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addDescriptorType Add Descriptor Type

Description

Add a new descriptor type to the database. Normally descriptor types are added as needed, but
if you are doing a parrallel data load you must pre-load the descriptor type to prevent duplicate
defintion errors.

Usage

addDescriptorType(conn, descriptorType)

Arguments

conn Any database connection object.

descriptorType The name of the descriptor.

Value

No return value.

Author(s)

Kevin Horan

Examples

## Not run:
conn = initDb(...)
addDescriptor(conn, "fp")

## End(Not run)

addNewFeatures Add New Features

Description

Adds new features to a database without adding any data. Note that if you are loading new data
anyway, it is much more efficient to use the loadSdf function and include the new features then.
This function will have to read all compounds out of the database first.

Usage

addNewFeatures(conn, featureGenerator)



Arguments
conn A database connection object, such as is returned by initDb.
featureGenerator
A function which returns a data frame containing the new features. It may also
contain features which are already in the database, these will simply be ignored.
See the description of fct in loadSdf for details.
Value

No value is returned.

Author(s)

Kevin Horan

See Also
loadSdf

Examples

#tcreate and initialize a new SQLite database
conn = initDb("test.db")

data(sdfsample)

#just load the data with no features or descriptors
ids=loadSdf (conn, sdfsample)
addNewFeatures(conn, function(sdfset)
data.frame(MW = MW(sdfset),
rings(sdfset, type="count”,upper=6, arom=TRUE))
)

unlink("test.db")

ap Return atom pair component of AP/APset

Description

Returns atom pair component of objects of class AP or APset as list of vectors.

Usage

ap(x)
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Arguments

X Object of class AP and APset

Details

Value

List with one to many of following components:

numeric atom pairs

Author(s)

Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

See Also

Functions: SDF2apcmp, apset2descdb, cmp.search, cmp.similarity

Examples

## Instance of SDFset class
data(sdfsample)

sdfset <- sdfsample[1:50]
sdf <- sdfset[[1]]

## Compute atom pair library
ap <- sdf2ap(sdf)

(apset <- sdf2ap(sdfset))
view(apset[1:4])

## Return main components of APset object
cid(apset[1:4]1) # compound IDs
ap(apset[1:4]) # atom pair descriptors

## Return atom pairs in human readable format
db.explain(apset[1])
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AP-class Class "AP"

Description
Container for storing the atom pair descriptors of a single compound as numeric vector. The atom
pairs are used as structural similarity measures and for compound similarity searching.

Objects from the Class

Objects can be created by calls of the form new("AP", .. .).

Slots

AP: Object of class "numeric”

Methods

ap signature(x = "AP"): returns atom pairs as numeric vector
coerce signature(from="APset”, to="AP"): as(apset, "AP")

show signature(object = "AP"): prints summary of AP

Author(s)
Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

See Also
Related classes: SDF, SDFset, SDFstr, APset.

Functions: SDF2apcmp, apset2descdb, cmp.search, cmp.similarity

Examples

showClass("AP")

## Instance of SDFset class
data(sdfsample)

sdfset <- sdfsample[1:50]
sdf <- sdfsample[[1]]

## Compute atom pair library
ap <- sdf2ap(sdf)
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(apset <- sdf2ap(sdfset))
view(apset[1:4])

## Return main components of APset object
cid(apset[1:4]1) # compound IDs
ap(apset[1:4]) # atom pair descriptors

## Return atom pairs in human readable format
db.explain(apset[1])

## Coerce APset to other objects

apset2descdb(apset) # returns old list-style AP database
tmp <- as(apset, "list") # returns list

as(tmp, "APset”) # converst list back to APset

## Compound similarity searching with APset
cmp.search(apset, apset[1], type=3, cutoff=0.2)
plot(sdfset[names(cmp.search(apset, apset[6], type=2, cutoff=0.4))1)

## Identify compounds with identical AP sets
cmp.duplicated(apset, type=2)

## Structure similarity clustering
cmp.cluster(db=apset, cutoff = c(0.65, 0.5))[1:20,]

apfp Frequent Atom Pairs

Description

Ranked set of 4096 most frequent atom pairs observed in the compound collection from DrugBank
with a MW < 1000. Their atom pairs were generated with the sdf2ap function. The provided data
frame is sorted row-wise by atom pair frequency and only the 4096 most frequent atom pairs are
included. This data set can be used as predefined atom pair selection when computing atom pair
fingerprints with the desc2fp function.

Usage
data(apfp)

Format
Object of class data. frame. First column contains atom pair (AP) IDs and the second column their
frequency in DrugBank compounds.

Details

Object stores 4096 most frequent atom pairs generated from DrugBank compounds.
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Source

DrugBank: http://www.drugbank.ca/

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

Examples

data(apfp)
apfpl1:4,]

apset Atom pairs stored in APset object

Description

Atom pairs for 100 molecules stored in sdfsample.

Usage
data(apset)

Format

Object of class apset

Details

Object stores atom pairs of 100 molecules.

Source

apset <- sdf2ap(sdfsample)

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

Examples

data(apset)
apset[1:4]
view(apset[1:4])
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APset-class Class "APset"

Description

List-like container for storing the atom pair descriptors of a many compounds as objects of class
AP. This container is used for structure similarity searching of compounds.

Objects from the Class

Objects can be created by calls of the form new("APset”, ...).

Slots

AP: Object of class "1ist”

ID: Object of class "character”

Methods

[ signature(x = "APset"): subsetting of class with bracket operator

[[ signature(x = "APset"): returns single component as AP object

[[<- signature(x = "APset"): replacement method for single AP component
[<- signature(x = "APset"): replacement method for several AP components
ap signature(x = "APset"): returns atom pair list from AP slot

¢ signature(x = "APset"): concatenates two APset containers

cid signature(x = "APset"): returns all compound identifiers from ID slot
cid<- signature(x = "APset"): replacement method for compound identifiers in ID slot
coerce signature(from= "APset"”, to="AP"): as(apset, "AP")

coerce signature(from="APset"”, to="1ist"): as(apset, "list")
coerce signature(from="list", to="APset"): as(list, "APset")
length signature(x = "APset"): returns number of entries stored in object
show signature(object = "APset”): prints summary of APset

view signature(x = "APset"): prints extended summary of APset

Author(s)
Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem
Inf Comput Sci.
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See Also

Related classes: SDF, SDFset, SDFstr, AP, FPset, FP.

Functions: SDF2apcmp, apset2descdb, cmp.search, cmp.similarity

Examples

showClass("APset")

## Instance of SDFset class
data(sdfsample)

sdfset <- sdfsample[1:50]
sdf <- sdfsample[[1]]

## Compute atom pair library
ap <- sdf2ap(sdf)

(apset <- sdf2ap(sdfset))
view(apset[1:4])

## Return main components of APset object
cid(apset[1:4]) # compound IDs
ap(apset[1:4]) # atom pair descriptors

## Return atom pairs in human readable format
db.explain(apset[1])

## Coerce APset to other objects

apset2descdb(apset) # returns old list-style AP database
tmp <- as(apset, "list"”) # returns list

as(tmp, "APset") # converst list back to APset

## Compound similarity searching with APset
cmp.search(apset, apset[1], type=3, cutoff=0.2)
plot(sdfset[names(cmp.search(apset, apset[6], type=2, cutoff=0.4))1)

## Identify compounds with identical AP sets
cmp.duplicated(apset, type=2)

## Structure similarity clustering
cmp.cluster(db=apset, cutoff = c(0.65, 0.5))[1:20,]

apset2descdb APset to list-style AP database

Description

Coerces APset to old list-style descriptor database used by search/cluster functions.
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Usage
apset2descdb(apset)
Arguments
apset Object of class apset
Details
Value
list with following components
descdb list of atom pair sets
cids compound IDs
sdfsegs start/end coordinates for each molecule in SD file; only populated when cmp . parse
is used for import
source path/name of SD file
type import method
Author(s)

Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

See Also

Functions: SDF2apcmp, sdf2ap, cmp.search, cmp.similarity

Examples

## Instance of SDFset class
data(sdfsample)

sdfset <- sdfsample[1:50]
sdf <- sdfsample[[1]]

## Compute atom pair library
ap <- sdf2ap(sdf)

(apset <- sdf2ap(sdfset))
view(apset[1:4])

## Return main components of APset object
cid(apset[1:4]) # compound IDs
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ap(apset[1:4]) # atom pair descriptors

## Return atom pairs in human readable format
db.explain(apset[1])

## Coerce APset to other objects

apset2descdb(apset) # returns old list-style AP database
tmp <- as(apset, "list"”) # returns list

as(tmp, "APset") # converst list back to APset

## Compound similarity searching with APset
cmp.search(apset, apset[1], type=3, cutoff=0.2)
plot(sdfset[names(cmp.search(apset, apset[6], type=2, cutoff=0.4))1)

## Identify compounds with identical AP sets
cmp.duplicated(apset, type=2)

## Structure similarity clustering
cmp.cluster(db=apset, cutoff = c(0.65, 0.5))[1:20,]

atomblock Return atom block

Description

Returns atom block(s) from an object of class SDF or SDFset.

Usage
atomblock(x)

Arguments

X object of class SDF or SDFset

Details

Value

matrix if SDF is provided or 1ist of matrices if SDFset is provided

Author(s)
Thomas Girke

References
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See Also

header, atomcount, bondblock, datablock, cid, sdfid

Examples

## SDF/SDFset instances
data(sdfsample)

sdfset <- sdfsample

sdf <- sdfset[[1]]

## Extract atome block
atomblock(sdf)
atomblock(sdfset[1:4])

## Replacement methods

sdfset[[11]CL2]1]01,1] <- 999

sdfset[[1]]

atomblock(sdfset)[1:2] <- atomblock(sdfset)[3:4]
atomblock(sdfset[[1]]) == atomblock(sdfset[[3]1])
view(sdfset[1:2])

atomcount Molecular property functions

Description

Functions to compute molecular properties: weight, formula, atom frequencies, etc.

Usage
atomcount(x, addH = FALSE, ...)
atomcountMA(x, ...)
MW(x, mw=atomprop, ...)
MF(x, ...)
Arguments
X object of class SDFset or SDF
mw data.frame with atomic weights; imported by default with data(atomprop);
supports custom data sets
addH ’addH = TRUE’ should be passed on to any of these function to add hydrogens

that are often not specified in SD files

Arguments to be passed to/from other methods.
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Details

Value
named vector MW and MF
list atomcount
matrix atomcountMA

Author(s)

Thomas Girke

References

Standard atomic weights (2005) from: http://iupac.org/publications/pac/78/11/2051/

See Also

Functions: datablock, datablocktag

Examples

## Instance of SDFset class
data(sdfsample)
sdfset <- sdfsample

## Compute properties; to consider missing hydrogens, set 'addH = TRUE'
MW(sdfset[1:4], addH = FALSE)

MF (sdfset[1:4], addH = FALSE)

atomcount(sdfset[1:4], addH = FALSE)

propma <- atomcountMA(sdfset[1:4], addH = FALSE)

boxplot(propma, main="Atom Frequency")

## Example for injecting a custom matrix/data frame into the data block of an
## SDFset and then writing it to an SD file

props <- data.frame(MF=MF(sdfset), MW=MW(sdfset), atomcountMA(sdfset))
datablock(sdfset) <- props

view(sdfset[1:4])

# write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE, cid=TRUE)
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atomprop Standard atomic weights

Description

Data frame with atom names, symbols, standard atomic weights, group number and period number.

Usage

data(atomprop)

Format

The format is a data frame with 117 rows and 6 columns.

Source

Columns 1 to 4 from: http://iupac.org/publications/pac/78/11/2051/ Columns 5 to 6 from: http://en.wikipedia.org/wiki/List_o

References

Pure Appl. Chem., 2006, Vol. 78, No. 11, pp. 2051-2066

Examples

data(atomprop)
atomprop[1:4,]

atomsubset Subset SDF/SDFset Objects by Atom Index to Obtain Substructure

Description

Function to obtain a substructure from SDF/SDFset objects by providing a row index for the atom
block in an SDF referencing the atoms of interest. The function subsets both the atom and bond
block(s) accordingly.

Usage

atomsubset(x, atomrows, type="new", datablock = FALSE)
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Arguments
X object of class SDFset or SDF
atomrows The argument atomrows can be assigned a numeric index referencing the atoms
in the atom block of x. If x is of class SDF, the index needs to be provided as
vector. If x is of class SDFset, the same number of index vectors as molecules
stored in x need to be passed on in a list with component names identical to the
component (molecule) names stored in x.
type The argument type="new" assigns new atom numbers to a subsetted SDF, while
type="01d" maintains the numbering of the source SDF.
datablock By default the data block(s) in SDF/SDFset objects are removed after atom sub-
setting. The setting datablock=TRUE will maintain the data block information
in the subsetted result.
Details
Value

object of class SDF or SDFset

Author(s)

Thomas Girke

References

See Also

Examples

## Instance of SDFset class
data(sdfsample)
sdfset <- sdfsample

## Subset one or more molecules with atom index(es) to obtain substructure(s)
atomsubset(sdfset[[1]], atomrows=1:18)

indexlist <- list(1:18, 1:12)

names(indexlist) <- cid(sdfset[1:2]1)

atomsubset(sdfset[1:2], atomrows=indexlist)
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batchByIndex Batch by Index

Description

When doing a select were the condition is a large number of ids it is not always possible to include
them in a single SQL statement. This function will break the list of ids into chunks and allow the
indexProcessor to deal with just a small number of ids.

Usage

batchByIndex(allIndices, indexProcessor, batchSize = 1e+05)

Arguments

allIndices A vector of values that will be broken into batches and passed as an argument to
the indexProcessor function.

indexProcessor A function that takes one batch if indices. It is called once for each batch. The
return value from this function is ignored. To accumulate results you can write
to a global variable using the "«-" operator.

batchSize The size of each batch. The last batch may be smaller than this value.

Value

No value is returned.

Author(s)

Kevin Horan

See Also

parBatchByIndex

Examples

## Not run:
result=NA
indices = 1:10000

#run a query on each batch of indexes, appending each result to
# "result” as we go.
batchByIndex(indices, function(indexBatch){
df = dbGetQuery(dbConnection, generateQuery(indexBatch))
result <<- if(is.na(result)) df else rbind(result,df)
},1000)
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## End(Not run)

bondblock

bondblock Return bond block

Description

Returns bond block(s) from an object of class SDF or SDFset.

Usage
bondblock(x)

Arguments

X object of class SDF or SDFset

Details

Value

matrix if SDF is provided or 1ist of matrices if SDFset is provided

Author(s)
Thomas Girke

References

See Also

header, atomcount, atomblock, datablock, cid, sdfid

Examples

## SDF/SDFset instances
data(sdfsample)

sdfset <- sdfsample
sdf <- sdfset[[1]]

## Extract bond block
bondblock(sdf)
bondblock(sdfset[1:4])
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## Replacement methods

sdfset[[1]11CL31101,1] <- 999

sdfset[[1]]

bondblock(sdfset)[1:2] <- bondblock(sdfset)[3:4]
bondblock(sdfset[[1]]) == bondblock(sdfset[[3]])
view(sdfset[1:2])

bonds Bonds, charges and missing hydrogens

Description

Returns information about bonds, charges and missing hydrogens in SDF and SDFset objects.

Usage

bonds(x, type = "bonds")

Arguments
X SDF or SDFset containers
type If type="bonds" (default), a data. frame is returned with columns: atom (atom
labels), Nbondcount (observed bond count), Nbondrule (bond count according
to position in periodic table) and charge (charge of each atom).
If type="charge", all charged atoms are returned and if type="addNH", the
number of missing hydrogens are returned for each molecule.
Details

It is used by many other functions (e.g. MW, MF, atomcount, atomcuntMA and plot) to correct for
missing hydrogens that are often not specified in SD files.

Value

If x is of class SDF, then a single data.frame or vector is returned. If x is of class SDFset, then a
list of data. frames or vecotors is returned that has the same length and order as x.

Author(s)
Thomas Girke

References

See Also

Functions: conMA
Class: SDF and SDFset
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Examples

## Instances of SDFset class
data(sdfsample)
sdfset <- sdfsample

## Returns data frames with bonds and charges
bonds(sdfset[1:2], type="bonds")

## Returns charged atoms in each molecule
bonds(sdfset[1:2], type="charge")

## Returns the number of missing hydrogens in each molecule
bonds(sdfset[1:2], type="addNH")

browseJob Open ChemMine Tools Job in Web Browser

Description

Launches a web browser to view the results of a ChemMine Tools web job with an interactive
online viewer. Note that this reassigns the job to the current logged in user within the browser, so
it becomes no longer accessible by the result and status functions. Any results should be saved
within R before launching a browser.

Usage

browseJob(object)
Arguments

object A jobToken job as returned by the function launchCMTool
Value

Returns an URL string which can be used to access the job results. The function also attempts to
open the url with the browseURL function. As this URL can only be used once, the returned string
is only useful if the browseURL function fails to open a browser.

Author(s)
Tyler William H Backman

References

See ChemMine Tools at http://chemmine.ucr.edu.


http://chemmine.ucr.edu

bufferLines

See Also

Functions: toolDetails, 1istCMTools, launchCMTool, result, status

Examples

## Not run:
## list available tools
listCMTools()

## get detailed instructions on using a tool
toolDetails("Fingerprint Search”)

## download compound 2244 from PubChem
jobl <- launchCMTool ("pubchemID2SDF", 2244)

## check job status and download result
status(job1)
resultl <- result(jobl)

## open job in web browser
browseJob(job1)

## End(Not run)
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bufferLines Buffer File Input

Description

Buffer the input of files to increase efficiency

Usage

bufferLines(fh, batchSize, lineProcessor)

Arguments
fh file handle
batchSize How many lines to read in each batch

lineProcessor Each batch of lines will be passed to this function for processing

Value

No return value

Author(s)

Kevin Horan
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Examples

## Not run:
fh = file("filename")
bufferLines(fh,100,function(lines) {
message("found ",length(lines),” lines")

D

## End(Not run)

bufferResultSet Buffer Query Results

Description

Allow query results to be processed in batches for efficiency.

Usage
bufferResultSet(rs, rsProcessor, batchSize = 1000,closeRS=FALSE)

Arguments
rs A DBIResult object, usually from dbSendQuery.
rsProcessor Each batch will be passed as a data frame to this function for processing.
batchSize The number of rows to read in each batch
closeRS Should the result set be closed by this function when it is done?
Value
No value.
Author(s)

Kevin Horan

Examples

##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.

## The function is currently defined as
function (rs, rsProcessor, batchSize = 1000)
{
while (TRUE) {
chunk = fetch(rs, n = batchSize)
if (dim(chunk)[1] == @)
break
rsProcessor (chunk)
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byCluster By Cluster

Description

Re-organize a vector valued clustering into an list which groups cluster members together

Usage

byCluster(clustering, excludeSingletons = TRUE)

Arguments
clustering A named vector in which the names are cluster members and the values are
cluster labels. This is format output by jarvisPatrick.
excludeSingletons
If true only clusters with more than 1 member will be in the output, otherwise
all clusters will be used.
Value

A list with a slot for each cluster. Each slot of the list is a vector containing the cluster members.

Author(s)

Kevin Horan

See Also

jarvisPatrick

Examples

data(apset)
cl = jarvisPatrick(nearestNeighbors(apset,cutoff=0.6),k=2)
print(byCluster(cl))
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canonicalize Canonicalize

Description

Canonicalizes the atom numbering of a compound. The implimentation of this function is in Open
Babel and requires the ChemmineOB package to function.

Usage

canonicalize(sdf)
Arguments

sdf Any sdfset object.
Value

A new SDFset in which all compounds have been canonicalized

Author(s)

Kevin Horan

References

http://openbabel.org/api/2.3/canonical_code_algorithm.shtml

See Also

canonicalNumbering

Examples

## Not run:
data(sdfsample)
canonicalSdf = canonicalize(sdfsample[1])

## End(Not run)
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canonicalNumbering Canonical Numbering

Description

Computes a re-arrangement required to transform the atom numbering of the given compound into
the canonical atom numbering. This function uses the OBGraphSym and CanonicalLabels classes
of Open Babel to compute the re-arrangement.

Usage

canonicalNumbering(sdf)

Arguments

sdf Any sdfset object.

Value

A list of vectors of index values. Each item in the list corresponds to one of the given compounds.
The values of a list item are the re-arrangement of the atoms. For example, if the value in item
1, column 1 is 25, that means that atom number 1 in the original compound should become atom
number 25 in the canonical version of that compound.

Author(s)

Kevin Horan

References

http://openbabel.org/api/2.3/canonical_code_algorithm.shtml

See Also

canonicalize

Examples

## Not run:
data(sdfsample)
labels = canonicalNumbering(sdfsample[1])

## End(Not run)
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cid Return compound IDs

Description

Returns the compound identifiers from the ID slot of an SDFset object.

