Package ‘BiocGenerics’

November 2, 2025

Title S4 generic functions used in Bioconductor
Description The package defines many S4 generic functions used in Bioconductor.

biocViews Infrastructure
URL https://bioconductor.org/packages/BiocGenerics

BugReports https://github.com/Bioconductor/BiocGenerics/issues

Version 0.57.0

License Artistic-2.0

Encoding UTF-8

Depends R (>=4.0.0), methods, utils, graphics, stats, generics

Imports methods, utils, graphics, stats

Suggests Biobase, S4Vectors, IRanges, S4Arrays, SparseArray,
DelayedArray, HDF5Array, GenomicRanges, pwalign, Rsamtools,
AnnotationDbi, affy, affyPLM, DESeq2, flowClust, MSnbase,
annotate, MultiAssayExperiment, RUnit

Collate S3-classes-as-S4-classes.R utils.R normarg-utils.R
replaceSlots.R aperm.R append.R as.data.frame.R as.list.R
as.vector.R cbind.R do.call.R duplicated.R eval.R Extremes.R
format.R funprog.R get.R grep.R is.unsorted.R lapply.R mapply.R
match.R mean.R nrow.R order.R paste.R rank.R rep.R
row_colnames.R saveRDS.R sort.R start.R subset.R t.R table.R
tapply.R unique.R unlist.R unsplit.R which.R which.min.R
relist.R boxplot.R image.R density.R IQR.R mad.R residuals.R
var.R weights.R xtabs.R setops.R annotation.R combine.R
containsOutOfMemoryData.R dbconn.R dge.R dims.R fileName.R
longForm.R normalize.R Ontology.R organism_species.R paste2.R
path.R plotMA.R plotPCA.R score.R strand.R toTable.R type.R
updateObject.R testPackage.R zzz.R

git_url https://git.bioconductor.org/packages/BiocGenerics
git_branch devel

git_last_commit 5fcc999

git_last_commit_date 2025-10-29

https://bioconductor.org/packages/BiocGenerics
https://github.com/Bioconductor/BiocGenerics/issues

2 Contents

Repository Bioconductor 3.23
Date/Publication 2025-11-02

Author The Bioconductor Dev Team [aut],
Hervé Pages [aut, cre] (ORCID: <https://orcid.org/0009-0002-8272-4522>),
Laurent Gatto [ctb] (ORCID: <https://orcid.org/0000-0002-1520-2268>),
Nathaniel Hayden [ctb],
James Hester [ctb],
Wolfgang Huber [ctb],
Michael Lawrence [ctb],
Martin Morgan [ctb] (ORCID: <https://orcid.org/0000-0002-5874-8148>),
Valerie Obenchain [ctb]

Maintainer Hervé Pages <hpages.on.github@gmail.com>

Contents
BiocGenerics-package 4
annotation e e e e e e e e e e e e e 7
APEIIL . o o v o v e 7
append e e e 8
as.data.frame L L. L e 9
as.liSt . . L e 10
ASVECLOT . . v o v v v it e e e e e e e e e e e e e e e e e e e 11
boxplot . . . e e e e 12
chind . . . L e 13
COMDING v v v i e e e e e e e e e e e e e e e 14
containsOutOfMemoryData e 16
dbconn. e e 18
density e e e 19
dge e 20
dims . . . e e e 21
docall e e e 22
duplicated 23
eval .. e e e 25
evalq e 26
EXtremes e e e e e e 26
fileName e e e 28
format e e e e 28
funprog L 29
BB . o e 31
SIED o v e e e e e e e e e e e e e e 32
IMAZE . . ¢ o v e vt e e e e e e e e e e e e e e e e 33
IQR . . e 34
isaunsorted oL L L L e e e e e e e e e e 35
lapply 36
longForm 37
mad . .. e e e 38

https://orcid.org/0009-0002-8272-4522
https://orcid.org/0000-0002-1520-2268
https://orcid.org/0000-0002-5874-8148

Contents

Index

3
match e e 40
10T 1 o 41
normalize e e e e e 42
NTOW . . v v v e 43
Ontology 44
OFdEr o o e e e e 45
OFANISIM_SPECIES . . .+« v v vt v e e e e e e e e e e e 46
PASe . . o e e e e e e 48
Paste2o 49
path . . e e e 51
PIOtMA . . e e 53
PIOtPCA e e e e 54
TANK . . . e e e e e e e 55
TElISE . . . o o e e e e e e 57
TED « v e e e e e e e e e e e e e e e 58
residuals e e e e e 59
TOWHCOINAMES oo e e e e e 60
S3-classes-as-S4-Classes e e e 61
saveRDS L e 62
SCOTE .« v v v e 63
SELOPS & v v e e e e e e e e e e e e e e e e e e 64
SOTE o v v v e e e e e e e e e e e e e 66
] 1 67
strand . .. L. L e e e e e e e 69
SUDSEL . . . o o e e e e e e e e e e e 71
LA 72
table . . . L e e e 73
tapply . .o e e e 74
testPackage L 75
toTable e e 76
LYPE - o o e e e 77
UNIQUE &« v v v v o e 79
unliSt e e e e 80
unsplito e 81
updateObject e 82
1 84
weights e e 85
which e e 86
whichmmin o e 87
Xtabs . . . L e e 88

4 BiocGenerics-package

BiocGenerics-package 84 generic functions for Bioconductor

Description

S4 generic functions needed by many Bioconductor packages.

Details
We divide the generic functions defined in the BiocGenerics package in 2 categories:

1. Functions already defined in base R or in CRAN package generics, and explicitly promoted
to S4 generics in BiocGenerics

2. S4 generics specific to Bioconductor.

(1) Functions defined in base R or CRAN package generics and explicitly promoted to S4
generics in the BiocGenerics package:

Generics for functions defined in package base:

* BiocGenerics::aperm

* BiocGenerics: :append

* BiocGenerics::as.data.frame

* BiocGenerics::as.list

* BiocGenerics::as.vector

e BiocGenerics::rbind, BiocGenerics: :cbind

e BiocGenerics::do.call

* BiocGenerics::duplicated, BiocGenerics: :anyDuplicated
* BiocGenerics::eval

¢ Extremes: BiocGenerics: :pmax, BiocGenerics: :pmin, BiocGenerics: :pmax.int, BiocGenerics: :pmin.int
¢ BiocGenerics::format

 funprog: BiocGenerics: :Reduce, BiocGenerics: :Filter,BiocGenerics: :Find, BiocGenerics: :Map,
BiocGenerics: :Position

* BiocGenerics::get, BiocGenerics: :mget

* BiocGenerics::grep, BiocGenerics::grepl

* BiocGenerics::is.unsorted

* BiocGenerics::lapply, BiocGenerics: :sapply

* BiocGenerics: :mapply

e BiocGenerics: :match, BiocGenerics: :%in%

e BiocGenerics: :nrow, BiocGenerics: :ncol, BiocGenerics: :NROW, BiocGenerics: :NCOL
* BiocGenerics::order

* BiocGenerics::paste

* BiocGenerics: :rank

* BiocGenerics::rep.int

* BiocGenerics: :rownames, BiocGenerics: : rownames<-,BiocGenerics: :colnames, BiocGenerics: :colnames<

BiocGenerics-package

BiocGenerics:
BiocGenerics:

BiocGenerics:
BiocGenerics:

BiocGenerics:
BiocGenerics:
BiocGenerics:
BiocGenerics:
BiocGenerics:
BiocGenerics:
BiocGenerics:
BiocGenerics:
BiocGenerics:

