra.columns=TRUE).

Author(s)

H. Pagès, based on a proposal by Kasper Daniel Hansen

See Also

• GRanges and GPos objects.

• Seqinfo objects and the rankSeqlevels function in the Seqinfo package.

• The makeGRangesListFromFeatureFragments function for making a GRangesList object
from a list of fragmented features.

• makeIRangesFromDataFrame in the IRanges package to make an IRanges object from a
data.frame or DataFrame.

• The getTable function in the rtracklayer package for an R interface to the UCSC Table
Browser.

• DataFrame objects in the S4Vectors package.

http://genome.ucsc.edu/cgi-bin/hgTables

makeGRangesFromDataFrame 63

Examples

BASIC makeGRangesFromDataFrame() EXAMPLES

df <- data.frame(chr="chr1", start=11:15, end=12:16,
strand=c("+","-","+","*","."), score=1:5)

df
makeGRangesFromDataFrame(df) # strand value "." is replaced with "*"

With NAs in range-defining columns:
df$start[5] <- df$end[2] <- NA
df
#makeGRangesFromDataFrame(df) # error!
makeGRangesFromDataFrame(df, na.rm=TRUE) # rows with NAs got dropped

The strand column is optional:
df <- data.frame(chr="chr1", start=11:15, end=12:16, score=1:5)
makeGRangesFromDataFrame(df)

gr <- makeGRangesFromDataFrame(df, keep.extra.columns=TRUE)
gr2 <- as(df, "GRanges") # equivalent to the above
stopifnot(identical(gr, gr2))
gr2 <- GRanges(df) # equivalent to the above
stopifnot(identical(gr, gr2))

makeGRangesFromDataFrame(df, ignore.strand=TRUE)
makeGRangesFromDataFrame(df, keep.extra.columns=TRUE,

ignore.strand=TRUE)

makeGRangesFromDataFrame(df, seqinfo=paste0("chr", 4:1))
makeGRangesFromDataFrame(df, seqinfo=c(chrM=NA, chr1=500, chrX=100))
makeGRangesFromDataFrame(df, seqinfo=Seqinfo(paste0("chr", 4:1)))

BASIC makeGPosFromDataFrame() EXAMPLES

df <- data.frame(
rsids= c("rs7927381", "rs79273813", "rs79273815",

"rs79273819", "rs79273817", "rs79273811", "rs79273814"),
seqnames= c("11", "1", "11", "1", "5", "8", "8"),
positions=c("67579271", "179599437", "70746832",

"5066529", "107006951", "95077418", "43582071"),
alleles= c("T/C", "A/G", "C/G, C/T", "G/A, G/C", "T/C, T/G",

"G/A, G/T", "G/A, G/T"),
genes= c(NA, "TDRD5", "SHANK2", NA, "LOC102467213", "NDUFAF6", NA),
row.names=letters[1:7]

)

makeGPosFromDataFrame(df)
makeGPosFromDataFrame(df, keep.extra.columns=TRUE)

64 makeGRangesFromDataFrame

as(df, "GPos") # same as above

With missing positions:
df$positions[2L] <- NA
df
#makeGPosFromDataFrame(df) # error!
makeGPosFromDataFrame(df, na.rm=TRUE) # rows with NAs got dropped

ABOUT AUTOMATIC DETECTION OF THE seqnames/start/end/strand COLUMNS

Automatic detection of the seqnames/start/end/strand columns is
case insensitive:
df <- data.frame(ChRoM="chr1", StarT=11:15, stoP=12:16,

STRAND=c("+","-","+","*","."), score=1:5)
makeGRangesFromDataFrame(df)

It also ignores a common prefix between the start and end columns:
df <- data.frame(seqnames="chr1", tx_start=11:15, tx_end=12:16,

strand=c("+","-","+","*","."), score=1:5)
makeGRangesFromDataFrame(df)

The common prefix between the start and end columns is used to
disambiguate between more than one seqnames column:
df <- data.frame(chrom="chr1", tx_start=11:15, tx_end=12:16,

tx_chr="chr2", score=1:5)
makeGRangesFromDataFrame(df)

0-BASED VS 1-BASED START POSITIONS

if (require(rtracklayer)) {
session <- browserSession()
genome(session) <- "sacCer2"
query <- ucscTableQuery(session, "Assembly")
df <- getTable(query)
head(df)

A common pitfall is to forget that the UCSC Table Browser uses the
"0-based start" convention:
gr0 <- makeGRangesFromDataFrame(df, keep.extra.columns=TRUE,

start.field="chromStart",
end.field="chromEnd")

head(gr0)

The start positions need to be converted into 1-based positions,
to adhere to the convention used in Bioconductor:
gr1 <- makeGRangesFromDataFrame(df, keep.extra.columns=TRUE,

start.field="chromStart",
end.field="chromEnd",
starts.in.df.are.0based=TRUE)

makeGRangesListFromDataFrame 65

head(gr1)
}

makeGRangesListFromDataFrame

Make a GRangesList object from a data.frame or DataFrame

Description

makeGRangesListFromDataFrame extends the makeGRangesFromDataFrame functionality from
GenomicRanges. It can take a data-frame-like object as input and tries to automatically find the
columns that describe the genomic ranges. It returns a GRangesList object. This is different from
the makeGRangesFromDataFrame function by requiring a split.field. The split.field acts
like the "f" argument in the split function. This factor must be of the same length as the number
of rows in the DataFrame argument. The split.field may also be a character vector.

Usage

makeGRangesListFromDataFrame(df,
split.field = NULL,
names.field = NULL,
...)

Arguments

df A DataFrame or data.frame class object

split.field A character string of a recognized column name in df that contains the grouping.
This column defines how the rows of df are split and is typically a factor or
character vector. When split.field is not provided the df will be split by
the number of rows.

names.field An optional single character string indicating the name of the column in df
that designates the names for the ranges in the elements of the GRangesList.

... Additional arguments passed on to makeGRangesFromDataFrame

Value

A GRangesList of the same length as the number of levels or unique character strings in the df
column indicated by split.field. When split.field is not provided the df is split by row and
the resulting GRangesList has the same length as nrow(df).

Names on the individual ranges are taken from the names.field argument. Names on the outer list
elements of the GRangesList are propagated from split.field.

Author(s)

M. Ramos

66 nearest-methods

See Also

• makeGRangesFromDataFrame

Examples

BASIC EXAMPLES

df <- data.frame(chr="chr1", start=11:15, end=12:16,
strand=c("+","-","+","*","."), score=1:5,
specimen = c("a", "a", "b", "b", "c"),
gene_symbols = paste0("GENE", letters[1:5]))

df

grl <- makeGRangesListFromDataFrame(df, split.field = "specimen",
names.field = "gene_symbols")

grl
names(grl)

Keep metadata columns
makeGRangesListFromDataFrame(df, split.field = "specimen",

keep.extra.columns = TRUE)

nearest-methods Finding the nearest genomic range/position neighbor

Description

The nearest, precede, follow, distance, nearestKNeighbors, and distanceToNearest meth-
ods for GenomicRanges objects and subclasses.