Usage
cid(x)

Arguments

X object of class SDFset or APset

Details

Value

character vector

Author(s)
Thomas Girke

References

See Also

atomblock, atomcount, bondblock, datablock, header, sdfid

Examples

## SDFset/APset instances
data(sdfsample)

sdfset <- sdfsample

apset <- sdf2ap(sdfset[1:4])

## Extract compound IDs from SDFset/APset
cid(sdfset[1:4])
cid(apset[1:4])

## Extract IDs defined in SD file
sdfid(sdfset[1:4])
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## Assigning compound IDs and keeping them unique
unique_ids <- makeUnique(sdfid(sdfset))
cid(sdfset) <- unique_ids

cid(sdfset[1:4])

## Replacement Method
cid(sdfset) <- as.character(1:100)

cluster.sizestat generate statistics on sizes of clusters

Description

“cluster.sizestat’ is used to do simple statistics on sizes of clusters generated by ’cmp.cluster’. It
will return a dataframe which maps a cluster size to the number of clusters with that size. It is often
used along with ’cluster.visualize’.

Usage

cluster.sizestat(cls, cluster.result=1)

Arguments

cls The clustering result returned by ’cmp.cluster’

cluster.result If multiple cutoff values are used in clustering process, this argument tells which
cutoff value is to be considered here.

Details

“cluster.sizestat’” depends on the format that is returned by *cmp.cluster’ - it will treat the first column
as the indecies, and the second column as the cluster sizes of effective clustering. Because of this,
when multiple cutoffs are used when ’cmp.cluster’ is called, ’cluster.sizestat’ will only consider
the clustering result of the first cutoff. If you want to work on an alternative cutoff, you have to
manually reorder/remove columns.

Value

Returns a data frame of two columns.

cluster size This column lists cluster sizes
count This column lists number of clusters of a cluster size
Author(s)

Y. Eddie Cao
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See Also

cmp.cluster, cluster.visualize

Examples

## Load sample SD file
# data(sdfsample); sdfset <- sdfsample

## Generate atom pair descriptor database for searching
# apset <- sdf2ap(sdfset)

## Loads same atom pair sample data set provided by library
data(apset)

## Binning clustering using variable similarity cutoffs.
cluster <- cmp.cluster(db=apset, cutoff = c(0.65, 0.5))

## Statistics on sizes of clusters
cluster.sizestat(cluster[,c(1,2,3)]1)
cluster.sizestat(cluster[,c(1,4,5)]1)

cluster.visualize visualize clustering result using multi-dimensional scaling

Description

*cluster.visualize’ takes clustering result returned by ’cmp.cluster’ and generate multi-dimensional
scaling plot for visualization purpose.

Usage

cluster.visualize(db, cls, size.cutoff, distmat=NULL, color.vector=NULL, non.interactive="", cluster.
Arguments

db The desciptor database, in the format returned by ’cmp.parse’.

cls The clustering result returned by *cmp.cluster’.

size.cutoff The cutoff size for clusters considered in this visualization. Clusters of size

smaller than the cutoff will not be considered.
distmat A distance matrix that corresponds to the ’db’. If not provided, it will be com-

puted on-the-fly in an efficient manner.

color.vector  Colors to be used in the plot. If the number of colors in the vector is not enough
for the plot, colors will be reused. If not provided, color will be generated and
randomly sampled from ’rainbow’.

non.interactive
If provided, will enable the non-interactive mode, and the plot will be in an eps
file named after this value.
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cluster.result Used to select the clustering result if multiple clustering results are present in

“cls’.
dimensions Dimensionality to be used in visualization. See details.
quiet Whether to supress the progress bar.

highlight.compounds
A vector of compound IDs, corresponding to compounds to be highlighted in
the plot. A highlighted compound is represented as a filled circle.
highlight.color
Color used for highlighted compounds. If not set, a highlighted compounds will
have the same color as that used for other compounds in the same cluster.

Further arguments will be passed to ’cmp.similarity’ to calculate similarity ma-
trix.

Details

*cluster.visualize’ internally calls the cmdscale’ function to generate a set of points in 2-D for the
compounds in selected clusters. Note that for compounds in clusters smaller than the cutoff size,
they will not be considered in this calculation - their entries in ’distmat’ will be discarded if *distmat’
is provided, and distances involving them will not be computed if ’distmat’ is not provided.

To determine the value for ’size.cutoff’, you can use ’cluster.sizestat’ to see the size distribution of
clusters.

Because *cmp.cluster’ function allows you to perform multiple clustering processes simultaneously
with different cutoff values, the ’cls’ parameter may point to a data frame containing multiple
clustering results. The user can use ’cluster.result’ to specify which result to use. By default, this
is set to 1, and the first clustering result will be used in visualization. Whatever the value is, in
interactive mode (described below), all clustering result will be displayed when a compound is
selected in the interactive plot.

If the colors provided in ’color.vector’ are not enough to distinguish clusters by colors, the function
will silently reuse the colors, resulting multiple clusters colored in the same color. We suggest you
use 'cluster.sizestat’ to see how many clusters will be selected using your ’size.cutoff’, or simply
provide no ’color.vector’.

If "non.interative’ is not set, the final plot is interactive. You will be able to select points by clicking
them. When you click on any point, information about the compound represented by that point will
be displayed. This includes the cluster ID, cluster size, compound index in the SDF and compound
name if any. You can then perform another selection. To exit this process, right click on X11 device
or press ESC in non-X11 device (Quartz and Windows).

By default, *dimensions’ is set to 2, and the built-in "plot” function will be used for plotting. If you
need to do 3-Dimensional plotting, set ’dimensions’ to 3, and pass the returned value to 3D plot
utilities, such as ’scatterplot3d’ or 'rggobi’. This package does not perform 3D plot on its own.

Value

This function returns a data frame of MDS coordinates and clustering result. This value can be
passed to 3D plot utilities such as ’scatterplot3d’ and "rggobi’.

The last column of the output gives whether the compounds have been clicked in the interactive
mode.
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Author(s)
Y. Eddie Cao

See Also

cmp.parse, cmp.cluster, cluster.sizestat

Examples

## Load sample SD file
# data(sdfsample); sdfset <- sdfsample

## Generate atom pair descriptor database for searching
# apset <- sdf2ap(sdfset)

## Loads same atom pair sample data set provided by library
data(apset)
db <- apset

## cluster db with 2 cutoffs
clusters <- cmp.cluster(db, cutoff=c(0.5, 0.4))

## Return size stats
sizestat <- cluster.sizestat(clusters)

## Visualize results, using a cutoff of 3, write to file 'test.eps'
coord <- cluster.visualize(db, clusters, 2, non.interactive="test.eps")

## Not run:
## visualize it in interactive mode, using a cutoff of 3 and the 2nd clustering result
coord <- cluster.visualize(db, clusters, cluster.result=2, 3)

## 3D visualization with scatterplot3d

coord <- cluster.visualize(db, clusters, 3, dimensions=3)
library(scatterplot3d)

scatterplot3d(coord)

## End(Not run)

cmp.cluster cluster compounds using a descriptor database

Description

’cmp.cluster’ uses structural compound descriptors and clusters the compounds based on their pair-
wise distances. cmp.cluster uses single linkage to measure distance between clusters when it
merges clusters. It accepts both a single cutoff and a cutoff vector. By using a cutoff vector, it can
generate results similar to hierarchical clustering after tree cutting.
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Usage
cmp.cluster(db, cutoff, is.similarity = TRUE, save.distances = FALSE,
use.distances = NULL, quiet = FALSE, ...)
Arguments
db The desciptor database, in the format returned by ’cmp.parse’.
cutoff The clustering cutoff. Can be a single value or a vector. The cutoff gives the
maximum distance between two compounds in order to group them in the same
cluster.

is.similarity Set when the cutoff supplied is a similarity cutoff. This cutoff is the minimum
similarity value between two compounds such that they will be grouped in the
same cluster.

save.distances whether to save distance for future clustering. See details below.
use.distances Supply pre-computed distance matrix.
quiet Whether to suppress the progress information.

Further arguments to be passed to cmp.similarity.

Details

cmp.cluster will compute distances on the fly if use.distances is not set. Furthermore, if
save.distances is not set, the distance values computed will never be stored and any distance
between two compounds is guaranteed not to be computed twice. Using this method, cmp.cluster
can deal with large databases when a distance matrix in memory is not feasible. The speed of the
clustering function should be slowed when using a transient distance calculation.

When save.distances is set, cmp.cluster will be forced to compute the distance matrix and save
it in memory before the clustering. This is useful when additional clusterings are required in the
future without re-computed the distance matrix. Set save.distances to TRUE if you only want to
force the clustering to use this 2-step approach; otherwise, set it to the filename under which you
want the distance matrix to be saved. After you save it, when you need to reuse the distance matrix,
you can ’load’ it, and supply it to cmp.cluster via the use.distances argument.

cmp. cluster supports a vector of several cutoffs. When you have multiple cutoffs, cmp.cluster
still guarantees that pairwise distances will never be recomputed, and no copy of distances is kept
in memory. It is guaranteed to be as fast as calling cmp.cluster with a single cutoff that results in
the longest processing time, plus some small overhead linear in processing time.

Value

Returns a data. frame. Besides a variable giving compound ID, each of the other variables in the
data frame will either give the cluster IDs of compounds under some clustering cutoff, or the size
of clusters that the compounds belong to. When N cutoffs are given, in total 2*N+1 variables will
be generated, with N of them giving the cluster ID of each compound under each of the N cutoffs,
and the other N of them giving the cluster size under each of the N cutoffs. The rows are sorted by
cluster sizes.
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Author(s)
Y. Eddie Cao, Li-Chang Cheng

See Also

cmp.parsel, cmp.parse, cmp.search, cmp.similarity

Examples

## Load sample SD file
# data(sdfsample); sdfset <- sdfsample

## Generate atom pair descriptor database for searching
# apset <- sdf2ap(sdfset)

## Loads atom pair and atom pair fingerprint samples provided by library
data(apset)

db <- apset

fpset <- desc2fp(apset)

## Clustering of 'APset' object with multiple cutoffs
clusters <- cmp.cluster(db=apset, cutoff=c(0.5, 0.85))

## Clustering of 'FPset' object with multiple cutoffs. This method allows to call
## various similarity methods provided by the fpSim function.
clusters2 <- cmp.cluster(fpset, cutoff=c(0.5, 0.7), method="Tversky")

## Saves the distance matrix before clustering:

clusters <- cmp.cluster(db, cutoff=0.65, save.distances="distmat.rda")
# Later one reload the matrix and pass it the clustering function.
load("distmat.rda")

clusters <- cmp.cluster(db, cutoff=0.60, use.distances=distmat)

cmp.duplicated quickly detect compound duplication in a descriptor database

Description

’cmp.duplicated’ detects duplicated compounds from a descriptor database generated by ’cmp.parse’.
Two compounds are said to duplicate each other when their descriptors are the same.

Usage
cmp.duplicated(db, sort = FALSE, type=1)
Arguments
db The desciptor database, in the format returned by *cmp.parse’.
sort Whether to sort the descriptors for a compound. See details.

type Returns results as vector (type=1) or data frame (type=2).
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Details

’cmp.duplicated’ will take the descriptors in the descriptor database, concatenate all descriptors for
the same compound into a string, and use this string as the identification of a compound. If two
compounds share the same identification string, they are said to duplicate each other.

’cmp.duplicated’ assume the the database passed in as argument to follow the format generated by
’cmp.parse’. That is, ’db’ is a list, ’db$descdb’ is a list, and each entry of db$descdb’ is an array of
numeric values that give descriptors for one compound.

By default, ’cmp.duplicated’ will assume the descriptors for a compound is already sorted. That is
each entry in *db\$descdb’ is a sorted array. This is true for database generated by cmp.parse’. If
you generate the database using some other tools, you might want to enable sorting.

Value

Returns a logic array, telling whether a compound in the database is a duplication of a compound
appearing before this one. For example, if the i-th element of the array is TRUE, it means that the
i-th compound in the database is a duplication of a compound listed before this compound in the
database.

The returned array can be used to remove duplication. Simply use it to index the descriptor database.

If you are interested in what compound is duplicated, you can do a search in the database with cutoff
setto 1.

Author(s)
Y. Eddie Cao

See Also

cmp.parse, cmp. search

Examples

## Load sample SD file
# data(sdfsample); sdfset <- sdfsample

## Generate atom pair descriptor database for searching
# apset <- sdf2ap(sdfset)

## Loads same atom pair sample data set provided by library
data(apset)
db <- apset

## Manually create a duplication (here compound 1 and 10)
db[10] <- db[1]

## Find duplication

dup <- cmp.duplicated(db)
dup

cid(db[dupl)
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## Remove all duplications
db <- db[!dup]

cmp.parse Parse an SDF file and compute descriptors for all compounds

Description

cmp.parse’ will take a SDF file, parse all the compounds encoded, compute their atom-pair descrip-
tors, and return the descriptors as a list. The list contains two names, ’descdb’ and ’cids’. ’descdb’
is a vector of descriptors, and ’cids’ is a list of names of compounds found in the SDF file. The
returned list is usually used to a database, against which similarity search can be performed using
the ’search’ function. These two functions will parse all compounds in the SDF file. To parse a
single compound, use ’cmp.parsel’ instead.

Usage

cmp.parse(filename)

Arguments

filename The file name of the SDF file

Details

The ’filename’ can be a local file or an URL. It is interactive, and will display the parsing progress.
Since the parsing will also compute of atom-pair descriptors, it is time consuming. You will be
reminded to save the parsing result for future use at the end of parsing.

’type’ is either set to the default value 'normal’ or ’file-backed’. When set to ’file-backed’, the
parsing work will be delegated to a separate package called ’ChemmineRpp’, and the database will
be stored in a file instead of in the primary memory. Therefore, ’file-backed’ mode can handle
larger compound libraries. In ’file-backed’ mode, ’dbname’ will be used to name the database file.
A suffix *.cdb’ will be appended to the given name.

The type of the database is transparent to other part of the package. For example, calling *cmp.search’
against a database in ’file-backed” mode will cause the package to load the descriptors from the
database file progressively.

Value

Return a list that can be used as the database against which similarity search can be performed. The
’search’ and ’cmp.cluster’ functions both expect a database returned by ’cmp.parse’.
descdb A vector containing the descriptors for all the compounds.

cids Compound ID information found in the SDF file. It is the first line of SDF of a
compound.
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Author(s)
Y. Eddie Cao, Li-Chang Cheng

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem Inf
Comput Sci.

See Also

cmp.parsel, cmp.search, cmp.cluster, cmp.similarity

Examples

## Load sample SD file
# data(sdfsample); sdfset <- sdfsample

## Generate atom pair descriptor database for searching
# apset <- sdf2ap(sdfset)

## Loads same atom pair sample data set provided by library
data(apset)

db <- apset

# (optinally) save the db for future use

save(db, file="db.rda", compress=TRUE)

# ...

# later, in a separate session, you can load it back:
load("db.rda")

cmp.parsel Parsing an SDF file and calculate the descriptor for one compound

Description

Read SDF information from an SDF file or connection, parse the first compound, and calculate
the descriptor for that compound. The returned descriptor can be added to database returned
by ’cmp.parse’ or be used as the query structure when calling ’search’. This function will only
parse one compound and return only the descriptor. To parse all compounds in an SDF file, use
’cmp.parse’.

Usage

cmp.parsel(filename)

Arguments

filename The file name of the SDF file or a URL or a connection.
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Details

cmp.parsel’ can take a file name or a URL or a connection. When a connection is used, the current
line must be the first line of SDF of the compound to be parsed. cmp.parsel’ will skip the header
and parse from the 4th line. Therefore, the compound ID information will be skipped. After the
parsing is done, if ’filename’ is a connection, it will then point to the line after the connection table
of SDF. You can use some other procedure to parse the annotation block.

Value

Return the descriptor, which is encoded as a vector.

Author(s)
Y. Eddie Cao, Li-Chang Cheng

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem Inf
Comput Sci.

See Also

cmp.parse, cmp.search, cmp.cluster, cmp.similarity

Examples

# load an SDF file from web and parse it
## Not run: structure <- cmp.parsel("http://bioweb.ucr.edu/ChemMineV2/compound/Aurora/b32:NNQS2MBRHAZTI===/sdf")

cmp.search Search a descriptor database for compounds similar to query com-
pound

Description

Given descriptor of a query compound and a database of compound descriptors, search for com-
pounds that are similar to the query compound. User can limit the output by supplying a cutoff
similarity score or a cutoff that limits the number of returned compounds. The function can also
return the scores together with the compounds.

Usage

cmp.search(db, query, type=1, cutoff = 0.5, return.score = FALSE, quiet = FALSE,
mode = 1,visualize = FALSE, visualize.browse = TRUE, visualize.query = NULL)
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Arguments
db The compound descriptor database returned by ’cmp.parse’.
query The query descriptor, which is usually returned by cmp.parsel’.
type Returns results in form of position indices (type=1), named vector with com-
pound IDs (type=2) or data frame (type=3).
cutoff The cutoff similarity (when cutoff <= 1) or the number of maximum compounds

to be returned (when cutoff > 1).

return.score Whether to return similarity scores. If set to TRUE, a data frame will be re-
turned; otherwise, only the compounds’ indices in the database will be returned
in the order of decreasing scores.

quiet Whether to disable progress information.
mode Mode used when computing similarity scores. This value is passed to ’cmp.similarity’.
visualize

visualize.browse

visualize.query

Details

’cmp.search’ will go through all the compound descriptors in the database and calculate the simi-
larity between the query compound and compounds in the database. When cutoff similarity score
is set, compounds having a similarity score higher than the cutoff will be returned. When maxi-
mum number of compounds to return is set to N via ’cutoff’, the compounds having the highest N
similarity scores will be returned.

Value

When ’return.score’ is set to FALSE, a vector of matching compounds’ indices in the database will
be returned. Otherwise, a data frame will be returned:

ids The indices of matching compounds in the database.
scores The similarity scores between the matching compounds and the query com-
pound
Author(s)

Y. Eddie Cao, Li-Chang Cheng

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem Inf
Comput Sci.

See Also

cmp.parsel, cmp.parse, cmp.search, cmp.cluster, cmp.similarity, sdf.visualize
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Examples

## Load sample SD file
# data(sdfsample); sdfset <- sdfsample

## Generate atom pair descriptor database for searching
# apset <- sdf2ap(sdfset)

## Loads same atom pair sample data set provided by library
data(apset)

db <- apset

query <- db[1]

## Ooptinally, save the db for future use
save(db, file="db.rda", compress=TRUE)

## Search for similar compounds using similarity cutoff
cmp.search(db, query, cutoff=0.2, type=1) # returns index
cmp.search(db, query, cutoff=0.2, type=2) # returns named vector
cmp.search(db, query, cutoff=0.2, type=3) # returns data frame

## in the next session, you may use load a saved db and do the search:
load("db.rda")

cmp.search(db, query, cutoff=3)

## you may also use the loaded db to do clustering:

cmp.cluster(db, cutoff=0.35)

cmp.similarity Compute similarity between two compounds using their descriptors

Description

Given descriptors for two compounds, *cmp.similarity’ returns the similarity measure between the
two compounds.

Usage

cmp.similarity(a, b, mode = 1, worst = 0)

Arguments
a Descriptor of the first compound.
b Descriptor of the second compound.
mode Mode used when computing the distance. See details below.
worst The worst value you are expecting. If *cmp.similarity’ finds the upper bound of

similarity is worse than it, it will return a 0 and potentially save some computa-
tion.
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Details

’cmp.similarity’ uses descriptor information generated by ’cmp.parse’ and cmp.parsel’. Basically,
a descriptor is a vector of numbers. The vector actually reprsents the set of descriptors of structural
fragment. Similarity measurement uses Tanimoto coefficient.

’cmp.similarity’ supports 3 different modes. In mode 1, normal Tanimoto coefficient is used. In
mode 2, it uses the size of descriptor intersection over the size of the smaller descriptor, mainly to
deal with compounds that vary a lot in size. In mode 3, it is similar to mode 2, except that it raises
the similarity to the power 3 to penalize small values. When mode is 0, ’cmp.similarity” will select
mode 1 or mode 3, based on the size differences between the two descriptors.

When ’cmp.similarity’ is used in searching compounds with a threshold similarity value, or in
clustering with a cutoff distance, the threshold similarity and cutoff distance can be used to decide a
worse’ value. ’cmp.similarity’ can compute an upper bound of similarity easier, and by comparing
this upper bound to the *worst’ value, it can potentially skip the real computation if it finds the
similarity will be below the *worst’ value and will be useless to the caller.

Value

Return a numeric value between 0 and 1 which gives the similarity between the two compounds.

Author(s)
Y. Eddie Cao, Li-Chang Cheng

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem Inf
Comput Sci.