:saveRDS
:sort

:start,BiocGenerics: :start<-,BiocGenerics
:width, BiocGenerics: :width<-, BiocGenerics:

:subset

it

:table

:tapply

:unique

:unlist

:unsplit

:which

:which.min, BiocGenerics: :which.max

Generics for functions defined in package utils:

e BiocGenerics::relist

Generics for functions defined in package graphics:

* BiocGenerics: :boxplot

* BiocGenerics::image

Generics for functions defined in package stats:

BiocGenerics:
BiocGenerics:
BiocGenerics:
BiocGenerics:

:density
:residuals
:weights
:xtabs

Generics for functions defined in CRAN package generics:

::end, BiocGenerics

:pos

* setops: BiocGenerics: :union,BiocGenerics: :intersect, BiocGenerics

(2) S4 generics specific to Bioconductor:

annotation, annotation<-

combine

containsOutOfMemoryData

dbconn, dbfile

:rend<-,

::setdiff,BiocGenerics

counts, counts<-,design, design<-,dispTable, dispTable<-, sizeFactors, sizeFactors<-,
conditions, conditions<-,estimateSizeFactors, estimateDispersions, plotDispEsts

dims, nrows, ncols,

fileName
longForm
normalize
Ontology

organism, organism<-, species, species<-

paste2

path, path<-, basename, basename<-, dirname, dirname<-

plotMA

::setequal

6 BiocGenerics-package

* plotPCA

* score, score<-

e strand, strand<-, invertStrand
e toTable

* type, type<-

e updateObject

Note

More generics can be added on request by sending an email to the Bioc-devel mailing list:
http://bioconductor.org/help/mailing-1list/
Things that should NOT be added to the BiocGenerics package:
* Internal generic primitive functions like length, dim, ~dim<-~, etc... See ?InternalMethods
for the complete list. There are a few exceptions though, that is, the BiocGenerics package
may actually redefine a few of those internal generic primitive functions as S4 generics when

for example the signature of the internal generic primitive is not appropriate (this is the case
for BiocGenerics: :cbind).

* S3 and S4 group generic functions like Math, Ops, etc... See ?groupGeneric and ?S4groupGeneric
for the complete list.

* Generics already defined in the stats4 package.

Author(s)

The Bioconductor Dev Team

See Also

* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* setGeneric and setMethod for defining generics and methods.

Examples

List all the symbols defined in this package:
1s('package:BiocGenerics')

http://bioconductor.org/help/mailing-list/

annotation 7

annotation Accessing annotation information

Description

Get or set the annotation information contained in an object.

Usage

annotation(object, ...)
annotation(object, ...) <- value

Arguments

object An object containing annotation information.
Additional arguments, for use in specific methods.

value The annotation information to set on object.

See Also

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

* annotation,eSet-method in the Biobase package for an example of a specific annotation
method (defined for eSet objects).

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

annotation
showMethods(”annotation")

library(Biobase)
showMethods(”annotation”)
selectMethod("annotation”, "eSet")
aperm Transposing an array-like object
Description

Transpose an array-like object by permuting its dimensions.
This is a multidimensional generalization of the t () operator used for 2D-transposition.

NOTE: This man page is for the aperm S4 generic function defined in the BiocGenerics package.
See ?base: :aperm for the default method (defined in the base package). Bioconductor packages
can define specific methods for objects not supported by the default method.

8 append

Usage

aperm(a, perm, ...)

Arguments

a An array-like object.

perm, ... See ?base: :aperm for a description of these arguments.

Value

A transposed version of array-like object a, with subscripts permuted as indicated by the perm
vector.

See Also

e base: :aperm for the default aperm method.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

» aperm,SVT_SparseArray-method in the SparseArray package for an example of a specific
aperm method (defined for SVT_SparseArray objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

aperm # note the dispatch on the 'a' arg only
showMethods ("aperm”)

selectMethod("aperm”, "ANY") # the default method

append Append elements to a vector-like object

Description

Append (or insert) elements to (in) a vector-like object.

NOTE: This man page is for the append S4 generic function defined in the BiocGenerics package.
See ?base: : append for the default method (defined in the base package). Bioconductor packages
can define specific methods for objects (typically vector-like or data-frame-like) not supported by
the default method.

Usage

append(x, values, after=length(x))

as.data.frame 9

Arguments
X The vector-like object to be modified.
values The vector-like object containing the values to be appended to x. values would
typically be of the same class as x, but not necessarily.
after A subscript, after which the values are to be appended.
Value

See ?base: :append for the value returned by the default method.

Specific methods defined in Bioconductor packages will typically return an object of the same class
as x and of length length(x) + length(values).

See Also

e base: :append for the default append method.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* append, Vector, Vector-method in the S4Vectors package for an example of a specific append
method (defined for Vector objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

append # note the dispatch on the 'x' and 'values' args only
showMethods ("append”)
selectMethod("append”, c("ANY", "ANY")) # the default method

as.data.frame Coerce to a data frame

Description

Generic function to coerce to a data frame, if possible.

NOTE: This man page is for the as.data. frame S4 generic function defined in the BiocGenerics
package. See ?base::as.data.frame for the default method (defined in the base package). Bio-
conductor packages can define specific methods for objects not supported by the default method.

Usage

as.data.frame(x, row.names=NULL, optional=FALSE, ...)
Arguments

X The object to coerce.

row.names, optional, ...
See ?base: :as.data.frame for a description of these arguments.

10 as.list

Value

An ordinary data frame.
See ?base::as.data. frame for the value returned by the default method.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

See Also

* base::as.data.frame for the default as.data. frame method.

* toTable for an alternative to as.data.frame.

* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* as.data.frame,DataFrame-method in the S4 Vectors package, and as.data.frame,IntegerRanges-
method in the IRanges package, for examples of specific as.data.frame methods (defined
for DataFrame and IntegerRanges objects, respectively).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

[

as.data.frame # note the dispatch on the
showMethods("as.data.frame")
selectMethod("as.data.frame”, "ANY") # the default method

x' arg only

as.list Coerce to a list

Description

Generic function to coerce to a list, if possible.

NOTE: This man page is for the as. 1ist S4 generic function defined in the BiocGenerics package.
See ?base: :as.list for the default method (defined in the base package). Bioconductor packages
can define specific methods for objects not supported by the default method.

Usage
as.list(x, ...)
Arguments
X The object to coerce.
Additional arguments, for use in specific methods.
Value

An ordinary list.

as.vector 11

See Also

e base::as.list for the default as.list method.

showMethods for displaying a summary of the methods defined for a given generic function.

* selectMethod for getting the definition of a specific method.

as.list,List-method in the S4Vectors package for an example of a specific as.list method
(defined for List objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

as.list
showMethods("as.list")
selectMethod("as.list”, "ANY") # the default method

library(S4Vectors)
showMethods("as.list")

The as.list() method for List objects:
selectMethod("as.list”, "List")

as.vector Coerce an object into a vector

Description

Attempt to coerce an object into a vector of the specified mode. If the mode is not specified, attempt
to coerce to whichever vector mode is considered more appropriate for the class of the supplied
object.

NOTE: This man page is for the as. vector $4 generic function defined in the BiocGenerics pack-
age. See ?base: :as.vector for the default method (defined in the base package). Bioconductor
packages can define specific methods for objects not supported by the default method.

Usage

as.vector(x, mode="any")

Arguments

X The object to coerce.

mode See ?base: :as.vector for a description of this argument.
Value

A vector.