Usage

S4 method for signature 'GenomicRanges,GenomicRanges'
precede(x, subject,

select=c("first", "all"), ignore.strand=FALSE)
S4 method for signature 'GenomicRanges,missing'
precede(x, subject,

select=c("first", "all"), ignore.strand=FALSE)

S4 method for signature 'GenomicRanges,GenomicRanges'
follow(x, subject,

select=c("last", "all"), ignore.strand=FALSE)
S4 method for signature 'GenomicRanges,missing'
follow(x, subject,

select=c("last", "all"), ignore.strand=FALSE)

nearest-methods 67

S4 method for signature 'GenomicRanges,GenomicRanges'
nearest(x, subject,

select=c("arbitrary", "all"), ignore.strand=FALSE)
S4 method for signature 'GenomicRanges,missing'
nearest(x, subject,

select=c("arbitrary", "all"), ignore.strand=FALSE)

S4 method for signature 'GenomicRanges,GenomicRanges'
nearestKNeighbors(x, subject, k=1L,

select=c("arbitrary", "all"), ignore.strand=FALSE)
S4 method for signature 'GenomicRanges,missing'
nearestKNeighbors(x, subject, k=1L,

select=c("arbitrary", "all"), ignore.strand=FALSE)

S4 method for signature 'GenomicRanges,GenomicRanges'
distanceToNearest(x, subject,

ignore.strand=FALSE, ...)
S4 method for signature 'GenomicRanges,missing'
distanceToNearest(x, subject,

ignore.strand=FALSE, ...)

S4 method for signature 'GenomicRanges,GenomicRanges'
distance(x, y,

ignore.strand=FALSE, ...)

Arguments

x The query GenomicRanges instance.
subject The subject GenomicRanges instance within which the nearest neighbors are

found. Can be missing, in which case x is also the subject.
y For the distance method, a GRanges instance. Cannot be missing. If x and y

are not the same length, the shortest will be recycled to match the length of the
longest.

k For the nearestKNeighbors method, an integer declaring how many nearest
neighbors to find.

select Logic for handling ties. By default, all methods select a single interval (arbitrary
for nearest, the first by order in subject for precede, and the last for follow).
When select="all" a Hits object is returned with all matches for x.

ignore.strand A logical indicating if the strand of the input ranges should be ignored. When
TRUE, strand is set to '+'.

... Additional arguments for methods.

Details

nearest: Performs conventional nearest neighbor finding. Returns an integer vector containing
the index of the nearest neighbor range in subject for each range in x. If there is no nearest
neighbor NA is returned. For details of the algorithm see the man page in the IRanges package
(?nearest).

68 nearest-methods

precede: For each range in x, precede returns the index of the range in subject that is directly
preceded by the range in x. Overlapping ranges are excluded. NA is returned when there are
no qualifying ranges in subject.

follow: The opposite of precede, follow returns the index of the range in subject that is directly
followed by the range in x. Overlapping ranges are excluded. NA is returned when there are
no qualifying ranges in subject.

nearestKNeighbors: Performs conventional k-nearest neighbor finding. Returns an IntegerList
containing the index of the k-nearest neighbors in subject for each range in x. If there is
no nearest neighbor NA is returned. If select="all" is specified, ties will be included in the
resulting IntegerList.

Orientation and strand for precede and follow: Orientation is 5’ to 3’, consistent with the di-
rection of translation. Because positional numbering along a chromosome is from left to right
and transcription takes place from 5’ to 3’, precede and follow can appear to have ‘opposite’
behavior on the + and - strand. Using positions 5 and 6 as an example, 5 precedes 6 on the +
strand but follows 6 on the - strand.
The table below outlines the orientation when ranges on different strands are compared. In
general, a feature on * is considered to belong to both strands. The single exception is when
both x and subject are * in which case both are treated as +.

x | subject | orientation
-----+-----------+----------------

a) + | + | --->
b) + | - | NA
c) + | * | --->
d) - | + | NA
e) - | - | <---
f) - | * | <---
g) * | + | --->
h) * | - | <---
i) * | * | ---> (the only situation where * arbitrarily means +)

distanceToNearest: Returns the distance for each range in x to its nearest neighbor in the subject.

distance: Returns the distance for each range in x to the range in y. The behavior of distance
has changed in Bioconductor 2.12. See the man page ?distance in the IRanges package for
details.

Value

For nearest, precede and follow, an integer vector of indices in subject, or a Hits if select="all".

For nearestKNeighbors, an IntegerList of vertices in subject.

For distanceToNearest, a Hits object with a column for the query index (queryHits), subject
index (subjectHits) and the distance between the pair.

For distance, an integer vector of distances between the ranges in x and y.

Author(s)

P. Aboyoun and V. Obenchain

nearest-methods 69

See Also

• The GenomicRanges and GRanges classes.

• The IntegerRanges class in the IRanges package.

• The Hits class in the S4Vectors package.

• The nearest-methods man page in the IRanges package.

• findOverlaps-methods for finding just the overlapping ranges.

• The nearest-methods man page in the GenomicFeatures package.

Examples

precede() and follow()

query <- GRanges("A", IRanges(c(5, 20), width=1), strand="+")
subject <- GRanges("A", IRanges(rep(c(10, 15), 2), width=1),

strand=c("+", "+", "-", "-"))
precede(query, subject)
follow(query, subject)

strand(query) <- "-"
precede(query, subject)
follow(query, subject)

ties choose first in order
query <- GRanges("A", IRanges(10, width=1), c("+", "-", "*"))
subject <- GRanges("A", IRanges(c(5, 5, 5, 15, 15, 15), width=1),

rep(c("+", "-", "*"), 2))
precede(query, subject)
precede(query, rev(subject))

ignore.strand=TRUE treats all ranges as '+'
precede(query[1], subject[4:6], select="all", ignore.strand=FALSE)
precede(query[1], subject[4:6], select="all", ignore.strand=TRUE)

nearest()

When multiple ranges overlap an "arbitrary" range is chosen
query <- GRanges("A", IRanges(5, 15))
subject <- GRanges("A", IRanges(c(1, 15), c(5, 19)))
nearest(query, subject)

select="all" returns all hits
nearest(query, subject, select="all")

Ranges in 'x' will self-select when 'subject' is present
query <- GRanges("A", IRanges(c(1, 10), width=5))
nearest(query, query)

Ranges in 'x' will not self-select when 'subject' is missing

70 phicoef

nearest(query)

nearestKNeighbors()

Without an argument, k defaults to 1
query <- GRanges("A", IRanges(c(2, 5), c(8, 15)))
subject <- GRanges("A", IRanges(c(1, 4, 10, 15), c(5, 7, 12, 19)))
nearestKNeighbors(query, subject)

Return multiple neighbors with k > 1
nearestKNeighbors(query, subject, k=3)

select="all" returns all hits
nearestKNeighbors(query, subject, select="all")

distance(), distanceToNearest()

Adjacent, overlap, separated by 1
query <- GRanges("A", IRanges(c(1, 2, 10), c(5, 8, 11)))
subject <- GRanges("A", IRanges(c(6, 5, 13), c(10, 10, 15)))
distance(query, subject)

recycling
distance(query[1], subject)

zero-width ranges
zw <- GRanges("A", IRanges(4,3))
stopifnot(distance(zw, GRanges("A", IRanges(3,4))) == 0L)
sapply(-3:3, function(i)

distance(shift(zw, i), GRanges("A", IRanges(4,3))))

query <- GRanges(c("A", "B"), IRanges(c(1, 5), width=1))
distanceToNearest(query, subject)

distance() with GRanges and TxDb see the
?'distance,GenomicRanges,TxDb-method' man
page in the GenomicFeatures package.

phicoef Calculate the "phi coefficient" between two binary variables

Description

The phicoef function calculates the "phi coefficient" between two binary variables.

Usage

phicoef(x, y=NULL)

setops-methods 71

Arguments

x, y Two logical vectors of the same length. If y is not supplied, x must be a 2x2
integer matrix (or an integer vector of length 4) representing the contingency
table of two binary variables.

Value

The "phi coefficient" between the two binary variables. This is a single numeric value ranging from
-1 to +1.