Peter Willett (1998). "Chemical Similarity Searching", in J. Chem. Inf. Comput. Sci.
See Also

cmp.parsel, cmp.parse, cmp.search, cmp.cluster

Examples

## Load sample SD file
# data(sdfsample); sdfset <- sdfsample

## Generate atom pair descriptor database for searching
# apset <- sdf2ap(sdfset)

## Loads same atom pair sample data set provided by library
data(apset)

## Compute similarities among two compounds
cmp.similarity(apset[1], apset[2])

## Search apset database with a query compound
cmp.search(apset, apset[1], type=3, cutoff = 0.3)
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conMA Bond Matrices
Description
Creates a bond matrix from SDF and SDFset objects. The matrix contains the atom labels in the row
and column titles and the bond types are given in the data part as follows: O is no connection, 1 is a
single bond, 2 is a double bond and 3 is a triple bond.
Usage
conMA(x, exclude = "none")
Arguments
X SDF or SDFset containers
exclude if exclude="none", then all atoms will be considered in the resulting connection
table; if exclude=c("H"), then the H atoms will be excluded. Any number
of atom labels to be excluded can be passed on to this argument in form of a
character vector.
Details
Value
If x is of class SDF, then a single bond matrix is returned. If x is of class SDFset, then a 1ist of
matrices is returned that has the same length as x.
Author(s)
Thomas Girke
References
See Also

Functions: bonds

Class: SDF and SDFset
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Examples

## Instances of SDFset class
data(sdfsample)
sdfset <- sdfsample

## Create bond matrix for first two molecules in sdfset
conMA(sdfset[1:2], exclude=c("H"))

## Return bond matrix for first molecule and plot its structure with atom numbering
conMA(sdfset[[1]], exclude=c("H"))
plot(sdfset[1], atomnum = TRUE, noHbonds=FALSE , no_print_atoms = "", atomcex=0.8)

## Return number of non-H bonds for each atom
rowSums (conMA(sdfset[[1]], exclude=c("H")))

connections Database Connections

Description

Get a connection to one of the pre-build compound databases. The DrugBank database is distributed
in the ChemmineDrugs package.

The DUD database will be downloaded the first time it is called. It will download a 1.8GB zipped
file which will expand to abut 9GB. A directory to store the database in can be passed to the DUD ()
function.

Usage

DUD(destinationDir=".")

DrugBank ()

Arguments

destinationDir The directory to store the downloaded DUD database in.

Value

A connection object to the ether the DUD or DrugBank database. This object must be passed to
other functions which make use of the connection.

Author(s)

Kevin Horan

Examples

dbConn = DrugBank()



44 datablock

datablock Return data block

Description

Returns data block(s) from an object of class SDF or SDFset.

Usage
datablock(x)

datablocktag(x, tag)

Arguments

X object of class SDF or SDFset

tag numeric position (index) or character name of entry in data block vector
Details
Value

named character vector if SDF is provided or list of named character vectors if SDFset is
provided

Author(s)
Thomas Girke

References

See Also

atomblock, atomcount, bondblock, header, cid, sdfid

Examples

## SDF/SDFset instances
data(sdfsample)

sdfset <- sdfsample

sdf <- sdfset[[1]]

## Extract data block
datablock(sdf)
datablock(sdfset[1:41)
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datablocktag(sdfset, tag="PUBCHEM_OPENEYE_CAN_SMILES")

## Replacement methods

sdfset[[1]I[[1]I[1] <- "test”

sdfset[[1]]

datablock(sdfset)[1] <- datablock(sdfset[2])
view(sdfset[1:2])

## Example for injecting a custom matrix/data frame into the data block of an
## SDFset and then writing it to an SD file

props <- data.frame(MF=MF(sdfset), MW=MW(sdfset), atomcountMA(sdfset))
datablock(sdfset) <- props

view(sdfset[1:4])

# write.SDF(sdfset[1:4], file="sub.sdf"”, sig=TRUE, cid=TRUE)

datablock2ma SDF data blocks to matrix

Description

Convert data blocks in SDFset to character matrix with datablock2ma, then store its numeric
columns as numeric matrix and its character columns as character matrix.

Usage
datablock2ma(datablocklist, cleanup = " \\(.*", ...)

splitNumChar(blockmatrix)

Arguments

datablocklist 1ist of data block vectors; can be created with datablock(sdfset)
blockmatrix matrix returned by datablock2ma

cleanup character pattern to be used to clean up the name fields of the data block
vectors; the exact pattern matches are replaced by nothing (deleted).

option to pass on additional arguments

Details

Value

datablock2ma character matrix

splitNumChar list with two components, a numeric matrix and a character matrix
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Author(s)
Thomas Girke

References

See Also

Classes: SDFset

Examples

## SDFset instance
data(sdfsample)
sdfset <- sdfsample

# Convert data block to matrix
blockmatrix <- datablock2ma(datablocklist=datablock(sdfset))
blockmatrix[1:4, 1:4]

# Split matrix to numeric matrix and character matrix
numchar <- splitNumChar(blockmatrix=blockmatrix)
names (numchar)

numchar[[111[1:4,]

numchar[[2]1[1:4,]

db.explain Explain an atom-pair descriptor or an array of atom-pair descriptors

Description
’db.explain’ will take an atom-pair descriptor in numeric or a set of such descriptors, and interpret
what they represent in a more human readable way.

Usage
db.explain(desc)

Arguments

desc The descriptor or the array/vector of descriptors

Details

’desc’ can be a single numeric giving a single descriptor or can be any container data type, such as
vector or array, such that ’length(desc)’ returns 2 or larger.
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Value

Return a character vector describing the descriptors.

See Also

cmp.parse

Examples

## Load sample SD file
# data(sdfsample); sdfset <- sdfsample

## Generate atom pair descriptor database for searching
# apset <- sdf2ap(sdfset)

## Loads same atom pair sample data set provided by library
data(apset)
db <- apset

## Return atom pairs of first compound in human readable format
db.explain(db[1])

db.subset Subset a descriptor database and return a sub-database for the se-
lected compounds

Description

’db.subset’ will take a descriptor database generated by "cmp.parse’ and an array of indecies, and
return a new database for compounds corresponding to these indecies. The returned value is a
descriptor database as returned by the cmp. parse function.

Usage
db.subset(db, cmps)

Arguments
db The database generated by ’cmp.parse’
cmps An array of indecies that correspond to a set of selected compounds from the
database
Details

’db.subset’ creates a sub-database from ’db’ by only including infomration that is relevant to com-
pounds indexed by "cmps’.
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Value
Return a descriptor database for the selected compounds. The format of the database is compatible
with the one returned by cmp. parse.

See Also

cmp.parse, sdf.subset

Examples

## Note: this functionality has become obsolete since the introduction of the
## 'apset' S4 class.

## Load sample SD file
# data(sdfsample); sdfset <- sdfsample

## Generate atom pair descriptor database for searching
# apset <- sdf2ap(sdfset)

## Loads same atom pair sample data set provided by library
data(apset)

db <- apset

olddb <- apset2descdb(db)

## Create a sub-database for the 1st and 2nd compound in that SDF
db_sub <- db.subset(olddb, c(1, 2))

dbTransaction DB Transaction

Description
Run any db statements inside a transaction. If any error is raised the transaction will be rolled back,
otherwise it will be committed at the end.

Usage

dbTransaction(conn, expr)

Arguments
conn A database connection object, such as is returned by initDb.
expr Any block of code.

Value

The value of the given block of code will be returned upon successfully commiting the transaction.
Otherwise an error will be raised.
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Author(s)

Kevin Horan

Examples

conn = initDb("test15.db")
dbTransaction(conn,{

# any db code here
»

desc2fp Fingerprints from descriptor vectors

Description

Generates fingerprints from descriptor vectors such as atom pairs stored in APset or list con-
tainers. The obtained fingerprints can be used for structure similarity comparisons, searching and
clustering. Due to their compact size, computations on fingerprints are often more time and memory
efficient than on their much more complex atom pair counterparts.

Usage

desc2fp(x, descnames=1024, type = "FPset")

Arguments
X Object of classe APset or 1list of vectors
descnames Descriptor set to consider for fingerprint encoding. If a single value from 1-
4096 is provided then the function uses the corresponding number of the most
frequent atom pairs stored in the apfp data set provided by the package. Al-
ternatively, one can provide here any custom atom pair selection in form of a
character vector.
type return fingerprint set as FPset, matrix or character vector
Details
Value

matrix or character vectors

Author(s)
Thomas Girke
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References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

See Also

Functions: sdf2ap, SDF2apcmp, apset2descdb, cmp.search, cmp.similarity

Related classes: SDF, SDFset, SDFstr, APset.

Examples

## Instance of SDFset class
data(sdfsample)
sdfset <- sdfsample[1:10]

## Compute atom pair library
apset <- sdf2ap(sdfset)

## Compute atom pair fingerprint matrix using internal atom pair
## selection containing 4096 most common atom pairs in DrugBank.
## For details see ?apfp. The following example uses from this
## set the 1024 most frequent atom pairs:

fpset <- desc2fp(x=apset, descnames=1024, type="FPset")

## Alternatively, one can provide any custom atom pair selection. Here
## 1024 most common ones in apset object.

fpset1024 <- names(rev(sort(table(unlist(as(apset, "list")))))[1:1024])
fpset2 <- desc2fp(x=apset, descnames=fpset1024, type="FPset")

## A more compact way of storing fingerprints is as character values
fpchar <- desc2fp(x=apset, descnames=1024, type="character")

## Convert character fingerprints back to FPset or matrix
fpset <- as(fpchar, "FPset")
fpma <- as.matrix(fpset)

## Similarity searching returning Tanimoto similarity coefficients
fpSim(x=fpset[1], y=fpset)

## Clustering example

simMAap <- sapply(cid(fpset), function(x) fpSim(x=fpset[x], fpset, sorted=FALSE))
hc <- hclust(as.dist(1-simMAap), method="single")

plot(as.dendrogram(hc), edgePar=list(col=4, lwd=2), horiz=TRUE)

draw_sdf draw_sdf
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Description
Draws an sdf object in the 2D plane using ggplot2 library. Permits customization of bond colors
and atom colors.
Usage
draw_sdf (sdf, filename = "test.jpg", alpha_edge = 0.5, alpha_node = 1, numbered = FALSE, font_size =5,

Arguments

sdf An instance of a SDF or list of SDFs

filename Filename to save image to. Defaults to ’test.jpg’. If set to NULL, does not save
image.

alpha_edge alpha of bonds in your image. Defaults to 0.5. 0 is fully transparent, 1 is fully
opaque.

alpha_node alpha of atoms in your image. Defaults to 1.0.

numbered If 1 or TRUE, displays numbering of atoms at their location. If 2, displays a
second numbering style.

font_size Controls size of text to be displayed at atom locations. Beware when plotting

multiple SDFs in one image. Ggplot will still scale fonts as if text is being
plotted in one image.
node_vertical_offset
Upward shift of atom text. Upward shit is in SDF units, not ggplot units.
bgcolor An rgb(r,g,b,alpha) or similar object. produces a background of the specified

color.
node_background_color

A common color as a text string (e.g. ’white’, ’pink’) or an rgb(r,g,b,alpha).
Draws a filled circle of the color specified before drawing text over each node.

bgraster A readPNG object or a path to an object that can be understood using readPNG.
Will be used as background.

node_policy Mapping that defines how atom strings should be displayed. Simplest would be
c(default’="black’)

edge_policy Mapping that defines how bonds should be displayed. Simplest is c(’default’="black’),
though this will display all Hydrogen bonds as well.

bond_dist_offset
Defines space between double or triple bonds, in SDF units.

fmcsR_sdf A second SDF object to run fmcsR on.

Details
Requires ggplot2. Additional features require grid, gridExtra, fmcsR, or png. Most matrix opera-
tions vectorized.

Value

Returns a ggplot2 object. Calling draw_sdf(...) rather than assigning it will result in R trying to
print a ggplot2 object.
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Author(s)

John A. Sharifi

Examples

library(ChemmineR) # if not already imported
data(sdfsample)
draw_sdf (sdfsample[[1]])

exactMassOB

exactMassOB Exact Mass (Monoisotopic Mass)

Description

Computes the exact mass of each compound given.

Usage

exactMassOB(sdfset)
Arguments

sdfset Any SDFset object.
Value

A vector of mass values.

Author(s)

Kevin Horan

Examples

## Not run:
library(ChemmineR)
data(sdfsample)

mass = exactMassOB(sdfsample)

## End(Not run)
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ExtSDF-class Class "ExtSDF"

Description

This is a subclass of SDF and thus inherits all the slots and methods from that class. It adds a list
of extended attributes for atoms and bonds. These attributes can curretnly only be populated from a
V3000 formatted SDF file.

Objects from the Class
Objects can be created by calls of the form new("ExtSDF", ...). The function read.SDFset will
also return objects of this class if the argument extendedAttributes is set to "TRUE".

Slots

extendedAtomAttributes: Object of class "list”
extendedBondAttributes: Object of class "list”

Methods

getAtomAttr signature(x = "ExtSDF",atomId, tag): Returns the value of the given tag on the
given atom number

getBondAttr signature(x = "ExtSDF",bondId, tag): Returns the value of the given tag on the
given bond number

show signature(object = "ExtSDF"): prints summary of SDF as well as any defined extended
attributes for the atoms or bonds

Author(s)

Kevin Horan

References

SDF V3000 format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Related classes: SDF, SDFset, SDFstr, AP, APset

Examples

showClass("ExtSDF")
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findCompounds Find Compounds in Database

Description

Searches the SQL database using features computed at load time. Each feature used should be
specified in the featureNames parameter. Then a set of filters can be given to search for specific
compounds.

Usage

findCompounds(conn, featureNames, tests)

Arguments
conn A database connection object, such as is returned by initDb.

featureNames A list of all feature names used in any test.

tests A vector of filters that must all be true for a compound to be returned. For
example: c("MW <= 400","RINGS > 3") would return all compounds with a
molecular weight of 400 or less and a more than 3 rings, assuming these fea-
tures exist in the database. The syntax for each test is "<feature name> <SQL
operator> <value>". These tests will simply be concatenated together with "
AND " in-between them and tacked on the end of a WHERE clause of an SQL
statement. So any SQL that will work in that context is fine.

Value

Returns a list of compound ids. The actual compounds can be fetched with getCompounds.

Author(s)

Kevin Horan

See Also

getCompounds

Examples

#tcreate and initialize a new SQLite database
conn = initDb("test1.db")

data(sdfsample)

#load data and compute 3 features: molecular weight, with the MW function,
# and counts for RINGS and AROMATIC, as computed by rings, which returns a data frame itself.
ids=1oadSdf (conn, sdfsample,

function(sdfset)
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data.frame(MW = MW(sdfset), rings(sdfset,type="count”,upper=6, arom=TRUE))
)
#search for compounds with molecular weight less than 200
lightIds = findCompounds(conn, "MW" c("MW < 200"))
MW(getCompounds(conn,lightIds)) # should find one compound with weight 140
unlink("test1.db")

findCompoundsByName Find compound by name

Description

Find the ids of compounds given the names.

Usage

findCompoundsByName(conn, names, keepOrder = FALSE, allowMissing = FALSE)

Arguments
conn A database connection object, such as is returned by initDb.
names A list of names of compounds to search for. The names are those that would be
returned by sdfid. An error will be raised if any names are not found.
keepOrder If true, the order of the output compound ids will be the same as the input names.

This imposes a performance hit that can be significant for large datasets, thus it
should be left FALSE unless needed.

allowMissing  When this is false an error will be raised when names queried were not found in
the database. If true, just those that are found will be returned with no error or
warning.
Value

Returns the compound ids for compounds with the given name. The output order is not guaranteed
unless keepOrder is set to TRUE. An error will be raised if any name cannot be found.

Author(s)

Kevin Horan

Examples

#tcreate and initialize a new SQLite database
conn = initDb("test4.db")

data(sdfsample)

#just load the data with no features or descriptors
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ids=loadSdf (conn, sdfsample)

# find id of compound 650003
findCompoundsByName (conn, c("650003"))
unlink("test4.db")

fingerprintOB Fingerprints from OpenBabel

Description

Generates fingerprints from SDFsets using OpenBabel. The name of the fingerprint can also be
set and can be anything available through OpenBabel. You can see what this list is by executing
"obabel -L fingerprints". Results are returned as an FPset.

Usage

fingerprintOB(sdfSet, fingerprintName)

Arguments
sdfSet Input compounds to generate fingerprints for.
fingerprintName
The name of the fingerprint in Open Babel. A list of available names can be
found by executing "obabel -L fingerprints". Currently that list is: "FP2", "FP3",
"FP4", and "MACCS".
Value

An FPset with an element for each given compound.

Author(s)

Kevin Horan

Examples

## Not run:
data(sdfsample)
fpset = fingerprintOB(sdfsample)

## End(Not run)
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fold Fold

Description

Fold a fingerprint. This takes the second half of the fingerprints and combines with the first half
with a logical ’OR’ operation. The result is a fingerprint with half as many bits.

Usage
fold(x, count = 1, bits = NULL)

gerprint is reduced down to 1 bit before reaching the requested fold count.

Arguments
X The fingerprint(s) to fold. This can be either an FP or an FPset object.
count The number of times to fold this fingerprint. Folding will stop early if the fin-
bits Fold this fingerprint until it is bits bits long. An exception will be thrown if
bits is not reachable.
Value

The new, folded, fingerprint.

Author(s)

Kevin Horan

Examples

fp = new("FP",fp=c(1,0,1,1, 0,0,1,0))
foldedFp = fold(fp,bits=4)

foldCount foldCount

Description

Returns the number of times this fingerprint has been folded.

Usage
foldCount(x)

Arguments

X Either an FP or an FPset object.
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FP-class

Value

Returns the number of times this fingerprint has been folded.

Author(s)

Kevin Horan

Examples

fp = new("FP",fp=c(1,0,1,1, 0,0,1,0))
foldedFp=fold(fp)
fc = foldCount(foldedFp) # ==

FP-class Class "FP"

Description

Container for storing the fingerprint of a single compound. The FPset class is used for storing the
fingerprints of many compounds.

Objects from the Class

Objects can be created by calls of the form new("FP", ...).

Slots

fp: Object of class "numeric”
foldCount: Object of class "numeric”

type: Object of class "character”

Methods

as.character signature(x = "FP"): returns fingerprint as character string
as.numeric signature(x = "FP"): returns fingerprint as numeric vector
as.vector signature(x = "FP"): returns fingerprint as numeric vector

coerce signature(from= "FPset”, to="FP"): coerce FPset component to list with many FP
objects

coerce signature(from= "numeric”, to="FP"): construct FP object from numeric vector
show signature(object = "FP"): prints summary of FP

¢ signature(x = "FP"): concatenates any number of FP objects

fold signature(x ="FP"): fold fingerprint in half

foldCount signature(x = "FP"): number of times this object has been folded

fptype signature(x ="FP"): the type of this fingerprint

numBits signature(x ="FP"): the number of bits in this fingerprint
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Author(s)
Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem
Inf Comput Sci.

See Also
Related classes: SDF, SDFset, SDFstr, AP, APset, FPset.

Examples

showClass("FP")

## Instance of FP class
data(apset)

fpset <- desc2fp(apset)
(fp <- fpset[[1]1]1)

## Class usage

fpc <- as.character(fp)
fpn <- as.numeric(fp)
as(fpn, "FP")
as(fpset[1:4]1, "FP")

fp2bit Convert base 64 fingerprints to binary

Description

The function converts the base 64 encoded PubChem fingerprints to a binary matrix ora character

vector. If applied to a SDFset object, then its data block needs to contain the PubChem fingerprint
information.

Usage

fp2bit(x, type = 3, fptag = "PUBCHEM_CACTVS_SUBSKEYS")

Arguments
X Object of class SDFset, matrix or character
type If set to 1, the results are returned as binary matrix. If set to 2, the results are

returned as character strings in a named vector. If set to 3 (default), the results
are returned as FPset object.

fptag Name tag in SDF data block where the PubChem fingerprints are stored. Default
is set to "PUBCHEM_CACTVS_SUBSKEYS".
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Details

Value

matrix, character or FPset

Author(s)

Thomas Girke

References

See PubChem fingerprint specification at: ftp://ftp.ncbi.nih.gov/pubchem/specifications/pubchem_fingerprints.txt

See Also

Functions: fpSim

Examples

## Load PubChem SDFset sample
data(sdfsample); sdfset <- sdfsample
cid(sdfset) <- sdfid(sdfset)

## Convert base 64 encoded fingerprints to FPset object
fpset <- fp2bit(sdfset)

## Pairwise compound structure comparisons
fpSim(fpset[1], fpset[2])

## Structure similarity searching: x is query and y is fingerprint database
fpSim(x=fpset[1], y=fpset, method="Tanimoto”, cutoff=0, top="all")

## Compute fingerprint based Tanimoto similarity matrix
simMA <- sapply(cid(fpset), function(x) fpSim(x=fpset[x], fpset, sorted=FALSE))

## Hierarchical clustering with simMA as input
hc <- hclust(as.dist(1-simMA), method="single")

## Plot hierarchical clustering tree
plot(as.dendrogram(hc), edgePar=list(col=4, 1lwd=2), horiz=TRUE)
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FPset-class Class "FPset”

Description

Container for storing fingerprints of many compounds. This container is used for structure similarity
searching of compounds.

Objects from the Class

Objects can be created by calls of the form new("FPset”, ...).