See ?base: :as.vector for the value returned by the default method.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

12 boxplot

See Also

e base::as.vector for the default as. vector method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

as.vector,Rle-method in the S4Vectors package, and as.vector,AtomicList-method in the IRanges
packages, for examples of specific as.vector methods (defined for Rle and AtomicList ob-
jects, respectively).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

as.vector # note the dispatch on the 'x' arg only
showMethods ("as.vector")
selectMethod("as.vector”, "ANY") # the default method

boxplot Box plots

Description

Produce box-and-whisker plot(s) of the given (grouped) values.

NOTE: This man page is for the boxplot S4 generic function defined in the BiocGenerics package.
See ?graphics: :boxplot for the default method (defined in the graphics package). Bioconductor
packages can define specific methods for objects not supported by the default method.

Usage
boxplot(x, ...)

Arguments

X, ... See ?graphics: :boxplot.

Value

See ?graphics: :boxplot for the value returned by the default method.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

See Also

e graphics: :boxplot for the default boxplot method.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* boxplot,AffyBatch-method in the affy package for an example of a specific boxplot method
(defined for AffyBatch objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

cbind 13

Examples

boxplot
showMethods ("boxplot”)
selectMethod("boxplot”, "ANY") # the default method

library(affy)

showMethods ("boxplot")

The boxplot() method for AffyBatch objects:
selectMethod("boxplot”, "AffyBatch”)

cbind Combine objects by rows or columns

Description

rbind and cbind take one or more objects and combine them by columns or rows, respectively.

NOTE: This man page is for the rbind and cbind S4 generic functions defined in the BiocGenerics
package. See ?base: :cbind for the default methods (defined in the base package). Bioconductor
packages can define specific methods for objects (typically vector-like or matrix-like) not supported
by the default methods.

Usage
rbind(..., deparse.level=1)
cbind(..., deparse.level=1)
Arguments

One or more vector-like or matrix-like objects. These can be given as named
arguments.

deparse.level See ?base::cbind for a description of this argument.

Value

See ?base: : cbind for the value returned by the default methods.

Specific methods defined in Bioconductor packages will typically return an object of the same class
as the input objects.

See Also

* base: :cbind for the default rbind and cbind methods.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* rbind,RectangularData-method and cbind,DataFrame-method in the S4Vectors package for
examples of specific rbind and cbind methods (defined for RectangularData derivatives and
DataFrame objects, respectively).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

14 combine

Examples

rbind # note the dispatch on the
showMethods("rbind")
selectMethod("rbind”, "ANY") # the default method

arg only

cbind # note the dispatch on the '...' arg only
showMethods ("cbind™)
selectMethod("cbind”, "ANY") # the default method

library(S4Vectors)

showMethods("rbind")

The rbind() method for RectangularData derivatives:
selectMethod("rbind”, "RectangularData")

The cbind() method for DataFrame objects:
selectMethod("cbind”, "DataFrame")

combine Combining or merging different Bioconductor data structures

Description

The combine generic function handles methods for combining or merging different Bioconductor
data structures. It should, given an arbitrary number of arguments of the same class (possibly
by inheritance), combine them into a single instance in a sensible way (some methods may only
combine 2 objects, ignoring ... in the argument list; because Bioconductor data structures are
complicated, check carefully that combine does as you intend).

Usage
combine(x, vy, ...)
Arguments
X One of the values.
y A second value.
Any other objects of the same class as x and y.
Details

There are two basic combine strategies. One is an intersection strategy. The returned value should
only have rows (or columns) that are found in all input data objects. The union strategy says that
the return value will have all rows (or columns) found in any one of the input data objects (in which
case some indication of what to use for missing values will need to be provided).

These functions and methods are currently under construction. Please let us know if there are
features that you require.

combine 15

Value

A single value of the same class as the most specific common ancestor (in class terms) of the input
values. This will contain the appropriate combination of the data in the input values.

Methods

The following methods are defined in the BiocGenerics package:

combine(x=ANY, missing) Return the first (x) argument unchanged.

combine(data.frame, data.frame) Combinestwo data.frame objects so that the resulting data. frame
contains all rows and columns of the original objects. Rows and columns in the returned value
are unique, that is, a row or column represented in both arguments is represented only once
in the result. To perform this operation, combine makes sure that data in shared rows and
columns are identical in the two data.frames. Data differences in shared rows and columns
usually cause an error. combine issues a warning when a column is a factor and the levels
of the factor in the two data.frames are different.

combine(matrix, matrix) Combined two matrix objects so that the resulting matrix contains
all rows and columns of the original objects. Both matricies must have dimnames. Rows
and columns in the returned value are unique, that is, a row or column represented in both
arguments is represented only once in the result. To perform this operation, combine makes
sure that data in shared rows and columns are all equal in the two matricies.

Additional combine methods are defined in the Biobase package for AnnotatedDataFrame, Assay-
Data, MIAME, and eSet objects.

Author(s)

Biocore

See Also

* combine,AnnotatedDataFrame,AnnotatedDataFrame-method, combine,AssayData,AssayData-
method, combine, MIAME ,MIAME-method, and combine,eSet,eSet-method in the Biobase
package for additional combine methods.

* merge for merging two data frames (or data-frame-like) objects.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

combine

showMethods ("combine™)

selectMethod(”combine”, c("ANY", "missing"))
selectMethod("combine”, c("data.frame"”, "data.frame"))
selectMethod("combine”, c("matrix”, "matrix"))

16 containsOutOfMemoryData

COMBINING TWO DATA FRAMES
HH -
x <- data.frame(x=1:5,
y=factor(letters[1:5], levels=letters[1:8]),
row.names=letters[1:5])
y <- data.frame(z=3:7,
y=factor(letters[3:7], levels=letters[1:8]),
row.names=letters[3:7])
combine(x,y)

w <- data.frame(w=4:8,
y=factor(letters[4:8], levels=letters[1:8]),
row.names=letters[4:8])

combine(w, x, y)

y is converted to 'factor' with different levels

df1 <- data.frame(x=1:5,y=letters[1:5], row.names=letters[1:5])
df2 <- data.frame(z=3:7,y=letters[3:7], row.names=letters[3:7])
try(combine(df1, df2)) # fails

solution 1: ensure identical levels

y1 <- factor(letters[1:5], levels=letters[1:7])

y2 <- factor(letters[3:7], levels=letters[1:7])

df1 <- data.frame(x=1:5,y=y1, row.names=letters[1:5])

df2 <- data.frame(z=3:7,y=y2, row.names=letters[3:7])

combine(df1, df2)

solution 2: force column to be 'character'

df1 <- data.frame(x=1:5,y=I(letters[1:5]), row.names=letters[1:5])
df2 <- data.frame(z=3:7,y=I(letters[3:7]), row.names=letters[3:7])
combine(df1, df2)

HHE m oo
COMBINING TWO MATRICES

#H# -
m <- matrix(1:20, nrow=5, dimnames=1ist(LETTERS[1:5], letters[1:4]))
combine(m[1:3,]1, m[4:5,])

combine(m[1:3, 1:31, m[3:5, 3:4]) # overlap

containsOutOfMemoryData
Does an object contain out-of-memory data?

Description

Some objects in Bioconductor can use on-disk or other out-of-memory representation for their data,
typically (but not necessarily) when the data is too big to fit in memory. For example the data in a
TxDb object is stored in an SQLite database, and the data in an HDF5Array object is stored in an
HDF5 file.

The containsOutOfMemoryData() function determines whether an object contains out-of-memory
data or not.

containsOutOfMemoryData 17

Note that objects with out-of-memory data are usually not compatible with a serialization/unserialization
roundtrip. More concretely, base: : saveRDS()/base: : readRDS() tend to silently break them!