Author(s)

H. Pagès

References

http://en.wikipedia.org/wiki/Phi_coefficient

Examples

set.seed(33)
x <- sample(c(TRUE, FALSE), 100, replace=TRUE)
y <- sample(c(TRUE, FALSE), 100, replace=TRUE)
phicoef(x, y)
phicoef(rep(x, 10), c(rep(x, 9), y))

stopifnot(phicoef(table(x, y)) == phicoef(x, y))
stopifnot(phicoef(y, x) == phicoef(x, y))
stopifnot(phicoef(x, !y) == - phicoef(x, y))
stopifnot(phicoef(x, x) == 1)

setops-methods Set operations on genomic ranges

Description

Performs set operations on GRanges and GRangesList objects.

NOTE: The punion, pintersect, psetdiff, and pgap generic functions and methods for Inte-
gerRanges objects are defined and documented in the IRanges package.

Usage

Vector-wise set operations

S4 method for signature 'GenomicRanges,GenomicRanges'
union(x, y, ignore.strand=FALSE)

http://en.wikipedia.org/wiki/Phi_coefficient

72 setops-methods

S4 method for signature 'GenomicRanges,GenomicRanges'
intersect(x, y, ignore.strand=FALSE)

S4 method for signature 'GenomicRanges,GenomicRanges'
setdiff(x, y, ignore.strand=FALSE)

Element-wise (aka "parallel") set operations
--

S4 method for signature 'GRanges,GRanges'
punion(x, y, fill.gap=FALSE, ignore.strand=FALSE)

S4 method for signature 'GRanges,GRanges'
pintersect(x, y, drop.nohit.ranges=FALSE,

ignore.strand=FALSE, strict.strand=FALSE)

S4 method for signature 'GRanges,GRanges'
psetdiff(x, y, ignore.strand=FALSE)

Arguments

x, y For union, intersect, and setdiff: 2 GenomicRanges objects or 2 GRanges-
List objects.
For punion and pintersect: 2 GRanges objects, or 1 GRanges object and 1
GRangesList object.
For psetdiff: x must be a GRanges object and y can be a GRanges or GRanges-
List object.
For pgap: 2 GRanges objects.
In addition, for the parallel operations, x and y must be of equal length (i.e.
length(x) == length(y)).

fill.gap Logical indicating whether or not to force a union by using the rule start =
min(start(x), start(y)), end = max(end(x), end(y)).

ignore.strand For set operations: If set to TRUE, then the strand of x and y is set to "*" prior
to any computation.
For parallel set operations: If set to TRUE, the strand information is ignored in
the computation and the result has the strand information of x.

drop.nohit.ranges

If TRUE then elements in x that don’t intersect with their corresponding element
in y are removed from the result (so the returned object is no more parallel to
the input).
If FALSE (the default) then nothing is removed and a hit metadata column
is added to the returned object to indicate elements in x that intersect with the
corresponding element in y. For those that don’t, the reported intersection is a
zero-width range that has the same start as x.

strict.strand If set to FALSE (the default), features on the "*" strand are treated as occur-
ring on both the "+" and "-" strand. If set to TRUE, the strand of intersecting
elements must be strictly the same.

setops-methods 73

Details

The pintersect methods involving GRanges and/or GRangesList objects use the triplet (sequence
name, range, strand) to determine the element by element intersection of features, where a strand
value of "*" is treated as occurring on both the "+" and "-" strand (unless strict.strand is set to
TRUE, in which case the strand of intersecting elements must be strictly the same).

The psetdiff methods involving GRanges and/or GRangesList objects use the triplet (sequence
name, range, strand) to determine the element by element set difference of features, where a strand
value of "*" is treated as occurring on both the "+" and "-" strand.

Value

For union, intersect, and setdiff: a GRanges object if x and y are GenomicRanges objects, and
a GRangesList object if they are GRangesList objects.

For punion and pintersect: when x or y is not a GRanges object, an object of the same class as
this non-GRanges object. Otherwise, a GRanges object.

For psetdiff: either a GRanges object when both x and y are GRanges objects, or a GRangesList
object when y is a GRangesList object.

For pgap: a GRanges object.

Author(s)

P. Aboyoun and H. Pagès

See Also

• subtract for subtracting a set of genomic ranges from a GRanges object (similar to bedtools
subtract).

• setops-methods in the IRanges package for set operations on IntegerRanges and IntegerRanges-
List objects.

• findOverlaps-methods for finding/counting overlapping genomic ranges.

• intra-range-methods and inter-range-methods for intra range and inter range transformations
of a GRanges object.

• GRanges and GRangesList objects.

• mendoapply in the S4Vectors package.

Examples

A. SET OPERATIONS

x <- GRanges("chr1", IRanges(c(2, 9) , c(7, 19)), strand=c("+", "-"))
y <- GRanges("chr1", IRanges(5, 10), strand="-")

union(x, y)
union(x, y, ignore.strand=TRUE)

74 setops-methods

intersect(x, y)
intersect(x, y, ignore.strand=TRUE)

setdiff(x, y)
setdiff(x, y, ignore.strand=TRUE)

With 2 GRangesList objects:
gr1 <- GRanges(seqnames="chr2",

ranges=IRanges(3, 6))
gr2 <- GRanges(seqnames=c("chr1", "chr1"),

ranges=IRanges(c(7,13), width = 3),
strand=c("+", "-"))

gr3 <- GRanges(seqnames=c("chr1", "chr2"),
ranges=IRanges(c(1, 4), c(3, 9)),
strand=c("-", "-"))

grlist <- GRangesList(gr1=gr1, gr2=gr2, gr3=gr3)

union(grlist, shift(grlist, 3))
intersect(grlist, shift(grlist, 3))
setdiff(grlist, shift(grlist, 3))

Sanity checks:
grlist2 <- shift(grlist, 3)
stopifnot(identical(

union(grlist, grlist2),
mendoapply(union, grlist, grlist2)

))
stopifnot(identical(

intersect(grlist, grlist2),
mendoapply(intersect, grlist, grlist2)

))
stopifnot(identical(

setdiff(grlist, grlist2),
mendoapply(setdiff, grlist, grlist2)

))

B. PARALLEL SET OPERATIONS

punion(x, shift(x, 6))
Not run:
punion(x, shift(x, 7)) # will fail

End(Not run)
punion(x, shift(x, 7), fill.gap=TRUE)

pintersect(x, shift(x, 6))
pintersect(x, shift(x, 7))

psetdiff(x, shift(x, 7))

strand-utils 75

C. MORE EXAMPLES

GRanges object:
gr <- GRanges(seqnames=c("chr2", "chr1", "chr1"),

ranges=IRanges(1:3, width = 12),
strand=Rle(strand(c("-", "*", "-"))))

Parallel intersection of a GRanges and a GRangesList object
pintersect(gr, grlist)
pintersect(grlist, gr)

For a fast 'mendoapply(intersect, grlist, as(gr, "GRangesList"))'
call pintersect() with 'strict.strand=TRUE' and call reduce() on
the result with 'drop.empty.ranges=TRUE':
reduce(pintersect(grlist, gr, strict.strand=TRUE),

drop.empty.ranges=TRUE)

Parallel set difference of a GRanges and a GRangesList object
psetdiff(gr, grlist)

strand-utils Strand utilities

Description

A bunch of useful strand and invertStrand methods.

Usage

S4 method for signature 'missing'
strand(x)
S4 method for signature 'character'
strand(x)
S4 method for signature 'factor'
strand(x)
S4 method for signature 'integer'
strand(x)
S4 method for signature 'logical'
strand(x)
S4 method for signature 'Rle'
strand(x)
S4 method for signature 'RleList'
strand(x)
S4 method for signature 'DataFrame'
strand(x)
S4 replacement method for signature 'DataFrame,ANY'
strand(x) <- value

76 strand-utils

S4 method for signature 'character'
invertStrand(x)
S4 method for signature 'factor'
invertStrand(x)
S4 method for signature 'integer'
invertStrand(x)
S4 method for signature 'logical'
invertStrand(x)
S4 method for signature 'Rle'
invertStrand(x)
S4 method for signature 'RleList'
invertStrand(x)

Arguments

x The object from which to obtain a strand factor, strand factor Rle, or strand
factor RleList object. Can be missing. See Details and Value sections below for
more information.

value Replacement value for the strand.