Slots

fpma: Object of class "matrix” with compound identifiers stored in row names
foldCount: Object of class "numeric”

type: Object of class "character”

Methods

[ signature(x = "FPset"): subsetting of class with bracket operator

[[ signature(x = "FPset"): returns single component as FP object

[<- signature(x = "FPset"): replacement method for several components
as.character signature(x = "FPset"): returns content as named character vector
as.matrix signature(x = "FPset"): returns content as numeric matrix

¢ signature(x = "FPset"): concatenates any number of FPset containers

cid signature(x = "FPset"): returns all compound identifiers from row names
cid<- signature(x = "FPset"): replacement method for compound identifiers
coerce signature(from="FPset"”, to="FP"): as(fpset, "FP")

coerce signature(from="matrix", to="FPset"): as(fpma, "FPset"”)
coerce signature(from= "character”, to="FPset"): as(fpchar, "FPset")
length signature(x = "FPset"): returns number of entries stored in object

show signature(object = "FPset"): prints summary of FPset

view signature(x = "FPset"): prints extended summary of FPset

fold signature(x = "FPset"): fold fingerprint in half

foldCount signature(x = "FPset"”): number of times this object has been folded
fptype signature(x = "FPset"): the type of these fingerprints

numBits signature(x = "FPset"): the number of bits in these fingerprints

Author(s)
Thomas Girke
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References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem
Inf Comput Sci.

See Also
Related classes: SDF, SDFset, SDFstr, AP, APset, FP.

Examples

showClass("FPset")

## Instance of FPset class
data(apset)

(fpset <- desc2fp(apset))
view(fpset)

## Class usage

fpset[1:4] # behaves like a list

fpset[[1]] # returns FP object

length(fpset) # number of compounds

cid(fpset) # returns compound ids

fpset[1] <- @ # replacement

cid(fpset) <- 1:length(fpset) # replaces compound ids
c(fpset[1:4], fpset[11:14]) # concatenation

## Coerce FPset from/to other objects

fpma <- as.matrix(fpset) # coerces to matrix

fpchar <- as.character(fpset) # coerces to character strings
as(fpma, "FPset")

as(fpchar, "FPset")

## Compound similarity searching with FPset
fpSim(x=fpset[1], y=fpset, method="Tanimoto"”, cutoff=0.4, top=4)

fpSim Fingerprint Search

Description
Search function for fingerprints, such as PubChem or atom pair fingerprints. Enables structure
similarity comparisons, searching and clustering.

Usage

fpSim(x, y, sorted=TRUE, method="Tanimoto",
addone=1, cutoff=0, top="all", alpha=1, beta=1,
parameters=NULL,scoreType="similarity")
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Arguments

X

sorted

method

addone

cutoff

top

alpha

beta

parameters

scoreType

Value
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Query molecule of class numeric, FP or FPset (of length one) containing binary
fingerprint data. Both x and y need to have the same number of bits and should
contain the same type of fingerprints.

Subject molecule(s) of class numeric, matrix, FP or FPset containing binary
fingerprint data.

return results sorted or unsorted

Similarity coefficient to return. One can choose here from several predefined
similarity measures: "Tanimoto" (default), "Euclidean", "Tversky" or "Dice".
Alternatively, one can pass on any custom similarity function containing the
arguments a, b, c and d. For instance, one can define "myfct <- function(a, b, c,
d) c/(alpha*a + beta*b + c)" and then pass on method=myfct. The variable ’c’ is
the number of "on-bits" common in both compounds, ’d’ is the number of "off-
bits" common in both compounds, and ’a’ and ’b’ are the number of "on-bits"
that are unique in one or the other compound, respectively.

The predefined methods will run a C++ version of this function which is about
twice as fast as the R version. When a custom similarity function is given how-
ever, it will fall back to using the R version.

Value to add to numerator and denominator of similarity coefficient to avoid
devision by zero when fingerprint(s) contain only "off-bits" (zeros). Note: if
addone > @ then fingerprints with no "on-bits" will receive the highest similarity
score. Typically, this occurs only with extremely small molecules.

allows to restrict results to hits above a similarity cutoff value; default cutoff=0
returns results for all compounds in y.

allows to restrict number of subject molecules to return; default top="all" re-
turns results for all compounds in y above cutoff value.

Only used when method="Tversky". Allows to specify the weighting variable
“alpha’ of the Tversky index: c/(alpha*a + beta*b + c)

Only used when method="Tversky". Allows to specify the weighting variable
"beta’ of the Tversky index.

Parameters for computing Z-scores, E-values, and p-values. Pass this data if you
want these scores returned. This data can be generated with the genParameters
function.

If using the parameters argument, this argument specified which type of score
the cutoff and sorted arguments should be applied to. It should be one of

non

"similarity" (default), "zscore", "evalue", or "pvalue".

Returns numeric vector with similarity coefficients as values and compound identifiers as names.

Author(s)

Thomas Girke, Kevin Horan
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References

Tanimoto similarity coefficient: Tanimoto TT (1957) IBM Internal Report 17th Nov see also Jaccard
P (1901) Bulletin del la Societe Vaudoisedes Sciences Naturelles 37, 241-272.

PubChem fingerprint specification: ftp://ftp.ncbi.nih.gov/pubchem/specifications/pubchem_fingerprints.txt

See Also

Functions: fp2bit

Examples

## Load PubChem SDFset sample
data(sdfsample); sdfset <- sdfsample
cid(sdfset) <- sdfid(sdfset)

## Convert base 64 encoded fingerprints to character vector or binary matrix
fpset <- fp2bit(sdfset)

## Alternatively, one can use atom pair fingerprints
## Not run:
fpset <- desc2fp(sdf2ap(sdfset))

## End(Not run)

## Pairwise compound structure comparisons
fpSim(x=fpset[1], y=fpset[2], method="Tanimoto")

## Structure similarity searching: x is query and y is fingerprint database
fpSim(x=fpset[1], y=fpset)

## Controlling the output
fpSim(x=fpset[1], y=fpset, method="Tversky", cutoff=0.4, top=4, alpha=0.5, beta=1)

## Use custom distance function
myfct <- function(a, b, c, d) c/(atb+c+d)
fpSim(x=fpset[1], y=fpset, method=myfct)

## Compute fingerprint-based Tanimoto similarity matrix
simMA <- sapply(cid(fpset), function(x) fpSim(x=fpset[x], fpset, sorted=FALSE))

## Hierarchical clustering with simMA as input
hc <- hclust(as.dist(1-simMA), method="single")

## Plot hierarchical clustering tree
plot(as.dendrogram(hc), edgePar=list(col=4, lwd=2), horiz=TRUE)
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fptype JSptype

Description

Returns the type label of this fingerprint

Usage
fptype(x)
Arguments

X Either an FP or an FPset object.

Value

The type label of this fingerprint.

Author(s)

Kevin Horan

Examples

fp = new("FP",fp=c(1,0,1,1, 0,0,1,0),type="testFP")

type = fptype(fp) # == "testFP"
fromNNMatrix From Nearest Neighbor Matrix
Description

Converts a nearest neighbor matrix into a list that can be used with the jarvisPatrick function.

Usage

fromNNMatrix(data, names = rownames(data))

Arguments

data A matrix containing integer valued indexes which represent items to be clus-
tered. The index values contained in the matrix must be smaller than the num-
ber of rows in the matrix. Each row in the matrix represents one item and the
columns are the nearest neighbors of that item.

names The names for each row. The rownames of data will be used if not given.
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Value
A list containing the slots "indexes" and "names".
Author(s)
Kevin Horan
See Also
jarvisPatrick
Examples
data(apset)
nn = nearestNeighbors(apset,cutoff=0.6)
nnMatrix = nn$indexes
cl = jarvisPatrick(fromNNMatrix(nnMatrix),k=2)
genAPDescriptors Generate AP Descriptors
Description
Generates Atom Pair descriptors using a fast C function.
Usage
genAPDescriptors(sdf,uniquePairs=TRUE)
Arguments
sdf A single SDF object.
uniquePairs When the same atom pair occurs more than once in a single compound, should
the names be unique or not? Setting this to true will take slightly longer to
compute.
Value

A vector of descriptors for the compound given. An AP object can be generated as shown in the

example below.

Author(s)

Kevin Horan
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Examples

library(ChemmineR)

data(sdfsample)

sdf = sdfsample[[2]]

ap = new("AP", AP=genAPDescriptors(sdf))

generate3DCoords Generate 3D Coords

Description

Uses Open Babel to compute 3D coordinates given an SDFset with only 2D coordinates.

Usage

generate3DCoords(sdf)

Arguments

sdf Any sdfset object.

Value

A new SDFset in which all compounds have 3D coordinates.

Author(s)

Kevin Horan

Examples

## Not run:
data(sdfsample)
sdf3D = generate3DCoords(sdfsample[1])

## End(Not run)
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genParameters Generate Parameters

Description

Generate statistics from a fingerprint database for use in caluclating z-scores, E-values, and p-values

later.
Usage
genParameters(fpset, similarity = fpSim, sampleFraction =1, ...)
Arguments
fpset The database of fingerprints. Needs to be in the format expected by the similarity
function. For the default similarity function, this would be an FPset.
similarity A function to compute the similarity between two fingerprints. The first ar-
gument should be a single query and the second argument should be a set of
fingerprints.

sampleFraction The fraction of all pairs to use for estimating parameters. See Details section.

Extra parameters will be passed on to the similarity function.

Details

A beta function will be fit to the distribution of similarity scores produced by the given similarity
function. By default, all pairwise similarities will be computed. Since this can be expensive for
large databases, one can also sample pairs to use. This can be done by setting sampleFraction
to the fraction of all pairwise similarities to use. For example, for a database of 100 fingerprints,
there are 10,000 pairs. Setting sampleFraction to 0.5 will result in only 5,000 pairs being used to
estimate the parameters.

Parameters are conditioned on the number of set bits. This function therefore groups fingerprints
by the number of set bits they have and then estimates parameters for each group. A set of global
parameters is also estimated and returned for use in cases where there was not enough data to
estimate the parameters for a particular number of set bits.

Value

A data frame with the following columns:

count The number of similarities used to estimate these parameters
avg the mean

variance the variance

alpha The alpha paramber of the Beta function

beta The beta parameter of the Beta function
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There will be a row for each possible count of 1 bits. So for a database of 1024 bit fingerprints,
there will be 1025 rows for the possible values of 0-1024 bits. There will also be one additional
row at the end with the global parameters. This can be used for cases where there are no parameters
estimated for the current query 1-bit count.

Author(s)

Kevin Horan

References

Pierre Baldi and Ramzi Nasr, "When is Chemical Similarity Significant? The Statistical Distribu-
tion of Chemical Similarity Scores and Its Extreme Values" Journal of Chemical Information and
Modeling 2010 50 (7), 1205-1222

See Also

fpSim

Examples

library(ChemmineR)
data(apset)
fpset=desc2fp(apset) #get a fingerprint database

params = genParameters(fpset)
scores = fpSim(fpset[[1]], fpset,parameters=params,top=10)
getAllCompoundIds Get ALl Compound Ids
Description

Return a vector of every compound id in the given database.

Usage
getAllCompoundIds(conn)

Arguments

conn A database connection object, such as is returned by initDb.

Value

A vector of compound_id numbers

Author(s)

Kevin Horan
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Examples

#create and initialize a new SQLite database
conn = initDb("test1.db")

data(sdfsample)

#load data
ids=1loadSdf (conn, sdfsample)
ids2=getAllCompoundIds(conn)
#ids == ids2

unlink("test1.db")

getAtomAttr getAtomAttr

Description

On V3000 formatted compounds, returns the value of the given tag on the given atom number.

Usage

getAtomAttr(x,atomld, tag)

Arguments
X An SDFset of ExtSDF objects. ExtSDF objects are created with read.SDFset
with extendedAttributes=TRUE when reading V3000 sdf files.
atomId The index of the atom to fetch the tag value from.
tag The name of the tag to fetch the value of on the given atom.
Value

The value of the given tag on the given atom.

Author(s)

Kevin Horan

Examples

## Not run:
getAtomAttr(v3Sdfs, 10, "CHG")

## End(Not run)
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getBondAttr getBondAttr

Description

On V3000 formatted compounds, returns the value of the given tag on the given bond number.

Usage

getBondAttr(x,bondId, tag)

Arguments
X An SDFset of ExtSDF objects. ExtSDF objects are created with read. SDFset
with extendedAttributes=TRUE when reading V3000 sdf files.
bondId The index of the bond to fetch the tag value from.
tag The name of the tag to fetch the value of on the given bond.
Value

The value of the given tag on the given bond.

Author(s)

Kevin Horan

Examples

## Not run:
getBondAttr(v3Sdfs,10,"CFG")

## End(Not run)

getCompoundFeatures Get Compound Features

Description

Get feature values for specific compounds.

Usage

getCompoundFeatures(conn, compoundIds, featureNames, filename = NA, keepOrder = FALSE, allowMissing = F
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Arguments

conn

compoundIds

featureNames

filename

keepOrder

allowMissing

batchSize

Value

getCompoundFeatures

A database connection object, such as is returned by initDb.

A vector of compound_id numbers from this database. These are not compound
names. Features will be fetched for each compound given here.

A vector of features to fetch the value for, for each given compound.

If given, dump the results into a comma seperated values (CSV) file instead
of returning a data frame. This can avoid some potential memory limits when
fetching large sets of data.

Ensure that the output order of values matches the order in which the compound
ids where given. This will make things a little slower, so should only be used
where required.

If false, raise an exception if a compound cannot be found, otherwise just silently
ignore it and return data for whatever compound were found.

The number of compounds to fetch in a single query. If you find your running
out of memory you can try reducing this values, as well as try writing the result
to a file using the filename parameter.

If filename is not given, returns a data frame with the compound_id and any given feature names.
Each row represents one compound. If filename is given a filename then no value is returned, but
the given file is created.

Author(s)

Kevin Horan

Examples

#create and initialize a new SQLite database
conn = initDb("test1.db")

data(sdfsample)

#load data

ids=loadSdf (conn, sdfsample,
function(sdfset)
data.frame(MW = MW(sdfset), rings(sdfset,type="count”,upper=6, arom=TRUE))

)

f = getCompoundFeatures(conn,ids,c("mw",

non

rings"))

unlink("test1.db")
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getCompoundNames Get Compound Names

Description

Fetch the names of the given compound ids, if they exist

Usage

getCompoundNames(conn, compoundIds, keepOrder = FALSE, allowMissing = FALSE)

Arguments
conn A database connection object, such as is returned by initDb.
compoundIds A vector of compound ids.
keepOrder If true, the order of the output compound ids will be the same as the input names.

This imposes a performance hit that can be significant for large datasets, thus it
should be left FALSE unless needed.

allowMissing  When this is false an error will be raised when compound ids queried were not
found in the database. If true, just those that are found will be returned with no
error or warning.
Value
Returns a vector of compound names.The rownames will be the compound ids. Compound ids not
found, or for which a name is not defined, will be represented as NA.
Author(s)

Kevin Horan

Examples

#create and initialize a new SQLite database
conn = initDb("test2.db")

data(sdfsample)

#just load the data with no features or descriptors
ids=loadSdf (conn, sdfsample)

getCompoundNames(conn,ids[1:3])
unlink("test3.db")
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getCompounds Get Compounds From Database

Description
Create SDF objects from the given set of compound ids. Id numbers can be found using the find-
Compounds function.
Usage
getCompounds(conn, compoundIds, filename=NA, keepOrder = FALSE, allowMissing = FALSE)

Arguments
conn A database connection object, such as is returned by initDb.
compoundIds A vector of compound ids, as returned by loadSdf or findCompounds.
filename If given, writes the compounds directly to the file named.
keepOrder If true, the order of the output compound ids will be the same as the input names.

This imposes a performance hit that can be significant for large datasets, thus it
should be left FALSE unless needed.

allowMissing  When this is false an error will be raised when compound ids queried were not
found in the database. If true, just those that are found will be returned with no
error or warning.
Value
An SDFset with the requested compounds or nothing if filename was specified. A warning will be
raised if not all compounds could be found.
Author(s)

Kevin Horan

See Also
loadSdf findCompounds.

Examples

#tcreate and initialize a new SQLite database
conn = initDb("test3.db")

data(sdfsample)

#just load the data with no features or descriptors
ids=1oadSdf (conn, sdfsample)
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#returns a SDFset with 3 compounds
getCompounds(conn, ids[1:3])

unlink("test3.db")

getIds-deprecated Import Compounds from PubChem

Description

Accepts one or more PubChem compound ids and downloads the corresponding compounds from
PubChem Power User Gateway (PUG) returning results in an SDFset container. The ChemMine
Tools web service is used as an intermediate, to translate queries from plain HTTP POST to a PUG
SOAP query.

Usage
getIds(cids)

Arguments

cids A numeric object which contains one or more PubChem cids

Value

SDFset for details see ?"SDFset-class"

Author(s)

Tyler Backman

References

PubChem PUG SOAP: http://pubchem.ncbi.nlm.nih.gov/pug_soap/pug_soap_help.html
Chemmine web service: http://chemmine.ucr.edu

PubChem help: http://pubchem.ncbi.nlm.nih.gov/search/help_search.html

Examples

## Not run:

## fetch 2 compounds from PubChem
compounds <- getIds(c(111,123))
## End(Not run)
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grepSDFset String search in SDFset

Description

Convenience grep function for string searching in SDFset containers.

Usage
grepSDFset(pattern, x, field = "datablock”, mode = "subset”, ignore.case = TRUE, ...)
Arguments
pattern search pattern
X SDFset
field delimits search to specific section in SDF; can be header, atomblock, bondblock
or datablock
mode if mode = "index", then the match positions are returned as vector; if mode =
"subset”, a 1list with SDF components is returned where every entry has at
least one query match
ignore.case TRUE turns off case sensitivity
option to pass on additional arguments
Details
Value
numeric index vector where the name field contains the component positions in the SDF set
and the values the row positions in each sub-component.
list if mode = "subset”
Author(s)

Thomas Girke

References

See Also

Class: SDFset
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Examples

## Instances of SDFset class
data(sdfsample)
sdfset <- sdfsample

## String Searching in SDFset

q <- grepSDFset("65000", sdfset, field="datablock”, mode="subset")
as(q, "SDFset”)

grepSDFset ("65000", sdfset, field="datablock"”, mode="index")

groups Enumeration of Functional Groups and Atom Neighbors

Description
Returns frequency information of functional groups in molecules provided as SDF or SDFset objects.
Alternatively, the function can return for each atom its atom/bond neighbor information.

Usage

groups(x, groups = "fctgroup”, type = "countMA")

Arguments
X SDF or SDFset containers
groups if groups="fctgroup”, frequencies of functional groups are returned; if groups="neighbors”,
atom/bond neighbor information is returned.
type if type="all", then the complete neighbor information is generated for each
atom in a molecule; if type="count", the neighbors are enumerated in a list
and if type="countMA", then the counts of atom neighbors or functional groups
are returned in a frequency matrix.
Details

At this point this function is in an experimental stage.

Value

Author(s)
Thomas Girke

References



78 header

See Also

Examples

## Instances of SDFset class
data(sdfsample)
sdfset <- sdfsample

## Enumerate functional groups
groups(sdfset[1:20], groups="fctgroup”, type="countMA")

## Report atom/bond neighbors

groups(sdfset[1:4], groups="neighbors”, type="countMA")
groups(sdfset[1:4], groups="neighbors"”, type="count")
groups(sdfset[1:4], groups="neighbors", type="all")

header Return header block

Description

Returns header block(s) from an object of class SDF or SDFset.

Usage
header (x)

Arguments

X object of class SDF or SDFset

Details

Value

named character vector if SDF is provided or list of named character vectors if SDFset is
provided

Author(s)
Thomas Girke

References
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See Also

atomblock, atomcount, bondblock, datablock, cid, sdfid

Examples

## SDF/SDFset instances
data(sdfsample)

sdfset <- sdfsample

sdf <- sdfset[[1]]

## Extract header block
header (sdf)
header (sdfset[1:4])

## Replacement methods
sdfset[[1JI[CT1]I[1] <- "test”
sdfset[[1]]

header(sdfset)[1] <- header(sdfset[2])
view(sdfset[1:2])

initDb linitialize SQL Database

Description

This will ensure that the database connection given is ready for use. If it does not find the tables it
needs, it will try to create them.

Usage
initDb(handle)
Arguments
handle This can be either a filename, in which case we assume it is the name of an
SQLite database and use RSQLite to connect to it, or else any DBI Connection.
Value

Returns a connection object that can be used with other database oriented functions.