See ?saveHDF5SummarizedExperiment in the HDFSArray package for a more extensive discus-
sion about this.

Usage

containsOutOfMemoryData(object)

Arguments

object The object to be tested.

Details

An object can store some of its data on disk and some of it in memory. This is the case for ex-
ample when a SummarizedExperiment object (or derivative) has some of its assays on disk (e.g. in
HDF5Matrix objects) and others in memory (e.g. in ordinary matrices and/or SparseMatrix objects).

Of course in this case, containsOutOfMemoryData() will still return TRUE. In other words, containsOutOfMemoryData(ob]
will only return FALSE when all the data in object resides in memory, that is, when the object can
safely be serialized.

Value

TRUE or FALSE.

Note
TO DEVELOPERS:

The BiocGenerics package also defines the following:

* A default containsOutOfMemoryData() method that returns TRUE if object is an S4 object
with at least one slot for which containsOutOfMemoryData() is TRUE (recursive definition),
and FALSE otherwise.

* A containsOutOfMemoryData() method for 1ist objects that returns TRUE if object has at
least one list element for which containsOutOfMemoryData() is TRUE (recursive definition),
and FALSE otherwise.

* A containsOutOfMemoryData() method for environment objects that returns TRUE if object
contains at least one object for which containsOutOfMemoryData() is TRUE (recursive defi-
nition), and FALSE otherwise.

* The OutOfMemoryObject class. This is a virtual S4 class with no slots that any class defined
in Bioconductor that represents out-of-memory objects should extend.

* A containsOutOfMemoryData() method for OutOfMemoryObject derivatives that returns
TRUE.

Therefore, if you implement a class that uses an out-of-memory representation, make sure that
it contains the OutOfMemoryObject class. This will make containsOutOfMemoryData() return
TRUE on your objects, so you don’t need to define a containsOutOfMemoryData() method for
them.

18 dbconn

See Also
* showMethods for displaying a summary of the methods defined for a given generic function.

* selectMethod for getting the definition of a specific method.

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

containsOutOfMemoryData
showMethods (”containsOutOfMemoryData”)

The default method:
selectMethod("containsOutOfMemoryData”, "ANY")

The method for list objects:
selectMethod("containsOutOfMemoryData”, "list")

The method for OutOfMemoryObject derivatives:
selectMethod(”containsOutOfMemoryData”, "OutOfMemoryObject”)

m <- matrix(@, nrow=7, ncol=10)
mLsample(length(m), 20)] <- runif(20)
containsOutOfMemoryData(m) # FALSE

library(SparseArray)
svt <- as(m, "SparseArray")
svt

containsOutOfMemoryData(m) # FALSE
containsOutOfMemoryData(list(m, svt)) # FALSE

library(HDF5Array)
M <- as(m, "HDF5Array")
M

containsOutOfMemoryData(M) # TRUE
containsOutOfMemoryData(list(m, svt, M)) # TRUE

dbconn Accessing SQLite DB information

Description

Get a connection object or file path for a SQLite DB

Usage

dbconn(x)
dbfile(x)

density 19

Arguments

X An object with a SQLite connection.

Value

dbconn returns a connection object to the SQLite DB containing x’s data.

dbfile returns a path (character string) to the SQLite DB (file) containing x’s data.

See Also

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

dbconn,AnnotationDb-method in the AnnotationDbi package for an example of a specific
dbconn method (defined for dbconn objects).

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

dbconn
showMethods ("dbconn")
dbfile
showMethods("dbfile")

library(AnnotationDbi)
showMethods ("dbconn™)
selectMethod("dbconn”, "AnnotationDb")

density Kernel density estimation

Description

The generic function density computes kernel density estimates.

NOTE: This man page is for the density S4 generic function defined in the BiocGenerics pack-
age. See ?stats::density for the default method (defined in the stats package). Bioconductor
packages can define specific methods for objects not supported by the default method.

Usage

density(x, ...)

Arguments

X, ... See ?stats::density.

20

Value

dge

See ?stats: :density for the value returned by the default method.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

See Also

stats: :density for the default density method.
showMethods for displaying a summary of the methods defined for a given generic function.
selectMethod for getting the definition of a specific method.

density,flowClust-method in the flowClust package for an example of a specific density
method (defined for flowClust objects).

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

density
showMethods("density")
selectMethod("density”, "ANY") # the default method

dge

Accessors and generic functions used in the context of count datasets

Description

These generic functions provide basic interfaces to operations on and data access to count datasets.

Usage

counts(object, ...)
counts(object, ...) <- value
design(object, ...)
design(object, ...) <- value
dispTable(object, ...)
dispTable(object, ...) <- value
sizeFactors(object, ...)
sizeFactors(object, ...) <- value
conditions(object, ...)
conditions(object, ...) <- value
estimateSizeFactors(object, ...)
estimateDispersions(object, ...)
plotDispEsts(object, ...)

dims 21

Arguments
object Object of class for which methods are defined, e.g., CountDataSet, DESeqSummarizedExperiment
or ExonCountSet.
value Value to be assigned to corresponding components of object; supported types
depend on method implementation.
Further arguments, perhaps used by metohds
Details

For the details, please consult the manual pages of the methods in the DESeq, DESeq2, and
DEXSeq packages and the package vignettes.

Author(s)
W. Huber, S. Anders

See Also

* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

dims Get the dimensions of each element of a list-like object

Description

Get the dimensions, number of rows, or number of columns, of each element of a list-like object.

Note that these functions are the vectorized versions of corresponding functions dim(), nrow(),
and ncol (), in the same fashion that 1engths() is the vectorized version of length.

Usage

dims(x, use.names=TRUE)
nrows(x, use.names=TRUE)
ncols(x, use.names=TRUE)

Arguments
X List-like object (or environment) where all the list elements are expected to be
array-like objects with the same number of dimensions.
use.names Logical indicating if the names on x should be propagated to the returned matrix

(as its rownames) or vector (as its names).

22 do.call

Value

For dims(): Typically a numeric matrix with one row per list element in x and one column per
dimension in these list elements (they’re all expected to have the same number of dimensions). The
i-th row in the returned matrix is a vector containing the dimensions of the i-th list element in x.
More formally:

dims(x)[i, 1 is dim(x[[i11)

for any valid i. By default the names on x, if any, are propagated as the rownames of the returned
matrix, unless use.names is set to FALSE.

For nrows () or ncols(): A numeric vector with one element per list element in x. The i-th element
in the returned vector is the number of rows (or columns) of the i-th list element in x. More formally:

nrows(x)[i] is nrow(x[[i]]) and ncols(x)[i] is ncol(x[[i]])

for any valid i. By default the names on x, if any, are propagated on the returned vector, unless
use.names is set to FALSE.

See Also

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

* dims,DataFrameList-method in the IRanges package for an example of a specific dims method
(defined for DataFrameList objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

dims
showMethods(”"dims")

library(IRanges)
showMethods(”"dims")
selectMethod("dims”, "DataFramelList")

do.call Execute a function call

Description

do.call constructs and executes a function call from a name or a function and a list of arguments
to be passed to it.

NOTE: This man page is for the do.call S4 generic function defined in the BiocGenerics package.
See ?base: :do.call for the default method (defined in the base package). Bioconductor packages
can define specific methods for objects not supported by the default method.

duplicated

Usage

23

do.call(what, args, quote=FALSE, envir=parent.frame())

Arguments

what

args

quote, envir

Value

The default method expects either a function or a non-empty character string
naming the function to be called. See ?base: :do.call for the details.

Specific methods can support other objects. Please refer to the documentation
of a particular method for the details.