Details

All the strand and invertStrand methods documented here return either a strand factor, strand
factor Rle, or strand factor RleList object. These are factor, factor-Rle, or factor-RleList objects
containing the "standard strand levels" (i.e. +, -, and *) and no NAs.

Value

All the strand and invertStrand methods documented here return an object that is parallel to
input object x when x is a character, factor, integer, logical, Rle, or RleList object.

For the strand methods:

• If x is missing, returns an empty factor with the "standard strand levels" i.e. +, -, and *.

• If x is a character vector or factor, it is coerced to a factor with the levels listed above. NA
values in x are not accepted.

• If x is an integer vector, it is coerced to a factor with the levels listed above. 1, -1, and NA
values in x are mapped to the +, -, and * levels respectively.

• If x is a logical vector, it is coerced to a factor with the levels listed above. FALSE, TRUE, and
NA values in x are mapped to the +, -, and * levels respectively.

• If x is a character-, factor-, integer-, or logical-Rle, it is transformed with runValue(x) <-
strand(runValue(x)) and returned.

• If x is an RleList object, each list element in x is transformed by calling strand() on it and
the resulting RleList object is returned. More precisely the returned object is endoapply(x,
strand). Note that in addition to being parallel to x, this object also has the same shape as x
(i.e. its list elements have the same lengths as in x).

• If x is a DataFrame object, the "strand" column is passed thru strand() and returned. If x
has no "strand" column, this return value is populated with *s.

strand-utils 77

Each invertStrand method returns the same object as its corresponding strand method but with
"+" and "-" switched.

Author(s)

M. Lawrence and H. Pagès

See Also

strand

Examples

strand()

x1 <- c("-", "*", "*", "+", "-", "*")
x2 <- factor(c("-", "-", "+", "-"))
x3 <- c(-1L, NA, NA, 1L, -1L, NA)
x4 <- c(TRUE, NA, NA, FALSE, TRUE, NA)

strand(x1)
invertStrand(x1)
strand(x2)
invertStrand(x2)
strand(x3)
invertStrand(x3)
strand(x4)
invertStrand(x4)

strand(Rle(x1))
invertStrand(Rle(x1))
strand(Rle(x2))
invertStrand(Rle(x2))
strand(Rle(x3))
invertStrand(Rle(x3))
strand(Rle(x4))
invertStrand(Rle(x4))

x5 <- RleList(x1, character(0), as.character(x2))
strand(x5)
invertStrand(x5)

strand(DataFrame(score=2:-3))
strand(DataFrame(score=2:-3, strand=x3))
strand(DataFrame(score=2:-3, strand=Rle(x3)))

Sanity checks:
target <- strand(x1)
stopifnot(identical(target, strand(x3)))
stopifnot(identical(target, strand(x4)))

stopifnot(identical(Rle(strand(x1)), strand(Rle(x1))))

78 subtract-methods

stopifnot(identical(Rle(strand(x2)), strand(Rle(x2))))
stopifnot(identical(Rle(strand(x3)), strand(Rle(x3))))
stopifnot(identical(Rle(strand(x4)), strand(Rle(x4))))

subtract-methods Subtract a set of genomic ranges from a GRanges object

Description

Similar to bedtools subtract.

Usage

subtract(x, y, minoverlap=1L, ...)

S4 method for signature 'GenomicRanges,GenomicRanges'
subtract(x, y, minoverlap=1L, ignore.strand=FALSE)

Arguments

x, y Two GRanges objects, typically, but any GenomicRanges derivative should be
supported. Note that y gets immediately replaced with:

reduce(y, ignore.strand=ignore.strand)

internally.
minoverlap Minimum overlap (in number of genomic positions) between a range in x and

a range in reduce(y, ignore.strand=ignore.strand) for the 2 ranges to be
considered overlapping, and for their overlapping portion to be removed from
the range in x.

ignore.strand If set to TRUE, the strand information is ignored in the computation and the
strand of x is propagated to the result.

... Further arguments to be passed to specific methods.

Details

subtract() first replaces its second argument y with:

reduce(y, ignore.strand=ignore.strand)

Then it searches for genomic ranges in y that overlap genomic ranges in x by at least the number
of base pairs specified via the minoverlap argument. If an overlapping range is found in y, the
overlapping portion is removed from any range in x involved in the overlap.

Note that by default subtract(x, y) is equivalent to:

psetdiff(x, rep(GRangesList(y), length(x)))

but will typically be hundred times more efficient.

tile-methods 79

Value

A GRangesList object parallel to x, that is, with one list element per range in x. The names and
metadata columns on x are propagated to the result.

Author(s)

H. Pagès

See Also

• bedtools subtract at https://bedtools.readthedocs.io/en/latest/content/tools/subtract.
html

• setops-methods for set operations on GRanges objects.

• findOverlaps-methods for finding/counting overlapping genomic ranges.

• intra-range-methods and inter-range-methods for intra range and inter range transformations
of a GRanges object.

• GRanges and GRangesList objects.

Examples

x <- GRanges(c(A="chr1:1-50", B="chr1:40-110", C="chrX:1-500"))
y <- GRanges(c("chr1:21-25", "chr1:38-150"))
z <- subtract(x, y)
z

unlist(z)

tile-methods Generate windows for a GenomicRanges

Description

tile and slidingWindows methods for GenomicRanges. tile partitions each range into a set
of tiles, which are defined in terms of their number or width. slidingWindows generates sliding
windows of a specified width and frequency.

Usage

S4 method for signature 'GenomicRanges'
tile(x, n, width)
S4 method for signature 'GenomicRanges'
slidingWindows(x, width, step=1L)

https://bedtools.readthedocs.io/en/latest/content/tools/subtract.html
https://bedtools.readthedocs.io/en/latest/content/tools/subtract.html

80 tile-methods

Arguments

x A GenomicRanges object, like a GRanges.

n The number of tiles to generate. See ?tile in the IRanges package for more
information about this argument.

width The (maximum) width of each tile. See ?tile in the IRanges package for more
information about this argument.

step The distance between the start positions of the sliding windows.

Details

The tile function splits x into a GRangesList, each element of which corresponds to a tile, or
partition, of x. Specify the tile geometry with either n or width (not both). Passing n creates n tiles
of approximately equal width, truncated by sequence end, while passing width tiles the region with
ranges of the given width, again truncated by sequence end.

The slidingWindows function generates sliding windows within each range of x, according to
width and step, returning a GRangesList. If the sliding windows do not exactly cover a range in
x, the last window is partial.

Value

A GRangesList object, each element of which corresponds to a window.

Author(s)

M. Lawrence

See Also

tile in the IRanges package.

Examples

gr <- GRanges(
seqnames=Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
ranges=IRanges(1:10, end=11),
strand=Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)),
seqlengths=c(chr1=11, chr2=12, chr3=13))

split every range in half
tiles <- tile(gr, n = 2L)
stopifnot(all(elementNROWS(tiles) == 2L))

split ranges into subranges of width 2
odd width ranges must contain one subrange of width 1
tiles <- tile(gr, width = 2L)
stopifnot(all(all(width(tiles) %in% c(1L, 2L))))

windows <- slidingWindows(gr, width=3L, step=2L)
width(windows[[1L]]) # last range is truncated

tileGenome 81

tileGenome Put (virtual) tiles on a given genome

Description

tileGenome returns a set of genomic regions that form a partitioning of the specified genome. Each
region is called a "tile".