Author(s)

Kevin Horan

See Also
RSQLite
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Examples

jarvisPatrick

#create and initialize a new SQLite database
conn = initDb("test.db")

jarvisPatrick

Jarvis-Patrick Clustering

Description

Function to perform Jarvis-Patrick clustering. The algorithm requires a nearest neighbor table,
which consists of neighbors for each item in the dataset. This information is then used to join
items into clusters with the following requirements: (a) they are contained in each other’s neigh-
bor list (b) they share at least ’k’ nearest neighbors The nearest neighbor table can be computed
with nearestNeighbors. For standard Jarvis-Patrick clustering, this function takes the number of
neighbors to keep for each item. It also has the option of passing a cutoff similarity value instead of
the number of neighbors. In this mode, all neighbors which meet the cutoff criteria will be included
in the table. This is a setting that is not part of the original Jarvis-Patrick algorithm. It allows to gen-
erate tighter clusters and to minimize some limitations of this method, such as joining completely
unrelated items when clustering small data sets. Other extensions, such as the 1inkage parameter,
can also help improve the clustering quality.

Usage

jarvisPatrick(nnm, k, mode="ala2b", linkage="single")

Arguments

nnm
k

mode

linkage

A nearest neighbor table, as produced by nearestNeighbors.

Minimum number of nearest neighbors two rows (items) in the nearest neighbor
table need to have in common to join them into the same cluster.

If mode = "ala2b"” (default), the clustering is run with both requirements (a) and
(b); if mode = "a1b" then (a) is relaxed to a unidirectional requirement; and if
mode = "b" then only requirement (b) is used. The size of the clusters generated
by the different methods increases in this order: "ala2b" < "alb" < "b". The run
time of method "ala2b" follows a close to linear relationship, while it is nearly
quadratic for the much more exhaustive method "b". Only methods "ala2b" and
"alb" are suitable for clustering very large data sets (e.g. >50,000 items) in a
reasonable amount of time.

Can be one of "single", "average", or "complete”, for single linkage, average
linkage and complete linkage merge requirements, respectively. In the context
of Jarvis-Patrick, average linkage means that at least half of the pairs between
the clusters under consideration must pass the merge requirement. Similarly, for
complete linkage, all pairs must pass the merge requirement. Single linkage is
the normal case for Jarvis-Patrick and just means that at least one pair must meet
the requirement.
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Details

Value
Depending on the setting under the type argument, the function returns the clustering result in a

named vector or a nearest neighbor table as matrix.

Note

Author(s)
Thomas Girke

References

Jarvis RA, Patrick EA (1973) Clustering Using a Similarity Measure Based on Shared Near Neigh-
bors. IEEE Transactions on Computers, C22, 1025-1034. URLSs: http://davide.eynard.it/teaching/2012_PAMI/JP.pdf,
http://www.btluke.com/jpclust.html, http://www.daylight.com/dayhtml/doc/cluster/index.pdf

See Also

Functions: cmp.cluster trimNeighbors nearestNeighbors

Examples

## Load/create sample APset and FPset
data(apset)
fpset <- desc2fp(apset)

## Standard Jarvis-Patrick clustering on APset/FPset objects
jarvisPatrick(nearestNeighbors(apset,numNbrs=6), k=5, mode="ala2b")
jarvisPatrick(nearestNeighbors(fpset,numNbrs=6), k=5, mode="ala2b")

## Jarvis-Patrick clustering only with requirement (b)
jarvisPatrick(nearestNeighbors(fpset,numNbrs=6), k=5, mode="b")

## Modified Jarvis-Patrick clustering with minimum similarity 'cutoff’
## value (here Tanimoto coefficient)
jarvisPatrick(nearestNeighbors(fpset,cutoff=0.6, method="Tanimoto"), k=2 )

## Output nearest neighbor table (matrix)
nnm <- nearestNeighbors(fpset, numNbrs=6)

## Perform clustering on precomputed nearest neighbor table
jarvisPatrick(nnm, k=5)
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jarvisPatrick_c Jarvis Patrick Clustering in C code

Description

This not meant to be used directly, use jarvisPatrick instead. It is exposed so other libraries can
make use of it.

Usage

jarvisPatrick_c(neighbors,minNbrs, fast=TRUE,bothDirections=FALSE,linkage = "single")

Arguments
neighbors A matrix of integers. Non integer matricies will be coerced. Each row represen-
sts one element, indexed 1 to N. The values in row i should be the index value
of the neighbors of i. Thus, each value should itself be a valid row index.
minNbrs The minimum number of common neibhbors needed for two elements to be
merged.
fast If true, only the neibhors given in each row are checked to see if they share

minNbrs neighbors in common. If false, all pairs of elements are compared. For
a matrix of size NxM, the first method yeilds a running time of O(NM), while
the second yeilds a running time of O(N"2).

bothDirections If true, two elements must contain each other in their neighbor list in order to be
merged. If false and fast is true, then only one element must contain the other as
a neighbor. If false and fast is false, than neither element must contain the other
as a neighbor, though in all cases there must still be at least minNbrs neibhros
in common.

linkage See jarvisPatrick for details.

Value

A cluster array with no names.

Author(s)

Kevin Horan
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jobToken-class Class "jobToken"

Description

Container for storing a reference to a remote job ran on the ChemMine Tools web server.

Objects from the Class

Objects can be created by calls of the form new("” jobToken", ...).

Slots

tool_name: Object of class "character”

jobId: Object of class "character”

Methods

show signature(object = "jobToken"): check the status of a launched job

Author(s)
Tyler William H Backman

References

See ChemMine Tools at http://chemmine.ucr.edu.

See Also

Functions: 1launchCMTool, toolDetails, 1istCMTools, result, browseJob, status

Examples

showClass("”jobToken")

## Not run:

## launch a job on the server and obtain jobToken back
job1 <- launchCMTool ("pubchemID2SDF", 2244)

## check status of the job
status(job1)

## obtain results
resultl <- result(job1)

resultil

## End(Not run)
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largestComponent Largest Component

Description
If a single compound in an SDF file contains more than one disconnected component, this function
will return an SDF with only the largest component, removing all other components. This will be
applied to each SDF in the given SDFset.

Usage

largestComponent (sdfSet)

Arguments

sdfSet any SDFset object.

Value

a new SDFset containing only single component compounds.

Author(s)

Kevin Horan

Examples

## Not run:
sdf = smiles2sdf(c("C1l.CCC1C2CC3C4C5(CC(C2C50)N3C10)C6=CC=CC=C6N4C TEST"))
lg = largestComponent(sdf)

## End(Not run)

launchCMTool Launch a Tool on ChemMine Tools

Description

Accepts a tool name (string), input options, and input data to launch a remote web tool on the
ChemMine Tools website.

Usage

launchCMTool (tool_name, input = "", ...)
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Arguments
tool_name A tool name matching verbatim an existing tool name as listed by 1istCMTools.
input Input data in the format required for this tool as listed by 1istCMTools.
Additional options as mentioned by running toolDetails on the tool specified.
Details

By running the function toolDetails on a tool of choice, you can see a pre-generated example
function call for this tool.

Value

jobToken for details see ?"jobToken-class"
Author(s)

Tyler William H Backman
References

See ChemMine Tools at http://chemmine.ucr.edu.

See Also

Functions: toolDetails, 1istCMTools, result, browseJob, status

Examples

## Not run:
## list available tools
listCMTools()

## get detailed instructions on using a tool
toolDetails("Fingerprint Search”)

## download compound 2244 from PubChem
job1 <- launchCMTool ("pubchemID2SDF", 2244)

## check job status and download result
status(job1)
resultl <- result(job1)

## End(Not run)
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listCMTools List all available ChemMine Tools

Description
Connects to the ChemMine Tools web service and obtains a list of all available tools, and their input
and output formats.

Usage

listCMTools()

Value

data.frame A four column data.frame which describes a tool on each row

Author(s)
Tyler William H Backman

References

See ChemMine Tools at http://chemmine.ucr.edu.

See Also

Functions: toolDetails, launchCMTool, result, browseJob, status

Examples

## Not run:
## list available tools
listCMTools()

## get detailed instructions on using a tool
toolDetails("Fingerprint Search")

## download compound 2244 from PubChem
job1 <- launchCMTool ("pubchemID2SDF", 2244)

## check job status and download result
status(job1)
resultl <- result(job1)

## End(Not run)


http://chemmine.ucr.edu
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listFeatures List Features

Description

List the available features in the given database. These features can be used in the findCompounds

function.
Usage
listFeatures(conn)
Arguments
conn Database connection
Value

A vector of character feature names.

Author(s)

Kevin Horan

See Also

findCompounds

Examples

#tcreate and initialize a new SQLite database
conn = initDb("test7.db")

data(sdfsample)

#just load the data with no features or descriptors

ids=loadSdf (conn,sdfsample, fct=function(sdfset) cbind(mw=MW(sdfset)))
listFeatures(conn) # produces c("mw")

unlink("test7.db")
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loadSdf Load SDF and SMILES Data

Description

Load an SDF or SMILES formatted file or SDFSet objects into the database. This will also load
arbitrary features from the data as well as descriptor data. The fct parameter can be used to specify
a function which will compute features which will then be indexed and stored in the database. These
features can later be used to quickly search for compounds. Descriptors can also be computed and
stored in another table.

Usage

loadSdf (conn, sdfFile, fct = function(x) data.frame(), descriptors=function(x) data.frame(descriptors=
Nlines = 50000, startline = 1, restartNlines = 1e+05,updateByName=FALSE)

loadSmiles(conn, smileFile, ...)
Arguments
conn A database connection object, such as is returned by initDb.
sdfFile Either the filename of an SDF formated file, or and SDFSet object.
smileFile The filename of an SMILES formated file.

When calling loadSmiles, any of the arguments for loadSdf can be used and will
be passed to loadSdf internally.

fct A function to extract features from the data. It will be handed an SDFSet gen-
erated from the data being loaded. This may be done in batches, so there is
no guarantee that the given SDFSset will contain the whole dataset. This func-
tion should return a data frame with a column for each feature and a row for
each compound given, and in the same order. Each of these features will be-
come a new, indexed, table in the database which can be used later to search for
compounds. The column name will become the feature name. If not given, no
features are computed.

descriptors This function will also be given an SDFSet object, which may be done in batches.
It should return a data frame with the following two columns: "descriptor" and
"descriptor_type". The "descriptor”" column should contain a string representa-
tion of the descriptor, and "descriptor_type" is the type of the descriptor. Our
convention for atom pair is "ap" and "fp" for finger print. The order should be
maintained. If not given no descriptors are computed.

Nlines When reading data from a file, the number of lines to read at a time. See also
sdfStream.

startline When reading data from a file, the line number to start reading from.See also
sdfStream

restartNlines When reading data from a file and startline > 1, the number of lines to look
forward to find the start of the next compound. See also sdfStream
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updateByName If true we make the assumption that all compounds, both in the existing database
and the given dataset, have unique names. This function will then avoid re-
adding existing, identical compounds, and will update existing compounds with
a new definition if a new compound definition with an existing name is given.

If false, we allow duplicate compound names to exist in the database, though not
duplicate definitions. So identical compounds will not be re-added, but if a new
version of an existing compound is added it will not update the existing one, it
will add the modified one as a completely new compound with a new compound
id.

Details

Arguments to loadSmiles are the same as those to loadSdf. LoadSmiles will convert its input into
an SDFSet and then call loadSdf.

New features can also be added using this function. However, all compounds must have all features
so if new features are added to a new set of compounds, all existing features must be computable
by the fct function given. If new features are detected, all existing compounds will be run through
fct in order to compute the new features for them as well.

For example, if dataset X is loaded with features F1 and F2, and then at a later time we load dataset
Y with new feature F3, the fct function used to load dataset Y must compute and return features
F1, F2, and F3. loadSdf will call fct with both datasets X and Y so that all features are available
for all compounds. If any features are missing an error will be raised.

If just new features are being added, but no new compounds, use the addNewFeatures function.

Value

Returns the compound id numbers of each compound loaded. These can be used to retrieve com-
pounds later. These are id numbers computed by the database and are not extracted from the com-
pound data itself.

Author(s)

Kevin Horan

See Also

sdfStream
Examples

#create and initialize a new SQLite database
conn = initDb("test6.db")

data(sdfsample)
#just load the data with no features or descriptors

ids=1oadSdf (conn, sdfsample)
unlink("test6.db")
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conn = initDb("test5.db")
#load data and compute 3 features: molecular weight, with the MW function,
# and counts for RINGS and AROMATIC, as computed by rings, which returns a data frame itself.
ids=1oadSdf (conn, sdfsample,
function(sdfset)
data.frame(MW = MW(sdfset), rings(sdfset,type="count”,upper=6, arom=TRUE))
)
unlink("test5.db")

makeUnique Uniquify CMP names

Description

Creates unique CMP names by appending a counter to each duplicatation set. The function can be
used for any character vector.

Usage

makeUnique(x, silent = FALSE)

Arguments

X character vector

silent silent = TRUE suppresses message about duplicate count
Details

The function is important to maintain unique compound names in the ID slot of SDFset containers.

Value

character of same length as x but without duplications

Author(s)

Thomas Girke

References

See Also

Functions: cid, sdfid
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Examples

## SDFset instance
data(sdfsample)
sdfset <- sdfsample

## Create unique compound IDs
unique_ids <- makeUnique(sdfid(sdfset))
cid(sdfset) <- unique_ids
cid(sdfset[1:4])

maximallyDissimilar Maximally Dissimilar

Description

Find a set of compounds that are far away from each other.

Usage

maximallyDissimilar(compounds, n, similarity = cmp.similarity)

Arguments
compounds The set of items from which to pick n dissimlar items. This can be a list of
anything that the similarity function will accept. By default this will be an APset.
n The number of dissimilar items to return.
similarity The similarity function to use. By default Tanimoto will be used on APset ob-
jects. Internally, this will be converted to a distance function using 1-similarity(a,b),
so whatever similarity function you use should return a value between 0 and 1.
Details

This will run in O(length(compounds)n) time. Based on the algorithm described in (Higgs,1997).

Value

A vector of indexes of the dissimilar items.

Author(s)

Kevin Horan

References

Higgs, R.E., Bemis, K.G., Watson, [.A., and Wikel, J.H. 1997. Experimental designs for selecting
molecules from large chemical databases. J. Chem. Inf. Comput. Sci. 37, 861-870
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Examples

data(apset)
maximallyDissimilar(apset,10)

nearestNeighbors Nearest Neighbors

Description

Computes the nearest neighbors of descriptors in an FPset or APset object for use with the jarvisPatrick
clustering function. Only one of numNbrs or cutoff should be given, cutoff will take precedence

if both are given. If numNbrs is given, then that many neighbors will be returned for each item in

the set. If cutoff is given, then, for each item X, every neighbor that has a similarity value greater

than or equal to the cutoff will be returned in the neighbor list for X.

Usage
nearestNeighbors(x, numNbrs = NULL, cutoff = NULL, ...)
Arguments
X Either an FPset or an APset.
numNbrs Number of neighbors to find for each item. If not enough neighbors can be found
the matrix will be padded with NA.
cutoff The minimum similarity value an item must have to another item in order to
be included in that items neighbor list. This parameter takes precedence over
numNbrs. This parameter allows to obtain tighter clustering results.
These parameters will be passed into the distance function used, either cmp.similarity
or fpSim, for APset and FPset, respectively.
Value

The return value is a list with the following components:

indexes index values of nearest neighbors, for each item. If cutoff is used, this will be
a list of lists, otherwise it will be a matrix

names The names of each item in the set, as returned by cid

similarities  The similarity values of each neighbor to the item for that row. This will also be
either a list of lists or a matrix, depending on whether or not cutoff was used.
Each similarity values corresponds to the id number in the same position in the
indexes entry

Author(s)

Kevin Horan
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See Also

jarvisPatrick trimNeighbors

Examples

data(sdfsample)

ap = sdf2ap(sdfsample)

nnm = nearestNeighbors(ap,cutoff=0.5)
clustering = jarvisPatrick(nnm,k=2,mode="alb")
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numBits numBits

Description

Returns the number of bits in a fingerprint.

Usage

numBits(x)

Arguments

X Either an FP or an FPset object.

Value

The number of bits in this fingerprint object.

Author(s)

Kevin Horan

Examples

fp = new("FP",fp=c(1,0,1,1, 0,0,1,0))
n = numBits(fp) # == 8
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obmol obmol

Description

Return reference to an OBMol from OpenBabel, if available. Operates on SDF or SDFset objects.

Usage

obmol (x)

Arguments

X object of class SDF or SDFset

Value

A pointer to an OBMol object, or a vector of pointers for an SDFset.

Author(s)

Kevin Horan

See Also

header, atomcount, bondblock, datablock, cid, sdfid

Examples

## SDF/SDFset instances
if (ChemmineR:::.haveOB()){
data(sdfsample)

sdfset <- sdfsample

sdf <- sdfset[[1]]

obmolRef = obmol (sdf)
}
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openBabelPlot Plot compound structures

Description

Plots compound structure(s) for molecules stored in SDF and SDFset containers.

Usage
openBabelPlot (sdfset, height=600, noHbonds = TRUE, regenCoords=FALSE)

Arguments
sdfset Object of class SDFset
height The height of the image in pixels. The generated image is always square, so this
will also be the width.
noHbonds If TRUE, then the C-hydrogens and their bonds - explicitly defined in an SDF -

are excluded from the plot.

regenCoords If ChemmineOB is installed and this option is TRUE, then Open Babel will be
used to re-generate the 2D coords for each compound before plotting it. This
often results in a nicer layout. If you want to save the results of the coord re-
generation, call the regenerateCoords function first yourself and save the re-
sult.

Details

The function openBablePlot depicts a 2D compound structure based on the XY-coordinates spec-
ified in the atom block of an SDF. If more than one compound is given in the SDFset, they will be
arranged in a grid layout.

Author(s)

Kevin Horan

See Also

sdf.visualize

Examples

## Not run:

## Import SDFset sample set
data(sdfsample)

(sdfset <- sdfsample)

## Plot single compound structure
openBabelPlot(sdfset[1])
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## Plot several compounds structures
openBabelPlot (sdfset[1:4])

## End(Not run)

parBatchByIndex Parallel Batch By Index

Description
Takes an index set, breaks it into batches and runs the given function on each batch in parallel using
the given cluster. See batchByIndex for the non-parallel version.

When doing a select were the condition is a large number of ids it is not always possible to include
them in a single SQL statement. This function will break the list of ids into chunks and allow the
indexProcessor to deal with just a small number of ids.

Usage

parBatchByIndex(allIndices, indexProcessor, reduce, cl, batchSize = 1e+05)

Arguments

allIndices A vector of values that will be broken into batches and passed as an argument to
the indexProcessor function.

indexProcessor A function that takes one batch if indices. It is called once for each batch,
possibly in parallel. The return value of this function is collected into a list and
passed to the reduce function after all jobs have finished.

reduce This function is run after all jobs have finished. It is called with a list of return
values from the indexProcessor function runs. The order of batchs is main-
tained. The return value of the reduce function is then returned.

The idea is that this function merges all the results together into one result.

cl A SNOW cluster to run jobs on.
batchSize The size of each batch. The last batch may be smaller than this value.
Value

The return value of the reduce function is returned.

Author(s)

Kevin Horan

See Also

batchByIndex
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Examples

## Not run:

cl = makeCluster(2) # create a SNOW cluster

#function to run a query for each batch of indexes

job = function(indexBatch)

dbGetQuery(dbConnection, paste("SELECT weight FROM table WHERE id IN (",paste(indexBatch,collapse=","),")"))

# function to combine all the results, in this case by summing them up
reduce = function(results) sum(unlist(results))

indices = 1:10000

#run queries in parallel and then sum the results
totalWeight = parBatchByIndex(indices, job,reduce,cl, 1000)

## End(Not run)

plotStruc Plot compound structures

Description

Plots compound structure(s) for molecules stored in SDF and SDFset containers.

Usage

## Convenience plot method
# plot(x, griddim, print_cid=cid(x), print=TRUE, ...)

## Less important for user
plotStruc(sdf, atomcex = 1.2, atomnum = FALSE, no_print_atoms = c("C"),
noHbonds = TRUE, bondspacer = 0.12, colbonds=NULL, bondcol="red",

regenCoords=FALSE, ...)
Arguments
sdf Object of class SDF
atomcex Font size for atom labels
atomnum If TRUE, then the atom numbers are included in the plot. They are the position

numbers of each atom in the atom block of an SDF.
no_print_atoms Excludes specified atoms from being plotted.

noHbonds If TRUE, then the C-hydrogens and their bonds - explicitly defined in an SDF -
are excluded from the plot.

bondspacer Numeric value specifying the plotting distance for double/triple bonds.
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colbonds Highlighting of subgraphs in main structure by providing a numeric vector of
atom numbers, here position index in atom block. The bonds of connected atoms
will be plotted in the color provided under bondcol.

bondcol A character or numeric vector of length one to specify the color to use for sub-
structure highlighting under colbonds.

regenCoords If ChemmineOB is installed and this option is TRUE, then Open Babel will be
used to re-generate the 2D coords for each compound before plotting it. This
often results in a nicer layout. If you want to save the results of the coord re-
generation, call the regenerateCoords function first yourself and save the re-
sult.

Arguments to be passed to/from other methods.