The default method expects a list of arguments to the function call (the names
attribute of args gives the argument names). See ?base: :do.call for the de-
tails.

Specific methods can support other objects. Please refer to the documentation
of a particular method for the details.

See ?base: :do.call for a description of these arguments.

The result of the (evaluated) function call.

Specific methods defined in Bioconductor packages should behave as consistently as possible with

the default method.

See Also

* base::do.call for the default do.call method.

* showMethods for displaying a summary of the methods defined for a given generic function.

* selectMethod for getting the definition of a specific method.

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

do.call # note the dispatch on the 'what' and 'args' args only
showMethods ("do.call")
selectMethod("do.call”, c("ANY", "ANY")) # the default method

duplicated

Determine duplicate elements

Description

Determines which elements of a vector-like or data-frame-like object are duplicates of elements with
smaller subscripts, and returns a logical vector indicating which elements (rows) are duplicates.

NOTE: This man page is for the duplicated and anyDuplicated S4 generic functions defined in
the BiocGenerics package. See ?base: :duplicated for the default methods (defined in the base
package). Bioconductor packages can define specific methods for objects (typically vector-like or
data-frame-like) not supported by the default method.

24 duplicated

Usage

duplicated(x, incomparables=FALSE, ...)

anyDuplicated(x, incomparables=FALSE, ...)
Arguments

X A vector-like or data-frame-like object.

incomparables, ...

See ?base: :duplicated for a description of these arguments.

Value

The default duplicated method (see ?base::duplicated) returns a logical vector of length N
where N is:

¢ length(x) when x is a vector;

* nrow(x) when x is a data frame.
Specific duplicated methods defined in Bioconductor packages must also return a logical vector

of the same length as x when x is a vector-like object, and a logical vector with one element for
each row when x is a data-frame-like object.

The default anyDuplicated method (see ?base: :duplicated) returns a single non-negative inte-
ger and so must the specific anyDuplicated methods defined in Bioconductor packages.

anyDuplicated should always behave consistently with duplicated.

See Also

e base: :duplicated for the default duplicated and anyDuplicated methods.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* duplicated,Rle-method in the S4Vectors package for an example of a specific duplicated
method (defined for Rle objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

duplicated
showMethods("duplicated”)
selectMethod("duplicated”, "ANY") # the default method

anyDuplicated
showMethods ("anyDuplicated")
selectMethod("anyDuplicated”, "ANY") # the default method

eval 25

eval Evaluate an (unevaluated) expression

Description

eval evaluates an R expression in a specified environment.

NOTE: This man page is for the eval S4 generic function defined in the BiocGenerics package.
See ?base: :eval for the default method (defined in the base package). Bioconductor packages can
define specific methods for objects not supported by the default method.

Usage

eval (expr, envir=parent.frame(),
enclos=if (is.list(envir) || is.pairlist(envir))
parent.frame() else baseenv())

Arguments
expr An object to be evaluated. May be any object supported by the default method
(see ?base: :eval) or by the additional methods defined in Bioconductor pack-
ages.
envir The environment in which expr is to be evaluated. May be any object supported
by the default method (see ?base: :eval) or by the additional methods defined
in Bioconductor packages.
enclos See ?base: :eval for a description of this argument.
Value

See ?base: :eval for the value returned by the default method.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

See Also

* base: :eval for the default eval method.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* eval,expression, Vector-method in the IRanges package for an example of a specific eval
method (defined for when the expr and envir arguments are an expression and a Vector
object, respectively).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

eval # note the dispatch on 'expr' and 'envir' args only
showMethods ("eval”)
selectMethod("”eval”, c("ANY", "ANY")) # the default method

26 Extremes

evalq Evaluate an (unevaluated) expression

Description

evalq evaluates an R expression (the quoted form of its first argument) in a specified environment.

NOTE: This man page is for the evalq wrapper defined in the BiocGenerics package. See ?base: :evalq
for the function defined in the base package. This wrapper correctly delegates to the eval generic,
rather than base: :eval.

Usage

evalq(expr, envir=parent.frame(),
enclos=if (is.list(envir) || is.pairlist(envir))
parent.frame() else baseenv())

Arguments
expr Quoted to form the expression that is evaluated.
envir The environment in which expr is to be evaluated. May be any object supported
by methods on the eval generic.
enclos See ?base: :evalq for a description of this argument.
Value

See ?base: :evalq.

See Also

e base::evalq for the base evalq function.

Examples

evalg # note just a copy of the original evalq

Extremes Maxima and minima

Description

pmax, pmin, pmax.int and pmin. int return the parallel maxima and minima of the input values.

NOTE: This man page is for the pmax, pmin, pmax.int and pmin.int S4 generic functions de-
fined in the BiocGenerics package. See ?base: : pmax for the default methods (defined in the base
package). Bioconductor packages can define specific methods for objects (typically vector-like or
matrix-like) not supported by the default methods.

Extremes 27

Usage

pmax(..., na.rm=FALSE)

pmin(..., na.rm=FALSE)

pmax.int(..., na.rm=FALSE)

pmin.int(..., na.rm=FALSE)
Arguments

One or more vector-like or matrix-like objects.

na.rm See ?base: : pmax for a description of this argument.

Value

See ?base: : pmax for the value returned by the default methods.

Specific methods defined in Bioconductor packages will typically return an object of the same class
as the input objects.

See Also

¢ base: :pmax for the default pmax, pmin, pmax.int and pmin.int methods.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* pmax,Rle-method in the S4Vectors package for an example of a specific pmax method (defined
for Rle objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

pmax
showMethods ("pmax")
selectMethod("pmax”, "ANY") # the default method

pmin
showMethods ("pmin™)
selectMethod("pmin”, "ANY") # the default method

pmax.int
showMethods("pmax.int")
selectMethod("pmax.int”, "ANY") # the default method

pmin.int
showMethods ("pmin.int")
selectMethod(”"pmin.int"”, "ANY") # the default method

28 format

fileName Accessing the file name of an object

Description

Get the file name of an object.

Usage
fileName(object, ...)
Arguments
object An object with a file name.
Additional arguments, for use in specific methods.
See Also

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

fileName,MSmap-method in the MSnbase package for an example of a specific fileName
method (defined for MSmap objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

fileName
showMethods ("fileName")

library(MSnbase)
showMethods ("fileName")
selectMethod(”"fileName", "MSmap")

format Format an R object for pretty printing

Description

Turn an R object into a character vector used for pretty printing.

NOTE: This man page is for the format S4 generic function defined in the BiocGenerics package.
See ?base: : format for the default method (defined in the base package). Bioconductor packages
can define specific methods for objects not supported by the default method.

funprog 29

Usage
format(x, ...)
Arguments
X The object to format.
Additional arguments, for use in specific methods.
Value

A character vector that provides a "compact representation” of x. This character vector is typically
used by print.data. frame to display the columns of a data.frame object. See ?base: :print.data.frame
for more information.

See Also
* base::format for the default format method.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

format
showMethods ("format")
selectMethod("format”, "ANY") # the default method

funprog Common higher-order functions in functional programming languages

Description

Reduce uses a binary function to successively combine the elements of a given list-like or vector-like
object and a possibly given initial value. Filter extracts the elements of a list-like or vector-like
object for which a predicate (logical) function gives true. Find and Position give the first or last
such element and its position in the object, respectively. Map applies a function to the corresponding
elements of given list-like or vector-like objects.

NOTE: This man page is for the Reduce, Filter, Find, Map and Position S4 generic functions
defined in the BiocGenerics package. See ?base: :Reduce for the default methods (defined in the
base package). Bioconductor packages can define specific methods for objects (typically list-like
or vector-like) not supported by the default methods.