Usage

tileGenome(seqlengths, ntile, tilewidth, cut.last.tile.in.chrom=FALSE)

Arguments

seqlengths Either a named numeric vector of chromosome lengths or a Seqinfo object.
More precisely, if a named numeric vector, it must have a length >= 1, can-
not contain NAs or negative values, and cannot have duplicated names. If a
Seqinfo object, then it’s first replaced with the vector of sequence lengths stored
in the object (extracted from the object with the seqlengths getter), then the
restrictions described previously apply to this vector.

ntile The number of tiles to generate.

tilewidth The desired tile width. The effective tile width might be slightly different but is
guaranteed to never be more than the desired width.

cut.last.tile.in.chrom

Whether or not to cut the last tile in each chromosome. This is set to FALSE by
default. Can be set to TRUE only when tilewidth is specified. In that case, a
tile will never overlap with more than 1 chromosome and a GRanges object is
returned with one element (i.e. one genomic range) per tile.

Value

If cut.last.tile.in.chrom is FALSE (the default), a GRangesList object with one list element
per tile, each of them containing a number of genomic ranges equal to the number of chromosomes
it overlaps with. Note that when the tiles are small (i.e. much smaller than the chromosomes), most
of them only overlap with a single chromosome.

If cut.last.tile.in.chrom is TRUE, a GRanges object with one element (i.e. one genomic range)
per tile.

Author(s)

H. Pagès, based on a proposal by M. Morgan

82 tileGenome

See Also

• genomicvars for an example of how to compute the binned average of a numerical variable
defined along a genome.

• GRangesList and GRanges objects.

• Seqinfo objects and the seqlengths getter.

• IntegerList objects.

• Views objects.

Examples

A. WITH A TOY GENOME

seqlengths <- c(chr1=60, chr2=20, chr3=25)

Create 5 tiles:
tiles <- tileGenome(seqlengths, ntile=5)
tiles
elementNROWS(tiles) # tiles 3 and 4 contain 2 ranges

width(tiles)
Use sum() on this IntegerList object to get the effective tile
widths:
sum(width(tiles)) # each tile covers exactly 21 genomic positions

Create 9 tiles:
tiles <- tileGenome(seqlengths, ntile=9)
elementNROWS(tiles) # tiles 6 and 7 contain 2 ranges

table(sum(width(tiles))) # some tiles cover 12 genomic positions,
others 11

Specify the tile width:
tiles <- tileGenome(seqlengths, tilewidth=20)
length(tiles) # 6 tiles
table(sum(width(tiles))) # effective tile width is <= specified

Specify the tile width and cut the last tile in each chromosome:
tiles <- tileGenome(seqlengths, tilewidth=24,

cut.last.tile.in.chrom=TRUE)
tiles
width(tiles) # each tile covers exactly 24 genomic positions, except

the last tile in each chromosome

Partition a genome by chromosome ("natural partitioning"):
tiles <- tileGenome(seqlengths, tilewidth=max(seqlengths),

cut.last.tile.in.chrom=TRUE)
tiles # one tile per chromosome

tileGenome 83

sanity check
stopifnot(all.equal(setNames(end(tiles), seqnames(tiles)), seqlengths))

B. WITH A REAL GENOME

library(BSgenome.Scerevisiae.UCSC.sacCer2)
tiles <- tileGenome(seqinfo(Scerevisiae), ntile=20)
tiles

tiles <- tileGenome(seqinfo(Scerevisiae), tilewidth=50000,
cut.last.tile.in.chrom=TRUE)

tiles

C. AN APPLICATION: COMPUTE THE BINNED AVERAGE OF A NUMERICAL VARIABLE
DEFINED ALONG A GENOME

See '?genomicvars' for an example of how to compute the binned
average of a numerical variable defined along a genome.

Index

∗ classes
Constraints, 6
GenomicRangesList-class, 23
GNCList-class, 29
GPos-class, 31
GRanges-class, 38
GRangesFactor-class, 45
GRangesList-class, 48

∗ manip
absoluteRanges, 3
genomicvars, 25
makeGRangesFromDataFrame, 60
phicoef, 70
tileGenome, 81

∗ methods
Constraints, 6
coverage-methods, 12
findOverlaps-methods, 14
genomic-range-squeezers, 19
GenomicRanges-comparison, 20
GenomicRangesList-class, 23
GNCList-class, 29
GPos-class, 31
GRanges-class, 38
GRangesFactor-class, 45
GRangesList-class, 48
intra-range-methods, 57
setops-methods, 71
strand-utils, 75
subtract-methods, 78
tile-methods, 79

∗ utilities
coverage-methods, 12
findOverlaps-methods, 14
inter-range-methods, 52
intra-range-methods, 57
nearest-methods, 66
setops-methods, 71
subtract-methods, 78

tile-methods, 79
[, 41
[,CompressedGRangesList,ANY-method

(GRangesList-class), 48
[,list_OR_List,GenomicRanges-method

(GRanges-class), 38
[<-,CompressedGRangesList,ANY,ANY,ANY-method

(GRangesList-class), 48
[<-,CompressedGRangesList,ANY-method

(GRangesList-class), 48
[<-,CompressedGRangesList-method

(GRangesList-class), 48
$,GenomicRanges-method (GRanges-class),

38
$<-,GenomicRanges-method

(GRanges-class), 38

absoluteRanges, 3, 42
anyDuplicated, 46
as.character,GenomicRanges-method

(GRanges-class), 38
as.data.frame,GenomicRanges-method

(GRanges-class), 38
as.data.frame,GPos-method (GPos-class),

31
as.data.frame.GPos (GPos-class), 31
as.factor,GenomicRanges-method

(GRanges-class), 38
AtomicList, 50

bindAsGRanges (genomicvars), 25
bindROWS,GenomicRanges-method

(GRanges-class), 38
binnedAverage (genomicvars), 25

c, 33, 41
CharacterList, 49
checkConstraint (Constraints), 6
class:CompressedGenomicRangesList

(GenomicRangesList-class), 23

84

INDEX 85

class:CompressedGRangesList
(GRangesList-class), 48

class:Constraint (Constraints), 6
class:Constraint_OR_NULL (Constraints),

6
class:DelegatingGenomicRanges

(DelegatingGenomicRanges-class),
14

class:GenomicPos (GRanges-class), 38
class:GenomicRanges (GRanges-class), 38
class:GenomicRanges_OR_GenomicRangesList

(GenomicRangesList-class), 23
class:GenomicRanges_OR_GRangesList

(GRangesList-class), 48
class:GenomicRangesList

(GenomicRangesList-class), 23
class:GNCList (GNCList-class), 29
class:GPos (GPos-class), 31
class:GRanges (GRanges-class), 38
class:GRangesFactor

(GRangesFactor-class), 45
class:GRangesList (GRangesList-class),

48
class:IRanges_OR_IPos (GRanges-class),

38
class:SimpleGenomicRangesList

(GenomicRangesList-class), 23
class:SimpleGRangesList

(GRangesList-class), 48
class:StitchedGPos (GPos-class), 31
class:UnstitchedGPos (GPos-class), 31
coerce,ANY,GenomicRanges-method

(GRanges-class), 38
coerce,ANY,GPos-method (GPos-class), 31
coerce,ANY,GRangesFactor-method