Details

The function plotStruc depicts a single 2D compound structure based on the XY-coordinates
specified in the atom block of an SDF. The generic method plot can be used as a convenient
shorthand to plot one or many structures at once. Both functions depend on the availability of the
XY-coordinates in the source SD file and only 2D (not 3D) representations are plotted correctly.

Additional arguments that can only be passed on to the plot function when supplied with an SDFset
object:

griddim: numeric vector of length two to define the dimensions for arranging several structures in
one plot.

print_cid: character vector for printing custom compound labels. Defaultis print_cid=cid(sdfset).

print: if print=TRUE, then a summary of the SDF content for each supplied compound is printed
to the screen. This behavior is turned off with print=TRUE.

Value

Prints summary of SDF/SDFset to screen and plots their structures to graphics device.

Note

The compound depictions created by this function are not as pretty as the structure representations
generated with the sdf . visualize function. This will be improved in the future.

Author(s)
Thomas Girke

References

See Also

sdf.visualize
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Examples

## Import SDFset sample set
data(sdfsample)
(sdfset <- sdfsample)

## Plot single compound structure
plotStruc(sdfset[[1]1]1)

## Plot several compounds structures
plot(sdfset[1:4])

## Highlighting substructures (here all rings)
myrings <- as.numeric(gsub(”.*_", "", unique(unlist(rings(sdfset[11)))))
plot(sdfset[1], colbonds=myrings)

## Customize plot
plot(sdfset[1:4], griddim=c(2,2), print_cid=letters[1:4], print=FALSE, noHbonds=FALSE)

propOB Properties from OpenBabel

Description

Generates the following descriptors: "cansmi", "cansmiNS", "formula", "HBA1", "HBA2", "HBD",
"InChI", ”InChIKey", HIOgP”, "MR", HMWH, "HF",”title", ”TPSA".
Usage

propOB(sdfSet)

Arguments

sdfSet An SDFset object.

Value
A data frame with a row for each compound in the given data frame and a named column for each
property.

Author(s)

Kevin Horan
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Examples

## Not run:
library(ChemmineR)
data(sdfsample)
propOB(sdfsample)

## End(Not run)

pubchemCidToSDF Import Compounds from PubChem

Description

Accepts one or more PubChem compound ids and downloads the corresponding compounds from
PubChem Power User Gateway (PUG) returning results in an SDFset container.

Usage

pubchemCidToSDF (cids)

Arguments

cids A numeric object which contains one or more PubChem cids
Value

SDFset for details see ?"SDFset-class"
Author(s)

Kevin Horan

References

PubChem PUG REST: https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST_Tutorial.html

Examples

## Not run:

## fetch 2 compounds from PubChem
compounds <- pubchemCidToSDF(c(111,123))
## End(Not run)
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pubchemFPencoding Enncoding of PubChem Fingerprints

Description

Data frame with bit positions and substructure specifications.

Usage

data(pubchemFPencoding)

Format

The format is a data frame with 881 rows and 2 columns.

Source

From: ftp://ftp.ncbi.nih.gov/pubchem/specifications/pubchem_fingerprints.txt

References

See: ftp://ftp.ncbi.nih.gov/pubchem/specifications/pubchem_fingerprints.txt

Examples

data(pubchemFPencoding)
pubchemFPencoding[1:4,]

pubchemInchi2cid Query pubchem by InChl sttrings and return CIDs

Description
Use PubChem API to get CIDs by InChl sttrings. This function sends one request per InChl. For
courtesy, it is not recommended to parellelize this function.

Usage

pubchemInchi2cid(inchis, verbose = TRUE)

Arguments

inchis Character vector of InChl strings

verbose Logical, show verbose information?
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Value

a numeric vector of CIDs with names. Successful requests will have empty names, requests with
invalid InChl strings will have name "invalid" and requests with valid InChlI but not found in Pub-
Chem will have name "not_found"

Author(s)
Le Zhang

References

PubChem PUG REST: https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST_Tutorial.html

Examples

## Not run:
inchis <- ¢(
"InChI=1S/C15H260/c1-9(2)11-6-5-10(3)15-8-7-14(4,16)13(15)12(11)15/h9-13,16H,5-8H2,1-4H3/t10-,11+,12-,13
"InChI=1S/C3H8/c1-3-2/h3H2,1-2H3",
"InChI=1S/C15H20Br202/c1-2-12(17)13-7-3-4-8-14-15(19-13)10-11(18-14)6-5-9-16/h3-4,6,9,11-15H,2,7-8,10H2,
"InChI=abc"
)

pubchemInchi2cid(inchis)

## End(Not run)

pubchemInchikey2sdf Query pubchem by InChlKeys sttrings and get SDF back

Description

Use PubChem API to get CIDs by InChIKeys

Usage
pubchemInchikey2sdf (inchikeys)

Arguments

inchikeys Character vector, InChIKey strings.

Value

a list of 2 items. the first item "sdf_set" is a ‘SDFset‘ object. It contains all queried and successful
SDF infomation. The second item "sdf _index" is a named numeric vector. It records whether all
input InChIKeys have successful returns in the ‘SDFset‘ object. If so, a non-zero value is returned
as the index of where it exists in the ‘SDFset‘ object, if not, 0 is returned.
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Author(s)
Le Zhang

References

PubChem PUG REST: https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST_Tutorial.html

Examples

## Not run:
## fetch 2 compounds from PubChem
inchikeys <- c¢(
"ZFUYDSOHVJVQNB-FZERPYLPSA-N",
"KONGRWVLXLWGDV-BYGOPZEFSA-N",
"AANKDJLVHZQCFG-WLIQWNBFSA-N",
"SNFRINMTRPQQLE-JQWAAABSSA-N"

)
pubchemInchikey2sdf (inchikeys)

## End(Not run)

pubchemName2CID Translate compound name to pubchem compound id

Description

Takes any compound name and queries pubchem to find its pubchem id (CID).

Usage

pubchemName2CID(name)

Arguments

name Any compound name, used to query pubchem to find the compound.

Value

The result is the pubchem compound id. If the name is not found, NA will be returned.

Author(s)

Kevin Horan

References

PubChem PUG REST: https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST_Tutorial.html
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Examples

## Not run:
## fetch 2 compounds from PubChem
cid <- pubchemName2CID("CHEMBL460363")

## End(Not run)

pubchemSDFSearch PubChem Similarity (Fingerprint) Search

Description
Accepts one SDFset container and performs a similarity PubChem fingerprint search, returning hits
in an SDFset container. If the input object contains multiple items, only the first is used as a query.
Usage
pubchemSDFSearch(sdf)

Arguments

sdf A SDFset object which contains one compound
Value

SDFset for details see ?"SDFset-class"
Author(s)

Kevin Horan

References

PubChem PUG REST: https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST_Tutorial.html
SMILES Format: http://en.wikipedia.org/wiki/Chemical_file_format#SMILES

Examples

## Not run:

## get a sample compound
data(sdfsample); sdfset <- sdfsample[2]
## search a compound on PubChem
compounds <- pubchemSDFSearch(sdfset)
## End(Not run)
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pubchemSmilesSearch PubChem Similarity (Fingerprint) SMILES Search

Description

Accepts one SMILE string or SMIset container and performs a PubChem fingerprint search, return-
ing hits in an SDFset container. If the input object contains multiple items, only the first is used as
a query.

Usage

pubchemSmilesSearch(smiles)

Arguments

smiles A SMIset object which contains one compound, or a SMILES string
Value

SDFset for details see ?"SDFset-class"
Author(s)

Kevin Horan

References

PubChem PUG REST: https://pubchem.ncbi.nlm.nih.gov/pug_rest/PUG_REST_Tutorial.html
SMILES Format: http://en.wikipedia.org/wiki/Chemical_file_format#SMILES

Examples

## Not run:

## get a sample compound
data(sdfsample); sdfset <- sdfsample[2]
## search a compound on PubChem
compounds <- pubchemSmilesSearch(sdfset)
## End(Not run)
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read.AP Read Atom Pair/Fingerprint Strings

Description

Function to convert atom pairs (AP) or fingerprints (e.g. AP fingerprints) stored as character strings
to APset or FPset objects (e.g. generated by sdfStream). Alternatively, one can provide the AP or
fingerprint strings in a named character vector.

Usage
read.AP(x, type, colid, isFile = class(x) == "character” & length(x) == 1)
Arguments
X name of file from where to read the AP/APFP character strings; or named char-
acter vector containing the AP/APFP strings
type type="ap" for AP character string input, and type="fp" for fingerprint charac-
ter string input
colid column containing AP/FP character strings if x is a file
isFile Is x a file name or not?
Details
Value

object of class APset or FPset

Author(s)

Thomas Girke

References

See Also

sdf2ap, sdfStream
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Examples

## Load sample data

library(ChemmineR)

data(sdfsample); sdfset <- sdfsample

## Not run: write.SDF(sdfset, "test.sdf"”)

## Define descriptor set in a simple function
desc <- function(sdfset) {
cbind(SDFID=sdfid(sdfset),
# datablock2ma(datablocklist=datablock(sdfset)),
MW=MW(sdfset),
groups(sdfset),
APFP=desc2fp(x=sdf2ap(sdfset), descnames=1024, type="character"),
AP=sdf2ap(sdfset, type="character"”),
rings(sdfset, type="count”, upper=6, arom=TRUE)

}

## Run sdfStream with desc function and write results to a file called 'matrix.xls'
sdfStream(input="test.sdf"”, output="matrix.xls”, fct=desc, Nlines=1000)

## Select molecules from SD File using line index from sdfStream

indexDF <- read.delim("matrix.xls"”, row.names=1)[,1:4]

indexDFsub <- indexDF[indexDF$MW < 400, ] # Selects molecules with MW < 400
sdfset <- read.SDFindex(file="test.sdf"”, index=indexDFsub, type="SDFset")

## Write result directly to SD file without storing larger numbers of molecules in memory
read.SDFindex(file="test.sdf", index=indexDFsub, type="file", outfile="sub.sdf")

## Read AP/APFP strings from file into APset or FP object
apset <- read.AP(x="matrix.xls", type="ap", colid="AP")
apfp <- read.AP(x="matrix.x1ls"”, type="apfp", colid="APFP")

## Alternatively, one can provide the AP/APFP strings in a named character vector
apset <- read.AP(x=sdf2ap(sdfset[1:20], type="character"”), type="ap")
apfp <- read.AP(x=desc2fp(x=sdf2ap(sdfset[1:20]), descnames=1024, type="character"”), type="apfp")

## End(Not run)

read. SDFindex Extract Molecules from SD File by Line Index

Description

Extracts specific molecules from SD File based on a line position index computed by the sdfStream
function.

Usage
read.SDFindex(file, index, type = "SDFset"”, outfile)
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Arguments
file file name of source SD file used to generate index
index data frame containing in the first two columns the start and end positions (index)
of molecules in an SD File, respectively. Typically, this index would be imported
with read. table/read.delim from a tabular descriptor file generated by the
sdfStream function.
type if type="file", the SDF output will be written to a file named as specified
under outfile; if type="SDFset", the SDF data is collected will be a SDFset
container.
outfile name of output file when type="file"
Details
Value

Writes molecules in SDF format to file or collects them in SDFset container.

Author(s)
Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Import/export functions: read. SDFset, read.SDFstr, read.SDFstr, read.SDFset,write.SDFsplit

Examples

## Load sample data

library(ChemmineR)

data(sdfsample); sdfset <- sdfsample

## Not run: write.SDF(sdfset, "test.sdf")

## Define descriptor set in a simple function
desc <- function(sdfset) {
cbind(SDFID=sdfid(sdfset),
# datablock2ma(datablocklist=datablock(sdfset)),
MW=MW(sdfset),
groups(sdfset),
# AP=sdf2ap(sdfset, type="character"),
rings(sdfset, type="count”, upper=6, arom=TRUE)

}

## Run sdfStream with desc function and write results to a file called 'matrix.xls'
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sdfStream(input="test.sdf", output="matrix.xls"”, fct=desc, Nlines=1000)

## Select molecules from SD File using line index from sdfStream

indexDF <- read.delim("matrix.x1s", row.names=1)[,1:4]

indexDFsub <- indexDF[indexDF$MW < 400, ] # Selects molecules with MW < 400
sdfset <- read.SDFindex(file="test.sdf"”, index=indexDFsub, type="SDFset")

## Write result directly to SD file without storing larger numbers of molecules in memory
read.SDFindex(file="test.sdf", index=indexDFsub, type="file"”, outfile="sub.sdf")

## End(Not run)

read.SDFset SD file to SDFset

Description

Imports one or many molecules from an SD/MOL file and stores it in an SDF set container. Supports
both the V2000 and V3000 formats.

Usage
read.SDFset (sdfstr = sdfstr,skipErrors=FALSE, ...)
Arguments
sdfstr path/name to an SD file; alternatively an SDFstr object can be provided
skipErrors If true, molecules which fail to parse will be removed from the output. Other-
wise and error will be thrown and processing of the input will stop.
option to pass on additional arguments. Possible arguments are:
datablock: true or false, whether to include the data fields or not. Defaults to
TRUE.
tail2vec: true or false, whether to return data feilds as a vector or not. Defaults
to TRUE.
extendedAttributes: true or false, whether to parse the extended attributes avail-
able on the V3000 format. Defaults to FALSE. When set to TRUE, the resulting
objects will be of type ExtSDF, which is a sub-class of SDF. However, some
functions, such as plot, may not work with this type right now.
Details
Value

SDFset for details see ?"SDFset-class"
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Author(s)
Thomas Girke

References

SDF format defintion: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Functions: read.SDFstr

Examples

## Write instance of SDFset class to SD file
data(sdfsample); sdfset <- sdfsample
# write.SDF(sdfset[1:4], file="sub.sdf")

## Import SD file
# read.SDFset("sub.sdf")

## Pass on SDFstr object
sdfstr <- as(sdfset, "SDFstr")
read.SDFset(sdfstr)

read.SDFstr SD file to SDFstr

Description

Imports one or many molecules from an SD/MOL file and stores it in an SDFstr container.

Usage

read.SDFstr(sdfstr)

Arguments
sdfstr path/name to an SD file; alternatively one can pass on a character vector con-
taining lines of an SD file
Details
Value

SDFstr for details see ?"SDFstr-class"
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Author(s)
Thomas Girke

References

SDF format defintion: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Functions: read.SDFset

Examples

## Write instance of SDFstr class to SD file
data(sdfsample); sdfset <- sdfsample

sdfstr <- as(sdfset, "SDFstr")

# write.SDF(sdfset[1:4], file="sub.sdf")

## Import SD file
# read.SDFstr("sub.sdf")

## Pass on SDFstr object
sdfstr <- as(sdfset, "SDFstr")
read.SDFset(sdfstr)

read.SMIset SMILES file to SMIset

Description

Imports one or many molecules from a SMILES file and stores content in a SMIset container. The
input file is expected to contain one SMILES string per row with tab-separated compound identifiers
at the end of each line. The compound identifiers are optional.

Usage

read.SMIset(file, removespaces = TRUE, ...)
Arguments

file path/name to a SMILES file

removespaces if set to TRUE spaces will be removed

option to pass on additional arguments

Details
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Value

SMIset for details see ?"SMlIset-class"”

Author(s)
Thomas Girke

References

SMILES (Simplified molecular-input line-entry system) format definition: http://en.wikipedia.org/wiki/Simplified_molecular
input_line-entry_system

See Also

Functions: read.SDFset

Examples

## Write instance of SMIset class to SMILES file
data(smisample); smiset <- smisample
# write.SMI(smiset[1:4], file="sub.smi")

## Import SMILES file
# read.SMIset("sub.smi")

regenerateCoords Re-generate 2D Coordinates

Description
This uses Open Babel (requires ChemmineOB package) to re-generate the 2D coordinates of com-
pounds. This often results in a nicer layout of the compound when plotting.

Usage

regenerateCoords(sdf)

Arguments

sdf A SDF or SDFset object whose coordinates will be re-generated.

Value

Either an SDF object if given an SDF, or else and SDFset.

Author(s)

Kevin Horan
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See Also

plotStruc

Examples

## Not run:
data(sdfsample)
prettySdfset = regenerateCoords(sdfsample[1:4])

## End(Not run)

result Obtain the resulting output data from a ChemMine Tools Job

Description
Accepts a jobToken job as returned by the function launchCMTool and returns the final result. If
the job is still running, the function will loop until the job is ready.

Usage

result(object)

Arguments

object A jobToken job as returned by the function launchCMTool

Value

Output will be in the format specified for this tool, as listed with the 1istCMTools function.

Author(s)

Tyler William H Backman

References

See ChemMine Tools at http://chemmine.ucr.edu.

See Also

Functions: toolDetails, 1istCMTools, launchCMTool, browseJob, status
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Examples

## Not run:
## list available tools
listCMTools()

## get detailed instructions on using a tool
toolDetails("Fingerprint Search")

## download compound 2244 from PubChem
job1 <- launchCMTool ("pubchemID2SDF", 2244)

## check job status and download result
status(job1)
resultl <- result(job1)

## End(Not run)

rings Ring and Aromaticity Perception

Description

Identifies all possible rings in molecules using the exhaustive ring perception algorithm from Hanser
et al (1996). In addition, the function can return all smallest possible rings as well as aromaticity
information for each ring.

Note that large molecules can cause this function to run for an extremely long amount of time. Use
the upper parameter to limit the ring size if run time is a problem.

Usage

rings(x, upper = Inf, type = "all”, arom = FALSE, inner = FALSE)

Arguments
X SDF or SDFset containers
upper allows to specify an upper length limit for ring predictions. The default setting
upper=Inf will return all possible rings. Smaller length limits will reduce the
search space resulting in shortened compute times.
type if type="all", the function returns each ring of a compound as character vector

of atom symbols that are numbered by their position in the atom block of an
SDF/SDFset object. Note: the example below shows how to plot structures
with the same numbering information for visual inspection. If type="arom”,
only aromatic rings are returned, while type="count"” returns the ring and/or
aromaticity counts for each compound in a matrix.
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arom

inner

Details

Value
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if arom="TRUE", ring aromaticity information will be computed. If type="all",
the output is a logical vector where *'TRUE’ values indicate aromatic rings in
the associated ring list. If type="arom", then the function returns only aromatic
rings. A ring is considered aromatic if it meets the following requirements: (i)
all atoms in the ring need to be sp2 hybridized. This means each atom has to
have a double bond or at least one lone electron pair and it needs to be attached
to an sp2 hybridized atom. (ii) In addition, Hueckel’s rule *4n + 2’ needs to be
true, where 'n’ is either zero or any positive integer.

Note that setting arom="TRUE" will also set uppper=Inf.

if inner="TRUE", only inner (smallest possible) rings will be returned. They are
identified by first computing all possible rings and then selecting only the inner
rings. Note: this requires the setting upper=Inf. If only rings below a certain
size limit (e.g. 6) are of interest, then it will be more time efficient to set this
limmit under the upper argument than identifying all smallest rings.

The settings type="all" and type="arom" return lists, and type="count" returns a matrix.

Author(s)
Thomas Girke

References

Hanser, Jauffret and Kaufmann (1996) A New Algorithm for Exhaustive Ring Perception in a
Molecular Graph. Journal of Chemical Information and Computer Sciences, 36: 1146-1152. URL:
http://pubs.acs.org/doi/abs/10.1021/ci960322f

See Also

Examples

## Instances of SDFset class

data(sdfsample)

sdfset <- sdfsample

## Return all possible rings for a single compound
rings(sdfset[1], upper=Inf, type="all"”, arom=FALSE, inner=FALSE)
plot(sdfset[1], print=FALSE, atomnum=TRUE, no_print_atoms="H")

## Return all possible rings for several compounds plus their
## aromaticity information
rings(sdfset[1:4], upper=Inf, type="all"”, arom=TRUE, inner=FALSE)
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## Return rings with no more than 6 atoms
rings(sdfset[1:4], upper=6, type="all"”, arom=TRUE, inner=FALSE)

## Return rings with no more than 6 atoms that are also armomatic
rings(sdfset[1:4], upper=6, type="arom”, arom=TRUE, inner=FALSE)

## Return shortest possible rings (no complex rings)
rings(sdfset[1:4], upper=Inf, type="all"”, arom=TRUE, inner=TRUE)

## Count shortest possible rings
rings(sdfset[1:4], upper=Inf, type="count”, arom=TRUE, inner=TRUE)

SDF-class Class "SDF"

Description

Container for storing every element of a single molecule defined in an SD/MOL file without infor-
mation loss in a list-like container. The import occurs via the SDFstr container class. The header
block is stored as named character vector, the atom/bond blocks as matrices and the data block as
named character vector.

Objects from the Class

Objects can be created by calls of the form new("SDF", ...).