30 funprog

Usage

Reduce(f, x, init, right=FALSE, accumulate=FALSE, simplify=TRUE)
Filter(f, x)
Find(f, x, right=FALSE, nomatch=NULL)

Map(f, ...)
Position(f, x, right=FALSE, nomatch=NA_integer_)

Arguments

f, init, right, accumulate, nomatch, simplify
See ?base: :Reduce for a description of these arguments.

X A list-like or vector-like object.

One or more list-like or vector-like objects.

Value

See ?base: :Reduce for the value returned by the default methods.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default methods.

See Also

e base: :Reduce for the default Reduce, Filter, Find, Map and Position methods.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

Reduce,List-method in the S4Vectors package for an example of a specific Reduce method
(defined for List objects).

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

Reduce # note the dispatch on the 'x' arg only
showMethods ("Reduce")
selectMethod("Reduce”, "ANY") # the default method

Filter # note the dispatch on the 'x' arg only
showMethods("Filter")
selectMethod("Filter"”, "ANY") # the default method

Find # note the dispatch on the 'x' arg only
showMethods("Find")
selectMethod("Find”, "ANY") # the default method

Map # note the dispatch on the arg only
showMethods ("Map")

selectMethod(”"Map"”, "ANY") # the default method

Position # note the dispatch on the 'x' arg only

get 31

showMethods("Position™)
selectMethod("Position”, "ANY") # the default method

get Return the value of a named object

Description

Search for an object with a given name and return it.

NOTE: This man page is for the get and mget S4 generic functions defined in the BiocGenerics
package. See ?base: :get for the default methods (defined in the base package). Bioconductor
packages can define specific methods for objects (list-like or environment-like) not supported by
the default methods.

Usage

get(x, pos=-1, envir=as.environment(pos), mode="any", inherits=TRUE)
mget(x, envir, mode="any", ifnotfound, inherits=FALSE)

Arguments
X For get: A variable name (or, more generally speaking, a key), given as a single
string.
For mget: A vector of variable names (or keys).
envir Where to look for the key(s). Typically a list-like or environment-like object.

pos, mode, inherits, ifnotfound
See ?base: : get for a description of these arguments.

Details

See ?base: : get for details about the default methods.

Value

For get: The value corresponding to the specified key.

For mget: The list of values corresponding to the specified keys. The returned list must have one
element per key, and in the same order as in x.

See ?base: : get for the value returned by the default methods.

See Also

¢ base: :get for the default get and mget methods.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

» get, ANY,Bimap,missing-method in the AnnotationDbi package for an example of a specific
get method (defined for Bimap objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

32 grep

Examples

get # note the dispatch on the 'x', 'pos' and 'envir' args only
showMethods("get")
selectMethod("get"”, c("ANY", "ANY", "ANY")) # the default method

mget # note the dispatch on the 'x' and 'envir' args only
showMethods ("mget")

selectMethod("mget”, c("ANY", "ANY")) # the default method

grep Pattern Matching and Replacement

Description

Search for matches to argument ’pattern’ within each element of a character vector.

NOTE: This man page is for the grep and grepl S4 generic functions defined in the BiocGenerics
package. See ?base: :grep for the default methods (defined in the base package). Bioconductor
packages can define specific methods for objects not supported by the default method.

Usage

grep(pattern, x, ignore.case = FALSE, perl = FALSE, value = FALSE,
fixed = FALSE, useBytes = FALSE, invert = FALSE)
grepl(pattern, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

Arguments
pattern The pattern for searching in x, such as a regular expression.
X The character vector (in the general sense) to search.

ignore.case, perl, value, fixed, useBytes, invert
See ?base: : grep for a description of these arguments.

Value

See ?base: : grep for the value returned by the default method.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

See Also
e base: :grep for the default grep and grepl methods.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

image 33

Examples

[}

grep # note the dispatch on 'pattern' and 'x' args only
showMethods("grep”)
selectMethod("grep”, "ANY") # the default method

image Display a color image

Description

Creates a grid of colored or gray-scale rectangles with colors corresponding to the values in z. This
can be used to display three-dimensional or spatial data aka images.

NOTE: This man page is for the image S4 generic function defined in the BiocGenerics package.
See ?graphics::image for the default method (defined in the graphics package). Bioconductor
packages can define specific methods for objects not supported by the default method.

Usage

image(x, ...)

Arguments

X, ... See ?graphics: :image.

Details

See ?graphics: : image for the details.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

See Also

e graphics: :image for the default image method.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* image,AffyBatch-method in the affy package for an example of a specific image method (de-
fined for AffyBatch objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

34 IQR

Examples

image
showMethods ("image")
selectMethod("image", "ANY") # the default method

library(affy)

showMethods ("image")

The image() method for AffyBatch objects:
selectMethod("image"”, "AffyBatch")

IQR The Interquartile Range

Description

Compute the interquartile range for a vector.

NOTE: This man page is for the IQR S4 generic function defined in the BiocGenerics package. See
?stats: :IQR for the default method (defined in the stats package). Bioconductor packages can
define specific methods for objects not supported by the default method.

Usage
IQR(x, na.rm = FALSE, type = 7)

Arguments

X, ha.rm, type See ?stats::IQR.

Value

See ?stats: : IQR for the value returned by the default method.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

See Also
e stats::IQR for the default IQR method.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

IQR
showMethods ("IQR")
selectMethod("IQR", "ANY") # the default method

is.unsorted 35

is.unsorted Test if a vector-like object is not sorted

Description

Test if a vector-like object is not sorted, without the cost of sorting it.

NOTE: This man page is for the is.unsorted S4 generic function defined in the BiocGenerics
package. See ?base: :is.unsorted for the default method (defined in the base package). Biocon-
ductor packages can define specific methods for objects (typically vector-like) not supported by the

default method.
Usage

is.unsorted(x, na.rm=FALSE, strictly=FALSE, ...)
Arguments

X A vector-like object.

na.rm, strictly See ?base::is.unsorted for a description of these arguments.

Value

Additional arguments, for use in specific methods.

Note that base::is.unsorted (the default method) only takes the x, na.rm,
and strictly arguments.

See ?base: :is.unsorted for the value returned by the default method.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

Note

TO DEVELOPERS:

The is.unsorted method for specific vector-like objects should adhere to the same underlying
order used by the order, sort, and rank methods for the same objects.

See Also

base: :is.unsorted for the default is.unsorted method.
showMethods for displaying a summary of the methods defined for a given generic function.
selectMethod for getting the definition of a specific method.

is.unsorted,GenomicRanges-method in the GenomicRanges package for an example of a spe-
cific is.unsorted method (defined for GenomicRanges objects).

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

36 lapply

Examples

(]

is.unsorted # note the dispatch on the 'x' arg only
showMethods("is.unsorted"”)

selectMethod("is.unsorted”, "ANY") # the default method

lapply Apply a function over a list-like or vector-like object

Description

lapply returns a list of the same length as X, each element of which is the result of applying FUN to
the corresponding element of X.

sapply is a user-friendly version and wrapper of lapply by default returning a vector, matrix or,
if simplify="array”, an array if appropriate, by applying simplify2array(). sapply(x, f,
simplify=FALSE, USE.NAMES=FALSE) is the same as lapply(x,).

NOTE: This man page is for the lapply and sapply S4 generic functions defined in the Bioc-
Generics package. See ?base::lapply for the default methods (defined in the base package).
Bioconductor packages can define specific methods for objects (typically list-like or vector-like)
not supported by the default methods.