(GRangesFactor-class), 45
coerce,ANY,StitchedGPos-method

(GPos-class), 31
coerce,ANY,UnstitchedGPos-method

(GPos-class), 31
coerce,character,GRanges-method

(GRanges-class), 38
coerce,CompressedGRangesList,CompressedIRangesList-method

(GRangesList-class), 48
coerce,CompressedGRangesList,IntegerRangesList-method

(GRangesList-class), 48
coerce,CompressedGRangesList,IRangesList-method

(GRangesList-class), 48

coerce,data.frame,GPos-method
(makeGRangesFromDataFrame), 60

coerce,data.frame,GRanges-method
(makeGRangesFromDataFrame), 60

coerce,DataFrame,GPos-method
(makeGRangesFromDataFrame), 60

coerce,DataFrame,GRanges-method
(makeGRangesFromDataFrame), 60

coerce,Factor,GRanges-method
(GRangesFactor-class), 45

coerce,factor,GRanges-method
(GRanges-class), 38

coerce,GenomicRanges,CompressedIRangesList-method
(GRanges-class), 38

coerce,GenomicRanges,GNCList-method
(GNCList-class), 29

coerce,GenomicRanges,GRanges-method
(GRanges-class), 38

coerce,GenomicRanges,Grouping-method
(GRanges-class), 38

coerce,GenomicRanges,IntegerRangesList-method
(GRanges-class), 38

coerce,GenomicRanges,IRangesList-method
(GRanges-class), 38

coerce,GenomicRangesList,SimpleGRangesList-method
(GRangesList-class), 48

coerce,GNCList,GRanges-method
(GNCList-class), 29

coerce,GRanges,GPos-method
(GPos-class), 31

coerce,GRanges,StitchedGPos-method
(GPos-class), 31

coerce,GRanges,UnstitchedGPos-method
(GPos-class), 31

coerce,IntegerRangesList,GRanges-method
(GRanges-class), 38

coerce,List,CompressedGRangesList-method
(GRangesList-class), 48

coerce,list,CompressedGRangesList-method
(GRangesList-class), 48

coerce,List,GRangesList-method
(GRangesList-class), 48

coerce,list,GRangesList-method
(GRangesList-class), 48

coerce,List,SimpleGRangesList-method
(GRangesList-class), 48

coerce,list,SimpleGRangesList-method
(GRangesList-class), 48

86 INDEX

coerce,RleList,GRanges-method
(genomicvars), 25

coerce,RleViewsList,GRanges-method
(genomicvars), 25

coerce,Seqinfo,GRanges-method
(GRanges-class), 38

coerce,Seqinfo,IntegerRangesList-method
(GRanges-class), 38

coerce,SimpleGenomicRangesList,SimpleGRangesList-method
(GRangesList-class), 48

coerce,SimpleList,SimpleGRangesList-method
(GRangesList-class), 48

coerce,StitchedGPos,GRanges-method
(GPos-class), 31

coerce,UnstitchedGPos,GRanges-method
(GPos-class), 31

CompressedGenomicRangesList
(GenomicRangesList-class), 23

CompressedGenomicRangesList-class
(GenomicRangesList-class), 23

CompressedGRangesList
(GRangesList-class), 48

CompressedGRangesList-class
(GRangesList-class), 48

CompressedIRangesList, 49
Constraint (Constraints), 6
constraint (Constraints), 6
Constraint-class (Constraints), 6
constraint<- (Constraints), 6
Constraint_OR_NULL (Constraints), 6
Constraint_OR_NULL-class (Constraints),

6
Constraints, 6
countOverlaps (findOverlaps-methods), 14
countOverlaps,GenomicRanges,GenomicRanges-method

(findOverlaps-methods), 14
coverage, 12, 13
coverage (coverage-methods), 12
coverage,GenomicRanges-method, 26
coverage,GenomicRanges-method

(coverage-methods), 12
coverage,GRangesList-method

(coverage-methods), 12
coverage,StitchedGPos-method

(coverage-methods), 12
coverage-methods, 12, 13, 34, 42, 51

DataFrame, 38, 39, 42, 49, 60–62
DataFrameList, 51

DelegatingGenomicRanges-class, 14
disjoin, 22, 54
disjoin (inter-range-methods), 52
disjoin,GenomicRanges-method

(inter-range-methods), 52
disjoin,GRangesList-method

(inter-range-methods), 52
disjointBins (inter-range-methods), 52
disjointBins,GenomicRanges-method

(inter-range-methods), 52
distance (nearest-methods), 66
distance,GenomicRanges,GenomicRanges-method

(nearest-methods), 66
distanceToNearest (nearest-methods), 66
distanceToNearest,GenomicRanges,GenomicRanges-method

(nearest-methods), 66
distanceToNearest,GenomicRanges,missing-method

(nearest-methods), 66
DNAStringSet, 41
duplicated,GenomicRanges-method

(GenomicRanges-comparison), 20
duplicated.GenomicRanges

(GenomicRanges-comparison), 20

elementMetadata,GenomicRangesList-method
(GenomicRangesList-class), 23

elementMetadata<-,CompressedGenomicRangesList-method
(GenomicRangesList-class), 23

end,GNCList-method (GNCList-class), 29
end,GRangesFactor-method

(GRangesFactor-class), 45
end<-,CompressedGenomicRangesList-method

(GenomicRangesList-class), 23
end<-,GenomicRanges-method

(GRanges-class), 38
endoapply, 54
extractROWS,GenomicRangesList,ANY-method

(GenomicRangesList-class), 23

Factor, 45, 46
FactorToClass,GRanges-method

(GRangesFactor-class), 45
findOverlaps, 14–16, 30
findOverlaps (findOverlaps-methods), 14
findOverlaps,GenomicRanges,GenomicRanges-method

(findOverlaps-methods), 14
findOverlaps,GenomicRanges,GRangesList-method

(findOverlaps-methods), 14

INDEX 87

findOverlaps,GRangesList,GenomicRanges-method
(findOverlaps-methods), 14

findOverlaps,GRangesList,GRangesList-method
(findOverlaps-methods), 14

findOverlaps-methods, 14, 22, 34, 42, 51,
69, 73, 79

flank (intra-range-methods), 57
flank,GenomicRanges-method

(intra-range-methods), 57
follow (nearest-methods), 66
follow,GenomicRanges,GenomicRanges-method

(nearest-methods), 66
follow,GenomicRanges,missing-method

(nearest-methods), 66
from_GPos_to_GRanges (GPos-class), 31

GAlignmentPairs, 12, 14, 19, 20, 41
GAlignments, 12, 14, 19, 20, 41, 57
GAlignmentsList, 14, 19, 20, 57
gaps, 54
gaps (inter-range-methods), 52
gaps,GenomicRanges-method

(inter-range-methods), 52
genome, 33
genomic-range-squeezers, 19
GenomicPos (GRanges-class), 38
GenomicPos-class (GRanges-class), 38
GenomicRanges, 3, 7, 12, 14, 16, 19–22, 24,

26, 29, 30, 32–34, 39, 42, 53, 54,
57–59, 66, 67, 69, 72, 73, 78–80

GenomicRanges (GRanges-class), 38
GenomicRanges-class, 7
GenomicRanges-class (GRanges-class), 38
GenomicRanges-comparison, 20, 34, 42, 54
GenomicRanges_OR_GenomicRangesList

(GenomicRangesList-class), 23
GenomicRanges_OR_GenomicRangesList-class

(GenomicRangesList-class), 23
GenomicRanges_OR_GRangesList

(GRangesList-class), 48
GenomicRanges_OR_GRangesList-class

(GRangesList-class), 48
GenomicRanges_OR_missing-class

(GRanges-class), 38
GenomicRangesList, 48, 51, 53
GenomicRangesList

(GenomicRangesList-class), 23
GenomicRangesList-class, 23
genomicvariables (genomicvars), 25

genomicvars, 4, 25, 42, 82
getListElement,GenomicRanges-method

(GRanges-class), 38
getListElement,GenomicRangesList-method

(GenomicRangesList-class), 23
getTable, 62
GNCList, 16
GNCList (GNCList-class), 29
GNCList-class, 29
GPos, 13, 42, 59–62
GPos (GPos-class), 31
GPos-class, 31
GRanges, 4, 12, 13, 15, 16, 19, 20, 22, 24–26,