Slots

header: Object of class "character”

atomblock: Object of class "matrix”

bondblock: Object of class "matrix”

datablock: Object of class "character”

obmolRef: Object of class "ExternalReferenceOrNULL"

version: Object of class "character”

Methods

[ signature(x = "SDF"): subsetting of class with bracket operator

[[ signature(x = "SDF"): returns one of the four object components

[[<- signature(x = "SDF"): replacement method for the four sub-components
[<- signature(x = "SDF"): replacement method for the four sub-components
atomblock signature(x = "SDF"): returns atom block as matrix

atomcount signature(x = "SDF"): returns atom frequency

bondblock signature(x = "SDF"): returns bond block as matrix
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obmol signature(x = "SDF"): returns an OBMol pointer

coerce signature(from="character”, to="SDF"): as(character, "SDF")
coerce signature(from="list", to="SDF"): as(list, "SDF")

coerce signature(from="SDF", to = "character"): as(sdf, "character")
coerce signature(from="SDF", to="1list"): as(sdf, "list")

coerce signature(from="SDF", to = "SDFset"): as(sdf, "SDFset")
coerce signature(from="SDF", to="SDFstr"): as(SDF, "SDFstr")
coerce signature(from= "SDFset”, to="SDF"): as(sdfset, "SDF")
datablock signature(x ="SDF"): returns data block as named character vector

datablocktag signature(x = "SDF"): returns data block as named character vector with subset-
ting support

header signature(x = "SDF"): returns header block as named character vector
plot signature(x = "SDF"): plots molecule structure for SDF object

sdf2list signature(x = "SDF"): returns SDF object as list

sdf2str signature(sdf = "SDF"): returns SDF object as character vector
sdfid signature(x = "SDF"): returns molecule ID field from header block

show signature(object = "SDF"): prints summary of SDF

Author(s)
Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also
Related classes: SDFset, SDFstr, AP, APset

Examples

showClass("”SDF")

## Instances of SDF class
data(sdfsample); sdfset <- sdfsample
(sdf <- sdfset[[1]]) # returns first molecule in sdfset as SDF object

## Accessing SDF components
header(sdf); atomblock(sdf); bondblock(sdf); datablock(sdf)
sdfid(sdf)

## Plot molecule structure of SDF
plot(sdf) # plots to R graphics device
# sdf.visualize(sdf) # viewing in browser
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sdf.subset Subset a SDF and return SDF segements for selected compounds

Description

’sdf.subset’ will take a descriptor database generated by *cmp.parse’ and an array of indices, and
return an SDF string consisting of SDFs for compounds corresponding to that list of indices. The
returned value is a character string.

Usage
sdf.subset(db, cmps)

Arguments
db The database generated by ’cmp.parse’
cmps An array of indecies that correspond to a set of selected compounds from the
database
Details

’sdf.subset’ depends on information embedded in the descriptor database returned by ’cmp.parse’.
It also relies on the availability of the original SDF where the database has been generated from.
Basically, when *cmp.parse’ parses the original SDF file, it will store the path of that SDF file as
well as offset information for SDF segment in that file. Therefore, if the SDF file has been changed
or deleted, "sdf.subset’ cannot function properly.

The result SDF will also have names added to compounds if they are not present in the original
SDF.

Value

Return a character string whose content is the concatenation of SDFs for the selected compounds.

See Also

cmp.parse, sdf.visualize

Examples

## Note: this functionality has become obsolete since the introduction of the
## 'SDFset' and 'apset' S4 classes.

# load sample database from web

# db <- cmp.parse("http://bioweb.ucr.edu/ChemMineV2/static/example_db.sdf")
# select SDF for 1st and 2nd compound in that SDF

# sdf_segments <- sdf.subset(db, c(1, 2))

# now sdf_segments containt the 2 SDFs for those 2 compounds
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sdf.visualize Visualize an SDFset online using ChemMine Tools

Description

’sdf.visualize’ will take an SDFset object and send the compounds to the ChemMine Tools website,
for visualization and futher analysis. The results are launched in the users web browser.

Usage

sdf.visualize(sdf)

Arguments

sdf A SDFset object which containing the given compounds

Value
Returns the URL of the webpage containing all the SDFs and 2D images corresponding to the
selected compounds.

Author(s)

Tyler Backman

References

ChemMine Tools web service: http://chemmine.ucr.edu

See Also

cmp.parse, sdf.subset, plotStruc

Examples

## Load sample SD file
data(sdfsample)
sdfset <- sdfsample

## Not run:
## Plot structures using web service ChemMine Tools

sdf.visualize(sdfset[1:4])

## End(Not run)
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sdf2ap

sdf2ap

Atom pair library

Description

Creates from a SDFset a searchable atom pair library that is stored in a container of class APset.

Usage

sdf2ap(sdfset, type = "AP”,uniquePairs=TRUE)

Arguments
sdfset
type

uniquePairs

Details

Value

APset
AP

Author(s)
Thomas Girke

References

Objects of classes SDFset or SDF

if type="AP", the function returns APset/AP objects; if type="character”, it
returns the result as a character vector of length one. The latter is useful for
storing AP data in tabular files.

When the same atom pair occurs more than once in a single compound, should
the names be unique or not? Setting this to true will take slightly longer to
compute.

if input is SDFset
if input is SDF

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf

Comput Sci.

See Also

Functions: desc2fp, SDF2apcmp, apset2descdb, cmp.search, cmp.similarity

Related classes: SDF, SDFset, SDFstr, APset.
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Examples

## Instance of SDFset class
data(sdfsample)

sdfset <- sdfsample[1:50]
sdf <- sdfsample[[1]]

## Compute atom pair library
ap <- sdf2ap(sdf)

(apset <- sdf2ap(sdfset))
view(apset[1:4])

## Return main components of APset object
cid(apset[1:4]) # compound IDs
ap(apset[1:4]) # atom pair descriptors

## Return atom pairs in human readable format
db.explain(apset[1])

## Coerce APset to other objects

apset2descdb(apset) # returns old list-style AP database
tmp <- as(apset, "list"”) # returns list

as(tmp, "APset”) # converst list back to APset

## Compound similarity searching with APset
cmp.search(apset, apset[1], type=3, cutoff=0.2)
plot(sdfset[names(cmp.search(apset, apset[6], type=2, cutoff=0.4))1]1)

## Identify compounds with identical AP sets
cmp.duplicated(apset, type=2)

## Structure similarity clustering
cmp.cluster(db=apset, cutoff = c(0.65, 0.5))[1:20,]

SDF2apcmp SDF to list for AP generation

Description

Returns SDF class as 1ist containing the components for generating atom pair descriptors.

Usage

SDF2apcmp (SDF)

Arguments

SDF SDF
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Details

Value

list with atom and bond components

Author(s)
Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

See Also

Functions: sdf2ap, apset2descdb, cmp.search, cmp.similarity

Examples

## Instances of SDFset class
data(sdfsample)
sdf <- sdfsample[[1]]

## Return list
cmp <- SDF2apcmp(sdf)

sdf2list SDF fo list

Description

Returns objects of class SDF as list.

Usage
sdf2list(x)

Arguments

X object of class SDF

Details
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Value
list with following components:
character SDF header block
matrix SDF bond block
matrix SDF atom block
character SDF data block

Author(s)
Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Functions: sdfstr2list, sdf2str, SDFset2list, SDFset2SDF

Examples

## Instance of SDF class
data(sdfsample); sdfset <- sdfsample
sdf <- sdfset[[1]]

## Return as list
sdf2list(sdf)
as(sdf, "list") # similar result

sdf2smiles SDFset to character Convert SDFset to SMILES (character)

Description

Accepts compounds in an SDFset container and returns the corresponding SMILES (Simplified
Molecular Input Line Entry Specification) strings as SMIset object. If ChemineOB is available
then OpenBabel for the format conversion. Otherwise the compound is submitted to the ChemMine
Tools web service for conversion with the Open Babel Open Source Chemistry Toolbox. If the input
object contains multiple items, only the first is converted.

Usage
sdf2smiles(sdf)

Arguments

sdf A SDFset object which containing the given compounds
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Value

character for details see ?"character”

Author(s)

Tyler Backman, Kevin Horan

References

Chemmine web service: http://chemmine.ucr.edu
Open Babel: http://openbabel.org
SMILES Format: http://en.wikipedia.org/wiki/Chemical_file_format#SMILES

Examples

## Not run:

## get a sample compound
data(sdfsample); sdfset <- sdfsample[1]
## convert to smiles

(smiles <- sdf2smiles(sdfset))
as.character(smiles)

## End(Not run)

sdf2str SDF fo SDFstr

Description

Converts SDF to SDFstr. Its main use is to facilitate the export to SD files. It contains optional
arguments to generate custom SDF output.

Usage
sdf2str(sdf, head, ab, bb, db, cid = NULL, sig = FALSE, ...)
Arguments
sdf object of class SDF
head optional character vector to supply custom header block
ab optional matrix to supply custom atom block
bb optional matrix to supply custom bond block
db optional character vector to supply custom data block
cid character can be provided to inject custom compound ID into header block
sig if = TRUE then the ChemmineR signature will be injected into the header block

for tracking purposes

option to pass on additional arguments
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Details

If the export function write. SDF is supplied with an SDFset object, then sdf2str is used internally
to customize the export of many molecules to a single SD file using the same optional arguments.

Value

sdfstr SDF data of one molecule collapsed to character vector

Author(s)
Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Coerce functions: sdfstr2list, sdf2str, SDFset2list, SDFset2SDF
Export function: write.SDF

Examples

## Instance of SDF class
data(sdfsample); sdfset <- sdfsample
sdf <- sdfset[[1]]

## Customize SDF blocks for export to SD file
sdf2str(sdf=sdf, sig=TRUE, cid=TRUE) # uses default SDF components
sdf2str(sdf=sdf, head=letters[1:4], db=NULL) # uses custom components for header and datablock

## The same arguments can be supplied to the write.SDF function for
## batch export of custom SDFs
# write.SDF(sdfset[1:4], file="sub.sdf"”, sig=TRUE, cid=TRUE, db=NULL)

SDFDataTable SDF Data Table

Description

Creates and HTML DataTable showing the compound image along with the fields in the compound
data block. Using a browser, this table can be filtered and paged, among other things.

This uses the DT library to create the DataTable.

Usage

SDFDataTable(sdfset)
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Arguments

sdfset An SDFSet object

Value
Returns the result of the datatable function from the DT library. An HTML file can be created
from this value by calling the saveWidget function on it.

Author(s)

Kevin Horan

References

DT library: https://rstudio.github.io/DT/ DataTables javascript library: https://datatables.net/

Examples

## Not run: #depends on ChemmineOB
library(ChemmineR)

library(DT)

data(sdfsample)

# this will open a browser to display the result
x=SDFDataTable(sdfsample[1:3])

# if no GUI is available or you want to save the HTML result:
saveWidget(x, "output.html")

## End(Not run)

sdfid Return SDF compound IDs

Description

Returns the compound identifiers from the header block of SDF or SDFset objects.

Usage
sdfid(x, tag = 1)

Arguments
X object of class SDFset or SDF
tag values from 1-4 to extract different header block fields; SDF ID is in first one

(default)
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Details

Value

character vector

Author(s)
Thomas Girke

References

See Also

atomblock, atomcount, bondblock, datablock, header, cid

Examples

## SDF/SDFset instances
data(sdfsample)

sdfset <- sdfsample

sdf <- sdfset[[1]]

## Extract IDs from header block
sdfid(sdf, tag=1)
sdfid(sdfset[1:4])

## Extract compound IDs from ID slot in SDFset container
cid(sdfset[1:4])

## Assigning compound IDs and keeping them unique
unique_ids <- makeUnique(sdfid(sdfset))
cid(sdfset) <- unique_ids

cid(sdfset[1:4])

sdfsample SD file in SDFset object

Description

First 100 compounds from PubChem SD file: Compound_00650001_00675000.sdf.gz

Usage
data(sdfsample)
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Format

Object of class sdfset

Details

Object stores 100 molecules from a sample SD file.

Source

ftp://ftp.ncbi.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_00650001_00675000.sdf.gz

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

Examples

data(sdfsample)
sdfset <- sdfsample
view(sdfset[1:4])

SDFset-class Class "SDFset"”

Description

List-like container for storing one or many objects of class SDF each containing the structure def-
inition information of molecules provided by an SD/MOL file. The SDFset is the most important
class in the ChemmmineR package for accessing and manipulating information stored in SD files.

Objects from the Class

Objects can be created by calls of the form new("SDFset”, ...).

Slots

SDF: Object of class "1ist" storing SDF components

ID: Object of class "character” storing compound identifiers

Methods

[ signature(x = "SDFset"): subsetting of class with bracket operator

[[ signature(x = "SDFset"): returns single component as SDF object

[[<- signature(x = "SDFset"): replacement method for single SDF component
[<- signature(x = "SDFset"): replacement method for several SDF components

atomblock signature(x = "SDFset"): returns all atom blocks as list
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atomcount signature(x = "SDFset”): returns all atom frequencies as list
bondblock signature(x = "SDFset"): returns all bond blocks as list

obmol signature(x = "SDFset"): returns pointers to OBMol objects as a vector
¢ signature(x = "SDFset"): concatenates two SDFset containers

cid signature(x = "SDFset"): returns all compound identifiers from ID slot
header<- signature(x = "SDFset"): replacement method for header block
atomblock<- signature(x = "SDFset"): replacement method for atom block
bondblock<- signature(x = "SDFset"): replacement method for bond block
datablock<- signature(x = "SDFset"): replacement method for data block
coerce signature(from="1list", to="SDFset"): as(list, "SDFset")
coerce signature(from="SDF", to = "SDFset"): as(sdf, "SDFset")
coerce signature(from= "SDFset”, to="1ist"): as(sdfset, "list")
coerce signature(from="SDFset"”, to="SDF"): as(sdfset, "SDF")
coerce signature(from= "SDFset"”, to="SDFstr"): as(sdfset, "SDFstr")
coerce signature(from="SDFstr", to="SDFset"): as(sdfstr, "SDFset"”)
datablock signature(x = "SDFset"): returns all data blocks as list

datablocktag signature(x = "SDFset"): returns all data blocks as named as list with subsetting
support

header signature(x = "SDFset"): returns all header blocks as list

length signature(x = "SDFset"): returns number of entries stored in object

plot signature(x = "SDFset"): plots one or many molecule structures from SDFset object
sdfid signature(x = "SDFset"): returns molecule ID field from header block

SDFset2list signature(x = "SDFset"): returns SDFset object as list

SDFset2SDF signature(x = "SDFset"”): returns SDFset object as 1ist with SDF components

SDFset2SDF<- signature(x = "SDFset"”): replacement method for SDFset component in SDFset
using accessor method

show signature(object = "SDFset"): prints summary of SDFset
view signature(x = "SDFset"): prints extended summary of SDFset
SDFset SDFset(SDF, ID): interface to SDFset constructor

Author(s)
Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Related classes: SDF, SDFstr, AP, APset
Import function: read.SDFset("some_SDF_file")
Export function: write.SDF(sdfset, "some_file.sdf")
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Examples

showClass("SDFset")

## Instances of SDFset class
data(sdfsample); sdfset <- sdfsample
sdfset; view(sdfset[1:4])
sdfset[[1]]

## Import and store SD File in SDFset container
# sdfset <- read.SDFset("some_SDF_file")

## Miscellaneous accessor methods
header(sdfset[1:4])
atomblock(sdfset[1:4])
atomcount(sdfset[1:4])
bondblock(sdfset[1:41)
datablock(sdfset[1:4])

## Assigning compound IDs and keeping them unique
cid(sdfset); sdfid(sdfset)

unique_ids <- makeUnique(sdfid(sdfset))
cid(sdfset) <- unique_ids

## Convert data block to matrix

blockmatrix <- datablock2ma(datablocklist=datablock(sdfset)) # Converts data block to matrix
numchar <- splitNumChar(blockmatrix=blockmatrix) # Splits to numeric and character matrix
numchar[[1]1[1:4,]; numchar[[2]1[1:4,]

## Compute atom frequency matrix, molecular weight and formula
propma <- data.frame(MF=MF(sdfset), MW=MW(sdfset), atomcountMA(sdfset))
propmal1:4, ]

## Assign matrix data to data block
datablock(sdfset) <- propma
view(sdfset[1:4])

## String Searching in SDFset
grepSDFset ("650001", sdfset, field="datablock”, mode="subset") # To return index, set mode="index")

## Export SDFset to SD file
# write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE)

## Plot molecule structure of SDF
plot(sdfset[1:4]) # plots to R graphics device
# sdf.visualize(sdfset[1:4]) # viewing in browser

SDFset2list SDFset fo list
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Description

Returns object of class SDFset as 1ist where each component conists of a 1ist of the four SDF
sub-components: header block, atom block, bond block and data block.

Usage
SDFset2list(x)
Arguments
X object of class SDFset
Details
Value
list containing one or many lists each with following components:
character SDF header block
matrix SDF bond block
matrix SDF atom block
character SDF data block
Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Functions: sdfstr2list, sdf2str, sdf2list, SDFset2SDF

Examples

## Instance of SDFset class
data(sdfsample); sdfset <- sdfsample
sdfset

## Returns sdfset as list
SDFset2list(sdfset[1:4])
as(sdfset, "list")[1:4] # similar result
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SDFset2SDF SDFset fo list with many SDF

Description

Returns object of class SDFset as 1ist were each component consists of an SDF object.

Usage
SDFset2SDF (x)

Arguments

X object of class SDFset

Details

Value

list containing one or many SDF objects

Author(s)
Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Functions: sdfstr2list, sdf2str, sdf2list, SDFset2list

Examples

## Instance of SDFset class
data(sdfsample); sdfset <- sdfsample
sdfset

## Returns sdfset as list

SDFset2SDF (sdfset[1:4])

as(sdfset, "SDF")[1:4] # similar result
view(sdfset[1:4]) # same result



SDFstr-class 133

SDFstr-class Class "SDFstr"

Description

List-like container for storing one or many molecules from an SD (or MOL) file. Each component
of an SDFstr object stores the SD data line by line from a single molecule in a character vector.
The SDFstr class is an intermediate container to import SD files into the more important SDFset
object or to export the data back from an SDFset container to a valid SD file.

Objects from the Class

Objects can be created by calls of the form new("”"SDFstr”, ...).

Slots

a: Object of class "1ist" with character components

Methods

[ signature(x = "SDFstr"): subsetting of class with bracket operator

[[ signature(x ="SDFstr"): returns single component as character vector

[[<- signature(x = "SDFstr"): replacement method for single SDFstr component

[<- signature(x = "SDFstr"): replacement method for several SDFstr components
coerce signature(from="character”, to="SDFstr"): as(character, "SDFstr")
coerce signature(from="1list", to="SDFstr"): as(list, "SDFstr")

coerce signature(from="SDF", to="SDFstr"): as(sdf, "SDFstr")

coerce signature(from= "SDFset”, to="SDFstr"): as(sdfset, "SDFstr")
coerce signature(from="SDFstr"”, to="1ist"): as(sdfstr, "list")

coerce signature(from= "SDFstr"”, to="SDFset"): as(sdfstr, "SDFset")
length signature(x = "SDFstr"): returns length of SDFstr

sdfstr2list signature(x = "SDFstr"): accessor method to return SDFstr as 1ist
sdfstr2list<- signature(x = "SDFstr"): replacement method for several SDFstr components

show signature(object = "SDFstr"): prints summary of SDFstr

Author(s)
Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp
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See Also

Related classes: SDFset, AP, APset
Import function: read.SDFstr("some_SDF_file")

Examples

showClass("SDFstr")

## Instances of SDFstr class

data(sdfsample); sdfset <- sdfsample

sdfstr <- as(sdfset, "SDFstr")

sdfstr[1:4] # print summary of container content
sdfstr[[1]] # returns character vector

## Import: sdfstr <- read.SDFstr("some_SDF_file")
## Export: write.SDF(sdfstr, "some_file.sdf")

sdfstr2list

sdfstr2list SDFstr to list

Description

Returns objects of class SDFstr as list.

Usage

sdfstr2list(x)

Arguments

X object of class SDFstr

Details

Value

list with many of the following components:

character SDF content of one molecule vectorized line by line

Author(s)
Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp
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See Also

Functions: sdf2list, sdf2str, SDFset2list, SDFset2SDF

Examples

## Instance of SDFstr class
data(sdfsample); sdfset <- sdfsample
sdfstr <- as(sdfset, "SDFstr")

## Return as list
sdfstr2list(sdfstr)
as(sdfstr, "list") # similar result

sdfStream Streaming through large SD files

Description

Streaming function to compute descriptors for large SD Files without consuming much memory. In
addition to descriptor values, it returns a line index that defines the positions of each molecule in
the source SD File. This line index can be used by the read. SDFindex function to retrieve specific
compounds of interest from large SD Files without reading the entire file into memory.

Usage
sdfStream(input, output, append=FALSE, fct, Nlines = 10000, startline=1, restartNlines=10000, silent =

Arguments

input file name of input SD file

output file name of tabular descriptor file

append if append=FALSE, a new output file will be created, if one with the same name
exists it will be overwritten; whereas append=TRUE will appended to this file.

fct Function to select descriptor sets; any combination of descriptors, supported by
ChemmineR, can be chosen here, as long as they can be represented in tabular
format.