Usage

lapply(X, FUN, ...)

sapply(X, FUN, ..., simplify=TRUE, USE.NAMES=TRUE)
Arguments

X A list-like or vector-like object.

FUN, ..., simplify, USE.NAMES

See ?base: : lapply for a description of these arguments.

Value

See ?base: : lapply for the value returned by the default methods.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default methods. In particular, lapply and sapply(simplify=FALSE) should always return a
list.

See Also

e base::lapply for the default lapply and sapply methods.
showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

* lapply,List-method in the S4Vectors package for an example of a specific lapply method
(defined for List objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

longForm 37

Examples

lapply # note the dispatch on the 'X' arg only
showMethods ("lapply")
selectMethod("lapply”, "ANY") # the default method

sapply # note the dispatch on the 'X' arg only
showMethods ("sapply"”)
selectMethod("sapply”, "ANY") # the default method

longForm Turn object into long form

Description

A generic function that returns the long form of an object.

Usage
longForm(object, ...)
Arguments
object A data object.
Additional arguments, for use in specific methods.
Value

The long form version of the original object. This is typically a data-frame-like object.

See Also

* showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

longForm,MultiAssayExperiment-method in the MultiAssayExperiment package for an ex-
ample of a specific longForm method (defined for MultiAssayExperiment objects).

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

longForm
showMethods (”longForm")

library(MultiAssayExperiment)
showMethods (”longForm")
selectMethod("longForm”, "MultiAssayExperiment")

38 mad

mad Median Absolute Deviation

Description

Compute the median absolute deviation for a vector, dispatching only on the first argument, x.

NOTE: This man page is for the mad S4 generic function defined in the BiocGenerics package. See
?stats: :mad for the default method (defined in the stats package). Bioconductor packages can
define specific methods for objects not supported by the default method.

Usage

mad(x, center = median(x), constant = 1.4826,
na.rm = FALSE, low = FALSE, high = FALSE)

Arguments

X, center, constant, na.rm, low, high
See ?stats::mad.

Value

See ?stats: :mad for the value returned by the default method.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

See Also

* stats: :mad for the default mad method.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

mad
showMethods ("mad")
selectMethod("mad”, "ANY") # the default method

mapply 39

mapply Apply a function to multiple list-like or vector-like arguments

Description

mapply is a multivariate version of sapply. mapply applies FUN to the first elements of each . ..
argument, the second elements, the third elements, and so on. Arguments are recycled if necessary.

NOTE: This man page is for the mapply S4 generic function defined in the BiocGenerics package.
See ?base: :mapply for the default method (defined in the base package). Bioconductor packages
can define specific methods for objects (typically list-like or vector-like) not supported by the default
methods.

Usage

mapply(FUN, ..., MoreArgs=NULL, SIMPLIFY=TRUE, USE.NAMES=TRUE)

Arguments

FUN, MoreArgs, SIMPLIFY, USE.NAMES
See ?base: :mapply for a description of these arguments.

One or more list-like or vector-like objects of strictly positive length, or all of
zero length.

Value

See ?base: :mapply for the value returned by the default method.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

See Also

e base: :mapply for the default mapply method.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

' 1

mapply # note the dispatch on the
showMethods ("mapply"”)
selectMethod("mapply”, "ANY") # the default method

arg only

40 match

match Value matching

Description

match returns a vector of the positions of (first) matches of its first argument in its second.

%in% is a binary operator that returns a logical vector of the length of its left operand indicating if
the elements in it have a match or not.

NOTE: This man page is for the match and %in% S4 generic functions defined in the BiocGenerics
package. See ?base: :match for the default methods (defined in the base package). Bioconductor
packages can define specific methods for objects (typically vector-like) not supported by the default
methods.

Usage

match(x, table, nomatch=NA_integer_, incomparables=NULL, ...)

X %in% table

Arguments

X, table Vector-like objects (typically of the same class, but not necessarily).

nomatch, incomparables
See ?base: :match for a description of these arguments.

Additional arguments, for use in specific methods.

Value

The same as the default methods (see ?base: :match for the value returned by the default methods).

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default methods.

Note

The default base: :match method (defined in the base package) doesn’t have the ... argument.
We’ve added it to the generic function defined in the BiocGenerics package in order to allow spe-
cific methods to support additional arguments if needed.

See Also

* base: :match for the default match and %in% methods.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* match,Hits,Hits-method and %in%,Rle,ANY-method in the S4Vectors package for examples
of specific match and %in% methods (defined for Hits and Rle objects, respectively).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

mean 41

Examples

match # note the dispatch on the 'x' and 'table' args only
showMethods ("match™)
selectMethod("match”, c(”"ANY", "ANY")) # the default method

S %in%
showMethods ("%in%")
selectMethod("%in%", c("ANY", "ANY")) # the default method

mean Arithmetic Mean

Description

Generic function for the (trimmed) arithmetic mean.

NOTE: This man page is for the mean S4 generic function defined in the BiocGenerics package.
See ?base: :mean for the default method (defined in the base package). Bioconductor packages can
define specific methods for objects (typically vector-like) not supported by the default method.

Usage
mean(x, ...)
Arguments
X typically a vector-like object
see mean
Value

See ?base: :mean for the value returned by the default method.

Specific methods defined in Bioconductor packages will typically return an object of the same class
as the input object.

See Also

* base: :mean for the default mean method.

* showMethods for displaying a summary of the methods defined for a given generic function.

* selectMethod for getting the definition of a specific method.

* mean,Rle-method in the S4Vectors package for an example of a specific nean method (defined
for Rle objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

mean
showMethods ("mean™)
selectMethod("mean”, "ANY") # the default method

42 normalize

normalize Normalize an object

Description

A generic function which normalizes an object containing microarray data or other data. Normal-
ization is intended to remove from the intensity measures any systematic trends which arise from
the microarray technology rather than from differences between the probes or between the target
RNA samples hybridized to the arrays.

Usage
normalize(object, ...)
Arguments
object A data object, typically containing microarray data.
Additional arguments, for use in specific methods.
Value

An object containing the normalized data.

See Also

* showMethods for displaying a summary of the methods defined for a given generic function.

* selectMethod for getting the definition of a specific method.

» normalize,AffyBatch-method in the affy package and normalize, MSnExp-method in the MSnbase

package for examples of specific normalize methods (defined for AffyBatch and MSnExp
objects, respectively).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

normalize
showMethods(”"normalize")

library(affy)
showMethods(”"normalize")
selectMethod(”"normalize”, "AffyBatch")

nrow 43

nrow The number of rows/columns of an array-like object

Description

Return the number of rows or columns present in an array-like object.

NOTE: This man page is for the nrow, ncol, NROW and NCOL S4 generic functions defined in the
BiocGenerics package. See ?base: :nrow for the default methods (defined in the base package).
Bioconductor packages can define specific methods for objects (typically matrix- or array-like) not
supported by the default methods.

Usage

nrow(x)
ncol(x)
NROW(x)
NCOL (x)

Arguments

X A matrix- or array-like object.

Value

A single integer or NULL.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default methods.

See Also

e base: :nrow for the default nrow, ncol, NROW and NCOL methods.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

» nrow,DataFrame-method in the S4Vectors package for an example of a specific nrow method
(defined for DataFrame objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

nrow
showMethods ("nrow")
selectMethod("nrow”, "ANY") # the default method

ncol
showMethods ("ncol”)
selectMethod(”"ncol”, "ANY") # the default method

44 Ontology

NROW
showMethods ("NROW")
selectMethod ("NROW”, "ANY") # the default method

NCOL
showMethods ("NCOL")
selectMethod(”NCOL", "ANY") # the default method

Ontology Generic Ontology getter

Description

Get the Ontology of an object.