29, 30, 32–34, 45, 46, 48, 51, 53, 54,
57, 59–62, 69, 71–73, 78, 79, 81, 82

GRanges (GRanges-class), 38
granges (genomic-range-squeezers), 19
granges,GenomicRanges-method

(GRanges-class), 38
granges,GNCList-method (GNCList-class),

29
granges,GRangesFactor-method

(GRangesFactor-class), 45
GRanges-class, 38
GRangesFactor (GRangesFactor-class), 45
GRangesFactor-class, 45
GRangesList, 12–16, 19, 20, 24, 41, 42, 53,

57, 59, 62, 65, 71–73, 79, 81, 82
GRangesList (GRangesList-class), 48
GRangesList-class, 48
grglist (genomic-range-squeezers), 19
grglist,Pairs-method

(genomic-range-squeezers), 19

Hits, 16, 67–69

IntegerList, 68, 82
IntegerRanges, 3, 4, 12, 14, 29, 32, 39, 54,

58, 59, 69, 71, 73
IntegerRangesList, 12, 14, 24, 29, 40, 49,

51, 73
inter-range-methods, 22, 34, 42, 51, 52, 54,

73, 79
intersect (setops-methods), 71
intersect,GenomicRanges,GenomicRanges-method

(setops-methods), 71
intersect,GenomicRanges,Vector-method

(setops-methods), 71

88 INDEX

intersect,GRangesList,GRangesList-method
(setops-methods), 71

intersect,Vector,GenomicRanges-method
(setops-methods), 71

intra-range-methods, 22, 34, 42, 51, 57, 59,
73, 79

invertStrand,character-method
(strand-utils), 75

invertStrand,factor-method
(strand-utils), 75

invertStrand,integer-method
(strand-utils), 75

invertStrand,logical-method
(strand-utils), 75

invertStrand,NULL-method
(strand-utils), 75

invertStrand,Rle-method (strand-utils),
75

invertStrand,RleList-method
(strand-utils), 75

IPos, 32–34
IPosRanges-comparison, 22
IRanges, 4, 19, 31–33, 38, 41, 42, 62
IRanges_OR_IPos (GRanges-class), 38
IRanges_OR_IPos-class (GRanges-class),

38
IRangesList, 19, 24, 50
is, 7
is.unsorted,GenomicRanges-method

(GenomicRanges-comparison), 20
isCircular, 33
isDisjoint (inter-range-methods), 52
isDisjoint,GenomicRanges-method, 26
isDisjoint,GenomicRanges-method

(inter-range-methods), 52
isDisjoint,GRangesList-method

(inter-range-methods), 52
isDisjoint,StitchedGPos-method

(inter-range-methods), 52
isSmallGenome (absoluteRanges), 3

lapply, 51
length,GenomicRanges-method

(GRanges-class), 38
length,GenomicRangesList-method

(GenomicRangesList-class), 23
length,GNCList-method (GNCList-class),

29
List, 24, 41

makeGPosFromDataFrame
(makeGRangesFromDataFrame), 60

makeGRangesFromDataFrame, 40, 42, 60, 65,
66

makeGRangesListFromDataFrame, 65
makeGRangesListFromFeatureFragments,

62
makeGRangesListFromFeatureFragments

(GRangesList-class), 48
makeIRangesFromDataFrame, 62
ManyToOneGrouping, 40
mapply, 51
match,GenomicRanges,GenomicRanges-method

(GenomicRanges-comparison), 20
mcolAsRleList (genomicvars), 25
mendoapply, 73

names,GenomicRanges-method
(GRanges-class), 38

names,GenomicRangesList-method
(GenomicRangesList-class), 23

names,GNCList-method (GNCList-class), 29
names<-,GenomicRanges-method

(GRanges-class), 38
names<-,GenomicRangesList-method

(GenomicRangesList-class), 23
narrow (intra-range-methods), 57
narrow,GenomicRanges-method

(intra-range-methods), 57
NCList, 29, 30
NCLists, 29, 30
nearest (nearest-methods), 66
nearest,GenomicRanges,GenomicRanges-method

(nearest-methods), 66
nearest,GenomicRanges,missing-method

(nearest-methods), 66
nearest-methods, 34, 42, 66, 69
nearestKNeighbors (nearest-methods), 66
nearestKNeighbors,GenomicRanges,GenomicRanges-method

(nearest-methods), 66
nearestKNeighbors,GenomicRanges,missing-method

(nearest-methods), 66

order,GenomicRanges-method
(GenomicRanges-comparison), 20

overlapsAny (findOverlaps-methods), 14

Pairs, 19

INDEX 89

parallel_slot_names,GRanges-method
(GRanges-class), 38

pcompare (GenomicRanges-comparison), 20
pcompare,GenomicRanges,GenomicRanges-method

(GenomicRanges-comparison), 20
pgap, 71
pgap (setops-methods), 71
pgap,GRanges,GRanges-method

(setops-methods), 71
phicoef, 70
pintersect, 71
pintersect (setops-methods), 71
pintersect,GRanges,GRanges-method

(setops-methods), 71
pintersect,GRanges,GRangesList-method

(setops-methods), 71
pintersect,GRangesList,GRanges-method

(setops-methods), 71
pos,GPos-method (GPos-class), 31
pos,GRangesFactor-method

(GRangesFactor-class), 45
precede (nearest-methods), 66
precede,GenomicRanges,GenomicRanges-method

(nearest-methods), 66
precede,GenomicRanges,missing-method

(nearest-methods), 66
promoters (intra-range-methods), 57
promoters,GenomicRanges-method

(intra-range-methods), 57
psetdiff, 71
psetdiff (setops-methods), 71
psetdiff,GRanges,GRanges-method

(setops-methods), 71
psetdiff,GRanges,GRangesList-method

(setops-methods), 71
punion, 71
punion (setops-methods), 71
punion,GRanges,GRanges-method

(setops-methods), 71
punion,GRanges,GRangesList-method

(setops-methods), 71
punion,GRangesList,GRanges-method

(setops-methods), 71

range (inter-range-methods), 52
range,GenomicRanges-method

(inter-range-methods), 52
range,GRangesList-method

(inter-range-methods), 52

range,StitchedGPos-method
(inter-range-methods), 52

RangedSummarizedExperiment, 19, 20
ranges, 19
ranges,CompressedGRangesList-method

(GRangesList-class), 48
ranges,DelegatingGenomicRanges-method

(DelegatingGenomicRanges-class),
14

ranges,GNCList-method (GNCList-class),
29

ranges,GRanges-method (GRanges-class),
38

ranges,GRangesFactor-method
(GRangesFactor-class), 45

ranges<-,CompressedGRangesList-method
(GRangesList-class), 48

ranges<-,GenomicRanges-method
(GRanges-class), 38

rank,GenomicRanges-method
(GenomicRanges-comparison), 20

rankSeqlevels, 62
reduce, 22, 54
reduce (inter-range-methods), 52
reduce,GenomicRanges-method

(inter-range-methods), 52
reduce,GRangesList-method

(inter-range-methods), 52
relativeRanges (absoluteRanges), 3
relistToClass,GRanges-method

(GRangesList-class), 48
resize (intra-range-methods), 57
resize,GenomicRanges-method

(intra-range-methods), 57
restrict (intra-range-methods), 57
restrict,GenomicRanges-method