Nlines Number of lines to read from input SD File at a time; the memory consumption
will be proportional to this value.

startline For restarting sdfStream at specific line assigned to startline argument. If

assigned startline value does not match the first line of a molecule in the SD
file then it will be reset to the start position of the next molecule in the SD file.

restartNlines Number of lines to parse when startline > 1 in order to identify proper molecule
start position. The default value of 10,000 is usually a good choice.

silent if silent=FALSE, the processing status will be printed to the screen, while
silent=TRUE suppresses this output.

Arguments to be passed to/from other methods.
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Details

Value

Writes a descriptor matrix to a tabular file. The first and last line number (position index) of each
molecule is specified in the first two columns of the tabular output file, respectively.

Author(s)
Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Import/export functions: read.AP, read.SDFset, read.SDFstr, read.SDFstr, read.SDFset,write.SDFsplit

Examples

## Load sample data

library(ChemmineR)

data(sdfsample); sdfset <- sdfsample

## Not run: write.SDF(sdfset, "test.sdf"”)

## Define descriptor set in a simple function
desc <- function(sdfset) {
cbind(SDFID=sdfid(sdfset),
# datablock2ma(datablocklist=datablock(sdfset)),
MW=MW(sdfset),
groups(sdfset),
# AP=sdf2ap(sdfset, type="character"),
rings(sdfset, type="count”, upper=6, arom=TRUE)

}

## Run sdfStream with desc function and write results to a file called 'matrix.xls'
sdfStream(input="test.sdf"”, output="matrix.xls"”, append=FALSE, fct=desc, Nlines=1000)

## Same as before but starting in SD file at line number 950
sdfStream(input="test.sdf"”, output="matrix.xls"”, append=FALSE, fct=desc, Nlines=1000, startline=950)

## Select molecules from SD File using line index from sdfStream

indexDF <- read.delim("matrix.x1s"”, row.names=1)[,1:4]

indexDFsub <- indexDF[indexDF$MW < 400, ] # Selects molecules with MW < 400
sdfset <- read.SDFindex(file="test.sdf"”, index=indexDFsub, type="SDFset")

## Write result directly to SD file without storing larger numbers of molecules in memory
read.SDFindex(file="test.sdf", index=indexDFsub, type="file"”, outfile="sub.sdf")



searchSim-deprecated 137

## Read atom pair string representation from file into APset
apset <- read.AP(file="matrix.x1ls"”, colid="AP")
cid(apsdf) <- as.character(indexDF$SDFID)

## End(Not run)

searchSim-deprecated  PubChem Similarity (Fingerprint) Search

Description

Accepts one SDFset container and performs a >0.9 similarity PubChem fingerprint search, returning
up to 200 hits in an SDFset container. The ChemMine Tools web service is used as an intermediate,
to translate queries from plain HTTP POST to a PubChem Power User Gateway (PUG) query. If
the input object contains multiple items, only the first is used as a query.

Usage

searchSim(sdf)

Arguments

sdf A SDFset object which contains one compound

Value

SDFset for details see ?"SDFset-class"

Author(s)

Tyler Backman

References

PubChem PUG SOAP: http://pubchem.ncbi.nlm.nih.gov/pug_soap/pug_soap_help.html
Chemmine web service: http://chemmine.ucr.edu

PubChem help: http://pubchem.ncbi.nlm.nih.gov/search/help_search.html

SMILES Format: http://en.wikipedia.org/wiki/Chemical_file_format#SMILES

Examples

## Not run:

## get a sample compound
data(sdfsample); sdfset <- sdfsample[2]
## search a compound on PubChem
compounds <- searchSim(sdfset)

## End(Not run)
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searchString-deprecated
PubChem Similarity (Fingerprint) SMILES Search

Description

Accepts one SMILES string (Simplified Molecular Input Line Entry Specification) and performs
a >0.95 similarity PubChem fingerprint search, returning the hits in an SDFset container. The
ChemMine Tools web service is used as an intermediate, to translate queries from plain HTTP
POST to a PubChem Power User Gateway (PUG) query.

Usage

searchString(smiles)

Arguments

smiles A character object which contains one SMILES string

Value

SDFset for details see ?"SDFset-class"

Author(s)

Tyler Backman

References

PubChem PUG SOAP: http://pubchem.ncbi.nlm.nih.gov/pug_soap/pug_soap_help.html
Chemmine web service: http://chemmine.ucr.edu

PubChem help: http://pubchem.ncbi.nlm.nih.gov/search/help_search.html

SMILES Format: http://en.wikipedia.org/wiki/Chemical_file_format#SMILES

Examples

## Not run:

## search a compound on PubChem

compounds <- searchString("CC(=0)0C1=CC=CC=C1C(=0)0")
## End(Not run)
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selectInBatches Select in Batches

Description

When doing a select were the condition is a large number of ids it is not always possible to include
them in a single SQL statement. This function will break the list of ids into chunks and send the
query for each batch. The resutls are appended and returned as one data frame.

Usage

selectInBatches(conn, allIndices, genQuery, batchSize = 1e+@5)

Arguments
conn Database connection object
allIndices A vector of indices to pass to the genQuery function in batches.
genQuery A function which takes a vector of indices and constructs an SQL SELECT
statement returning records for the given indicies.
batchSize How many indicies to put in each batch.
Value

A data frame with the results of the query as if all inidices had been included in a single SELEcT
statement.

Author(s)

Kevin Horan

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.

## The function is currently defined as
function (conn, alllndices, genQuery, batchSize = 1e+@5)
{
batchByIndex(allIndices, function(indexBatch) {
df = dbGetQuery(conn, genQuery(indexBatch))
result = rbind(result, df)
}, batchSize)
result
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setPriorities Set Priorities

Description

This function should be run after loading a complete set of data. It will find each group of com-
pounds which share the same descriptor and call the given function, priorityFn, with the com-
pound_id numbers of the group. This function should then assign priorities to each compound-
descriptor pair, however it wishes. Priorities are integer values with lower values being used in
preference of higher values.

It is important that this function be called after all data is loaded. It may be that a compound loaded
at the beginning of a data set shares a descriptor with a compound loaded near the end of the data
set. If the priorities were set at some point in between these then it would not see all the compounds
for that one descriptor.

If a SNOW cluster and connection source function are given, it will run in parallel.
Some pre-defined functions that can be use for priorityFn are:
randomPriorities: Set the priorities of compounds within a descriptor group randomly.

forestSizePriorities: Set the priority based on the number of disconnected components (trees)
within the compound. Compounds with fewer trees will have a higher priority (lower numerical
value) than compounds with more trees.

Usage

setPriorities(conn,priorityFn,descriptorIds=c(),cl=NULL,connSource=NULL)
forestSizePriorities(conn,compIds)
randomPriorities(conn,compIds)

Arguments
conn A database connection object.
priorityFn This function will be called with the compound_id numbers associated with the

same descriptor. It should use the id numbers to lookup whatever data it wants
to assign a priority to each compound. These priority values will be used to pick
a compound to represent the group in cases where only one compound is needed
for each descriptor.

The function should return a data.frame with the fields "compound_id" and "pri-
ority". The order of the rows is not important.

descriptorIds If given then only re-compute priorities for groups involving descriptors in this
list. This is useful for updating priorities after adding new compounds to an
existing database.

cl A SNOW cluster on which to run jobs on.

connSource A function to create a new database connection with. This will be run once for
each new job created. It must return a newly created connection, not a reference
to an existing connection.

compIds The compound_id values for each group.
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Value

141

For setPriorities, no value is returned. randomPriorities and forestSizePriorities return
a data.frame with columns "compound_id" and "priority".

Author(s)

Kevin Horan

Examples

## Not run:

data(sdfsample)

conn = initDb("sample.db")
sdfLoad(conn, sdfsample)
setPriorities(conn, forestSizePriorities)

## End(Not run)

smartsSearchOB

SMARTS Search OB

Description

Perform searches for SMARTS patterns using Open Babel (requires ChemmineOB package to be

installed).

Usage

smartsSearchOB(sdfset, smartsPattern, uniqueMatches = TRUE)

Arguments

sdfset
smartsPattern

uniqueMatches

Value

An SDFset of the compounds you want to search
The SMARTS pattern as a string.

If true, only return the number of distinct matches, otherwise return the number
of all matches.

Returns a vector of counts, one for each input compound.

Author(s)

Kevin Horan
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Examples

## Not run:

library(ChemmineOB)

data(sdfsample)

#look for rotable bonds

rotableBonds = smartsSearchOB(sdfsample[1:5],"[!$(*#x)&!D1]-1@[!$(*#*)&!D1]",uniqueMatches=FALSE)

## End(Not run)

SMI-class Class "SMI"

Description

Container for storing the SMILES string of a single molecule.

Objects from the Class

Objects can be created by calls of the form new("”SMI", ...).

Slots

smiles: Object of class "character” of length one

Methods

as.character signature(x = "SMI"): returns content as character vector
coerce signature(from="character”, to="SMI"): as(smi, "SMI")
coerce signature(from="SMIset"”, to="SMI"): as(smiset, "SMI")

show signature(object = "SMI"): prints summary of SMI

Author(s)
Thomas Girke

References
SMILES (Simplified molecular-input line-entry system) format definition: http://en.wikipedia.org/wiki/Simplified_moleculas
input_line-entry_system

See Also

Related classes: SMlIset, SDF, SDFset
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Examples

showClass("SMI")

## Instances of SMI class
data(smisample); smiset <- smisample
(smi <- smiset[[1]]) # returns first molecule in smiset as SMI object

smiles2sdf Convert SMILES (character) to SDFset

Description

Accepts a named vector or SMIset of SMILES (Simplified Molecular Input Line Entry Specifica-
tion) strings and returns its equivalent as an SDFset container.

This function runs in two modes. If ChemmineOB is available then it will use OpenBabel to convert
all the given smiles into an SDFset with 2D coordinates. Otherwise the compound is submitted to
the ChemMine Tools web service for conversion with the Open Babel Open Source Chemistry
Toolbox. In this case only the first element will be used since this is a very slow operation.

Usage
smiles2sdf (smiles)

Arguments

smiles A named vector of SMILES strings. The names will be used to name the SDF

objects.

Value

SDFset for details see 7"SDFset-class"
Author(s)

Tyler Backman, Kevin Horan

References
Chemmine web service: http://chemmine.ucr.edu
Open Babel: http://openbabel.org
SMILES Format: http://en.wikipedia.org/wiki/Chemical_file_format#SMILES
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Examples

## Not run:

## convert to sdf

data(smisample)

(sdf <- smiles2sdf(smisample[1:4]))

## End(Not run)

smisample SMILES file in SMIset object

Description

First 100 compounds from PubChem SD file (Compound_00650001_00675000.sdf.gz) converted
to SMILES format

Usage

data(smisample)

Format

Object of class smiset

Details

Object stores 100 molecules from a sample SMILES file.

Source

ftp://ftp.ncbi.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_00650001_00675000.sdf.gz

References

SMILES (Simplified molecular-input line-entry system) format definition: http://en.wikipedia.org/wiki/Simplified_molecular
input_line-entry_system

Examples

data(smisample)
smiset <- smisample
view(smiset[1:4])
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SMIset-class Class "SMIset”

Description

List-like container for storing SMILES strings of many compounds.

Objects from the Class

Objects can be created by calls of the form new("”SMIset"”, ...).

Slots

smilist: Object of class "list” with compound identifiers stored in name slots

Methods

[ signature(x = "SMIset"): subsetting of class with bracket operator

[[ signature(x = "SMIset"): returns single component as SMI object

[<- signature(x = "SMIset"): replacement method for one or many entries
as.character signature(x = "SMIset"”): returns content as named character vector
¢ signature(x = "SMIset"): concatenates two SMIset containers

cid signature(x = "SMIset"): returns compound identifiers

cid<- signature(x = "SMIset"): replacement method for compound identifiers
coerce signature(from= "character”, to="SMIset"”): as(character, "SMIset")
coerce signature(from="1list", to="SMIset"): as(list, "SMIset")

coerce signature(from="SMIset”, to="SMI"): as(smiset, "SMI")

length signature(x = "SMIset"): returns number of entries stored in object

show signature(object = "SMIset"”): prints summary of SMIset

view signature(x = "SMIset"): prints extended summary of SMIset

Author(s)
Thomas Girke

References

SMILES (Simplified molecular-input line-entry system) format definition: http://en.wikipedia.org/wiki/Simplified_molecula
input_line-entry_system

See Also

Related classes: SMI, SDF, SDFset
Import function: read.SMIset("some_SMILES_file")

Export function: write.SMI(smiset, "some_file.smi")
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Examples

showClass("SMIset")

## Instances of SMIset class
data(smisample); smiset <- smisample
smiset; view(smiset[1:4])
smiset[[1]1]

## Import and store SMILES file in SMIset container
# smiset <- read.SMIset("some_SMILES_file")

## Miscellaneous accessor methods
cid(smiset[1:4])
(smivec <- as.character(smiset[1:4]))

## Construct SMIset from named vector
as(smivec, "SMIset"”)

## Assigning compound IDs and keeping them unique
unique_ids <- makeUnique(cid(smiset))
cid(smiset) <- unique_ids

## Export SMIset to SMILES file
# write.SMI(smiset[1:4], file="sub.smi”, cid=TRUE)

status Get Status of a ChemMine Tools Job

Description

Returns the status of a launched ChemMine Tools job as represented by a jobToken object.

Usage

status(object)

Arguments

object A jobToken job as returned by the function 1launchCMTool

Value
The status of the specified job is returned as a string. Possible values include "RUNNING", "FIN-
ISHED", or "FAILED".

Author(s)
Tyler William H Backman
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References

See ChemMine Tools at http://chemmine.ucr.edu.

See Also

Functions: toolDetails, 1istCMTools, launchCMTool, browseJob, result

Examples

## Not run:
## list available tools
listCMTools()

## get detailed instructions on using a tool
toolDetails("Fingerprint Search")

## download compound 2244 from PubChem
job1 <- launchCMTool ("pubchemID2SDF", 2244)

## check job status and download result
status(job1)
resultl <- result(jobl)

## End(Not run)
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toolDetails Detailed instructions for each ChemMine Tools web tool

Description

Connects to the ChemMine Tools web service, and provides detailed instructions and example
function calls for any tool.

Usage

toolDetails(tool_name)

Arguments

tool_name

Details

A tool name matching verbatim an existing tool name as listed by 1istCMTools.

Prints instructions to console.

Author(s)

Tyler William H Backman
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References

See ChemMine Tools at http://chemmine.ucr.edu.

See Also

Functions: 1launchCMTool, 1istCMTools, result, browseJob, status

Examples

## Not run:
## list available tools
listCMTools()

## get detailed instructions on using a tool
toolDetails("Fingerprint Search")

## download compound 2244 from PubChem
job1 <- launchCMTool ("pubchemID2SDF", 2244)

## check job status and download result
status(job1)
resultl <- result(jobl)

## End(Not run)

trimNeighbors Trim Neighbors

Description

Further reduce the cutoff value of a nearest neighbor (NN) table, as produced by nearestNeighbors.
This allows one to compute a very relaxed NN table initially, and then quickly restrict it later without
having to re-compute all the similarities.

Usage
trimNeighbors(nnm, cutoff)
Arguments
nnm A nearest neighbor table, as produced by nearestNeighbors.
cutoff The new similarities cutoff value. All pairs with a similarity less than this value
will be removed from the table.
Value

The return value has the same structure as nnm, with some neighbors removed from the indexes
and similarties entries.
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Author(s)

Kevin Horan

See Also

jarvisPatrick nearestNeighbors

Examples

data(sdfsample)

ap = sdf2ap(sdfsample)

nnm = nearestNeighbors(ap, numNbrs=20)

nnm = trimNeighbors(nnm,cutoff=0.5)
clustering = jarvisPatrick(nnm,k=2,mode="alb")

validSDF Validity check of SDFset

Description

Performs validity check of SDFs stored in SDFset objects. Currently, the function tests whether
the atom block and the bond block in each SDF component of an SDFset have at least Nabcol and
Nbbcol columns (default is 3 for both). In additions, it tests for the presence of NA values in the
atom and bond blocks. The function returns a logical vector with TRUE values for valid compounds
and FALSE values for invalid ones.

Usage
validSDF (x, Nabcol = 3, Nbbcol = 3, logic = "&", checkNA=TRUE)

Arguments
X x object of class SDFset
Nabcol minimum number of columns in atom block
Nbbcol minimum number of columns in bond block
logic logical connection (& or [) among Nabcol and Nbbcol cutoffs
checkNA checks for NA values in atom and bond blocks
Details

The function is important to remove invalid compounds from SDFset containers.

Value

logical vector of length x with TRUE for valid compounds and FALSE for invalid compounds.
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Author(s)
Thomas Girke

References

See Also

Functions: read.SDFset

Examples

## SDFset instance
data(sdfsample)
sdfset <- sdfsample

## Detect and remove invalid SDFs in SDFset.
valid <- validSDF(sdfset)

which(!valid) # Returns index for invalid SDFs
sdfset <- sdfset[valid] # Returns only valid SDFs.

view Viewing of complex objects

Description

Convenience function for viewing the content of complex objects like SDFset and APset containers.
The function is a shorthand wrapper for as(sdfset, "SDF") and as(apset, "AP").

Usage

view(x)

Arguments

X object of class SDFset or APset

Details

Value

List populated with SDF and AP components.

Author(s)
Thomas Girke
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References

See Also
Classes: SDF, SDFset, AP, APset

Examples

## Viewing content of SDFset
data(sdfsample); sdfset <- sdfsample
view(sdfset[1:4])

## Viewing content of APset
apset <- sdf2ap(sdfset[1:10])
view(apset)

write.SDF SDF export function

Description

Writes one or many molecules stored in a SDFset, SDFstr or SDF object to SD file.

Usage
write.SDF(sdf, file, cid = FALSE, ...)
Arguments
sdf object of class SDFset, SDFstr or SDF
file name of SD file to write to
cid if cid = TRUE and an SDFset object is provide as input, then the compound IDs
in the ID slot of the SDFset are used for compound naming
the optional arguments of the sdf2str function can be provided here, includ-
ing head, ab, bb, db; details are provided in the help page for the sdf2str
function
Details

If the write.SDF function is supplied with an SDFset object, then it uses internally the sdf2str
function to allow customizing the resulting SD file. For this all optional arguments of the sdf2str
function can be passed on to write.SDF.

Author(s)
Thomas Girke
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References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Import function: read.SDFset, read.SDFstr

Examples

## Instance of SDFset class
data(sdfsample); sdfset <- sdfsample

## Write objects of classes SDFset/SDFstr/SDF to file
# write.SDF(sdfset[1:4], file="sub.sdf")

## Example for writing customized SDFset to file containing
## ChemmineR signature, IDs from SDFset and no data block
# write.SDF(sdfset[1:4], file="sub.sdf"”, sig=TRUE, cid=TRUE, db=NULL)

## Example for injecting a custom matrix/data frame into the data block of an
## SDFset and then writing it to an SD file

props <- data.frame(MF=MF(sdfset), MW=MW(sdfset), atomcountMA(sdfset))
datablock(sdfset) <- props

view(sdfset[1:4])

# write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE, cid=TRUE)

write.SDFsplit SDF split function

Description

Splits SD Files into any number of smaller SD Files

Usage
write.SDFsplit(x, filetag, nmol)

Arguments

X object of class SDFset, SDFstr

filetag string to prepend to file names

nmol integer specifying number of molecules in split SD files
Details

To split an SD File into smaller ones, one can read the source file into R with read.SDFstr and
write out smaller ones with write.SDFsplit. Note: when importing big SD Files, read. SDFstr
will be much faster than read. SDFset, and there is no need to go through an SDFset object instance
in this case.
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Author(s)
Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Import/export functions: read.SDFset, read.SDFstr, read.SDFstr, read.SDFset

Examples

## Load sample data
library(ChemmineR)
data(sdfsample)

## Not run: ## Create sample SD File with 100 molecules
write.SDF (sdfsample, "test.sdf"”)

## Read in sample SD File
sdfstr <- read.SDFstr("test.sdf")

## Run export on SDFstr object
write.SDFsplit(x=sdfstr, filetag="myfile"”, nmol=10)

## Run export on SDFset object
write.SDFsplit(x=sdfsample, filetag="myfile", nmol=10)

## End(Not run)

write.SMI SMI export function

Description

Writes one or many molecules stored in a SMIset object to a SMILES file.

Usage
write.SMI(smi, file, cid = TRUE, ...)
Arguments
smi object of class SMIset
file name of SMILES file to write to
cid if cid = TRUE the compound identifiers will be exported by appending them in

tab-separated format to each SMILES string
option to pass on additional arguments
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Details

Author(s)
Thomas Girke

References

SMILES (Simplified molecular-input line-entry system) format definition: http://en.wikipedia.org/wiki/Simplified_molecula
input_line-entry_system

See Also

Functions: write.SDF

Examples

## Instance of SMIset class
data(smisample); smiset <- smisample

## Write objects of classes SMIset to file with and
## without compound identifiers

# write.SMI(smiset[1:4], file="sub.smi"”, cid=TRUE)
# write.SMI(smiset[1:4], file="sub.smi"”, cid=FALSE)
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