(intra-range-methods), 57
rglist, 19
Rle, 26, 38, 39, 42, 50, 76
RleList, 13, 25, 26, 49, 51, 76

sapply, 51
score,GenomicRanges-method

(GRanges-class), 38
score,GenomicRangesList-method

(GenomicRangesList-class), 23
score<-,GenomicRanges-method

(GRanges-class), 38

90 INDEX

score<-,GenomicRangesList-method
(GenomicRangesList-class), 23

selfmatch,GenomicRanges-method
(GenomicRanges-comparison), 20

Seqinfo, 4, 34, 38–40, 42, 49, 61, 62, 81, 82
seqinfo, 33, 34, 42, 51
seqinfo,CompressedGenomicRangesList-method

(GenomicRangesList-class), 23
seqinfo,DelegatingGenomicRanges-method

(DelegatingGenomicRanges-class),
14

seqinfo,GenomicRangesList-method
(GenomicRangesList-class), 23

seqinfo,GNCList-method (GNCList-class),
29

seqinfo,GRanges-method (GRanges-class),
38

seqinfo,GRangesFactor-method
(GRangesFactor-class), 45

seqinfo,List-method (GRanges-class), 38
seqinfo<-,CompressedGenomicRangesList-method

(GenomicRangesList-class), 23
seqinfo<-,GenomicRanges-method

(GRanges-class), 38
seqinfo<-,List-method (GRanges-class),

38
seqlengths, 4, 33, 81, 82
seqlevels, 33, 39, 49
seqlevelsStyle, 33, 39, 49
seqnames,DelegatingGenomicRanges-method

(DelegatingGenomicRanges-class),
14

seqnames,GenomicRangesList-method
(GenomicRangesList-class), 23

seqnames,GNCList-method
(GNCList-class), 29

seqnames,GRanges-method
(GRanges-class), 38

seqnames,GRangesFactor-method
(GRangesFactor-class), 45

seqnames<-,CompressedGenomicRangesList-method
(GenomicRangesList-class), 23

seqnames<-,GenomicRanges-method
(GRanges-class), 38

setClass, 7
setdiff (setops-methods), 71
setdiff,GenomicRanges,GenomicRanges-method

(setops-methods), 71

setdiff,GenomicRanges,Vector-method
(setops-methods), 71

setdiff,GRangesList,GRangesList-method
(setops-methods), 71

setdiff,Vector,GenomicRanges-method
(setops-methods), 71

setMethod, 7
setops-methods, 22, 42, 51, 71, 73, 79
shift (intra-range-methods), 57
shift,GenomicRanges-method

(intra-range-methods), 57
show,GenomicRanges-method

(GRanges-class), 38
show,GenomicRangesList-method

(GenomicRangesList-class), 23
show,GPos-method (GPos-class), 31
show,GRangesFactor-method

(GRangesFactor-class), 45
showMethods, 7
SimpleGenomicRangesList

(GenomicRangesList-class), 23
SimpleGenomicRangesList-class

(GenomicRangesList-class), 23
SimpleGRangesList (GRangesList-class),

48
SimpleGRangesList-class

(GRangesList-class), 48
slidingWindows, 79
slidingWindows (tile-methods), 79
slidingWindows,GenomicRanges-method

(tile-methods), 79
SNPlocs, 34
snpsById, 34
snpsByOverlaps, 34
snpsBySeqname, 34
sort,CompressedGRangesList-method

(GRangesList-class), 48
sort,GenomicRanges-method

(GenomicRanges-comparison), 20
sort,GRangesList-method

(GRangesList-class), 48
sort.GenomicRanges

(GenomicRanges-comparison), 20
sort.GRangesList (GRangesList-class), 48
split, 65
start,GenomicRanges-method

(GRanges-class), 38
start,GNCList-method (GNCList-class), 29

INDEX 91

start,GRangesFactor-method
(GRangesFactor-class), 45

start<-,CompressedGenomicRangesList-method
(GenomicRangesList-class), 23

start<-,GenomicRanges-method
(GRanges-class), 38

StitchedGPos, 12
StitchedGPos (GPos-class), 31
StitchedGPos-class (GPos-class), 31
StitchedIPos, 32
strand, 38, 77
strand,character-method (strand-utils),

75
strand,DataFrame-method (strand-utils),

75
strand,DelegatingGenomicRanges-method

(DelegatingGenomicRanges-class),
14

strand,factor-method (strand-utils), 75
strand,GenomicRangesList-method

(GenomicRangesList-class), 23
strand,GNCList-method (GNCList-class),

29
strand,GRanges-method (GRanges-class),

38
strand,GRangesFactor-method

(GRangesFactor-class), 45
strand,integer-method (strand-utils), 75
strand,logical-method (strand-utils), 75
strand,missing-method (strand-utils), 75
strand,NULL-method (strand-utils), 75
strand,Rle-method (strand-utils), 75
strand,RleList-method (strand-utils), 75
strand-utils, 75
strand<-,CompressedGenomicRangesList,ANY-method

(GenomicRangesList-class), 23
strand<-,CompressedGenomicRangesList,character-method

(GenomicRangesList-class), 23
strand<-,DataFrame,ANY-method

(strand-utils), 75
strand<-,GenomicRanges,ANY-method

(GRanges-class), 38
subsetByOverlaps

(findOverlaps-methods), 14
subtract, 42, 73
subtract (subtract-methods), 78
subtract,GenomicRanges,GenomicRanges-method

(subtract-methods), 78

subtract-methods, 78
SummarizedExperiment, 34
summary,GenomicRanges-method

(GRanges-class), 38
summary,GPos-method (GPos-class), 31
summary.GenomicRanges (GRanges-class),

38
summary.GPos (GPos-class), 31

terminators (intra-range-methods), 57
terminators,GenomicRanges-method

(intra-range-methods), 57
tile, 79, 80
tile (tile-methods), 79
tile,GenomicRanges-method

(tile-methods), 79
tile-methods, 79
tileGenome, 4, 25, 26, 42, 81
trim (intra-range-methods), 57
trim,GenomicRanges-method

(intra-range-methods), 57
trim,GRangesList-method

(intra-range-methods), 57

unfactor, 46
union (setops-methods), 71
union,GenomicRanges,GenomicRanges-method

(setops-methods), 71
union,GenomicRanges,Vector-method

(setops-methods), 71
union,GRangesList,GRangesList-method

(setops-methods), 71
union,Vector,GenomicRanges-method

(setops-methods), 71
unlist,GenomicRangesList-method

(GenomicRangesList-class), 23
UnstitchedGPos (GPos-class), 31
UnstitchedGPos-class (GPos-class), 31
UnstitchedIPos, 32
update,DelegatingGenomicRanges-method

(DelegatingGenomicRanges-class),
14

update,GRanges-method (GRanges-class),
38

update_ranges,GenomicRanges-method
(intra-range-methods), 57

updateObject,GenomicRangesList-method
(GenomicRangesList-class), 23

92 INDEX

updateObject,GPos-method (GPos-class),
31

updateObject,GRanges-method
(GRanges-class), 38

validObject, 7
Vector, 24, 32, 42
Views, 82

width,GenomicRanges-method
(GRanges-class), 38

width,GNCList-method (GNCList-class), 29
width,GRangesFactor-method

(GRangesFactor-class), 45
width<-,CompressedGenomicRangesList-method

(GenomicRangesList-class), 23
width<-,GenomicRanges-method

(GRanges-class), 38

	absoluteRanges
	Constraints
	coverage-methods
	DelegatingGenomicRanges-class
	findOverlaps-methods
	genomic-range-squeezers
	GenomicRanges-comparison
	GenomicRangesList-class
	genomicvars
	GNCList-class
	GPos-class
	GRanges-class
	GRangesFactor-class
	GRangesList-class
	inter-range-methods
	intra-range-methods
	makeGRangesFromDataFrame
	makeGRangesListFromDataFrame
	nearest-methods
	phicoef
	setops-methods
	strand-utils
	subtract-methods
	tile-methods
	tileGenome
	Index