Usage

Ontology(object)
Arguments

object An object with an Ontology.
See Also

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

Ontology,GOTerms-method in the AnnotationDbi package for an example of a specific Ontology
method (defined for GOTerms objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

Ontology
showMethods("Ontology")

library(AnnotationDbi)
showMethods("Ontology")
selectMethod("Ontology”, "GOTerms")

order 45

order Ordering permutation

Description

order returns a permutation which rearranges its first argument into ascending or descending order,
breaking ties by further arguments.

NOTE: This man page is for the order S4 generic function defined in the BiocGenerics package.
See ?base: :order for the default method (defined in the base package). Bioconductor packages
can define specific methods for objects (typically vector-like) not supported by the default method.

Usage

order(..., na.last=TRUE, decreasing=FALSE, method=c("auto”, "shell”, "radix"))

Arguments

One or more vector-like objects, all of the same length.

na.last, decreasing, method
See ?base: :order for a description of these arguments.

Value

The default method (see ?base: : order) returns an integer vector of length N where N is the com-
mon length of the input objects. This integer vector represents a permutation of N elements and can
be used to rearrange the first argument in . . . into ascending or descending order (by subsetting it).

Specific methods defined in Bioconductor packages should also return an integer vector representing
a permutation of N elements.

Note

TO DEVELOPERS:

Specific order methods should preferably be made "stable" for consistent behavior across platforms
and consistency with base: :order (). Note that C gsort() is not "stable" so order methods that use
gsort() at the C-level need to ultimately break ties by position, which can easily be done by adding
a little extra code at the end of the comparison function passed to gsort().

order(x, decreasing=TRUE) is not always equivalent to rev(order(x)).

order, sort, and rank methods for specific vector-like objects should adhere to the same underly-
ing order that should be conceptually defined as a binary relation on the set of all possible vector
values. For completeness, this binary relation should also be incarnated by a <= method.

46 organism_species

See Also

* base: :order for the default order method.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* order,IntegerRanges-method in the IRanges package for an example of a specific order
method (defined for IntegerRanges objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

order
showMethods ("order"”)
selectMethod("order”, "ANY") # the default method

organism_species Organism and species accessors

Description

Get or set the organism and/or species of an object.

Usage

organism(object)
organism(object) <- value

species(object)
species(object) <- value

Arguments
object An object to get or set the organism or species of.
value The organism or species to set on object.

Value

organism should return the scientific name (i.e. genus and species, or genus and species and sub-
species) of the organism. Preferably in the format "Genus species” (e.g. "Homo sapiens”) or
"Genus species subspecies” (e.g. "Homo sapiens neanderthalensis™).

species should of course return the species of the organism. Unfortunately there is a long history
of misuse of this accessor in Bioconductor so its usage is now discouraged (starting with BioC 3.1).

organism_species 47

Note

TO DEVELOPERS:

species has been historically misused in many places in Bioconductor and is redundant with
organism. So implementing the species accessor is now discouraged (starting with BioC 3.1).
The organism accessor (returning the scientific name) should be implemented instead.

See Also

e http://bioconductor.org/packages/release/BiocViews.html#___Organism for brows-
ing the annotation packages currently available in Bioconductor by organism.

* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* organism,character-method and organism,chromLocation-method in the annotate package for
examples of specific organism methods (defined for character and chromLocation objects).

* species,AnnotationDb-method in the AnnotationDbi package for an example of a specific
species method (defined for AnnotationDb objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

organism() getter:
organism
showMethods ("organism")

library(annotate)

showMethods ("organism")
selectMethod("organism”, "character")
selectMethod("organism”, "chromLocation”)

organism() setter:
“organism<--
showMethods ("organism<-")

species() getter:
species
showMethods("species™)

library(AnnotationDbi)
selectMethod("”species”, "AnnotationDb")

species() setter:
“species<--
showMethods ("species<-")

http://bioconductor.org/packages/release/BiocViews.html#___Organism

48 paste

paste Concatenate strings

Description

paste concatenates vectors of strings or vector-like objects containing strings.

NOTE: This man page is for the paste S4 generic function defined in the BiocGenerics package.
See ?base: :paste for the default method (defined in the base package). Bioconductor packages
can define specific methods for objects (typically vector-like objects containing strings) not sup-
ported by the default method.

Usage

paste(..., sep=" ", collapse=NULL, recycle@=FALSE)

Arguments

One or more vector-like objects containing strings.

sep, collapse, recycled
See ?base: :paste for a description of these arguments.

Value

See ?base: : paste for the value returned by the default method.

Specific methods defined in Bioconductor packages will typically return an object of the same class
as the input objects.

See Also

e base: :paste for the default paste method.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* paste,Rle-method in the S4Vectors package for an example of a specific paste method (de-
fined for Rle objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

paste
showMethods("paste”)
selectMethod("paste”, "ANY") # the default method

paste2 49

paste2 Concatenate strings (binary form)

Description

paste2() is a simplified version of paste@() that takes only two arguments and follows the same
rules as arithmetic operations (+, *, etc...) for recycling and propagation of names, dimensions, and
dimnames.

add_prefix() and add_suffix() are simple wrappers around paste2() provided for convenience
and code readability.

Usage

paste2(x, y)

add_prefix(x, prefix="")
add_suffix(x, suffix="")

Arguments

X, Y, prefix, suffix
Vector- or array-like objects containing strings.

Details

Unlike paste@(), paste2() only takes two arguments: x and y. It’s defined as an S4 generic that
dispatches on its two arguments and with methods for ordinary vectors and arrays. Bioconductor
packages can define methods for other vector-like or array-like objects that contain strings.

paste2() follows the same rules as arithmetic operations (+, *, etc...) for recycling and propagation
of names, dimensions, and dimnames:

* Recycling: The longer argument "wins" i.e. the shorter argument is recycled to the length
of the longer (with a warning if the length of the latter is not a multiple of the length of the
former). There’s one important exception to this rule: if one of the two arguments has length
0 then no recycling is performed and a zero-length vector is returned.

* Propagation of names: The longer argument also wins. If the two arguments have the same
length then the names on the first argument are propagated, if any. Otherwise the names on
the second argument are propagated, if any.

* Propagation of dimensions and dimnames: If x and y are both arrays, then they must be
conformable i.e. have the same dimensions. In this case the result of paste2(x, y) is a also
an array of same dimensions. Furthermore it will have dimnames(x) on it if dimnames(x) is
not NULL, otherwise it will have dimnames(y) on it.

add_prefix(x, prefix="") and add_suffix(x, suffix="") are convenience wrappers that just
do paste2(prefix, x) and paste2(x, suffix), respectively.

50 paste2

Value

If x and y are both vectors, a character vector parallel to the longer vector is returned.
If one of x or y is an array and the other one a vector, an array parallel to the input array is returned.

If x and y are both arrays (in which case they must be conformable), an array parallel to x and y is
returned.

See Also

e base::paste0 in base R.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* paste2,DelayedArray,Delayed Array-method in the DelayedArray package for an example of
a specific paste2 method (defined for DelayedArray objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

B oo
The paste2() generic and methods
B = m o mmmmm

paste2 # note the dispatch on 'x' and 'y
showMethods ("paste2")

B m o o
paste@() vs paste2()
B m o

Propagation of names:

x <- c(A="foo", B="bar")

paste@(x, "XX") # names are lost

paste2(x, "XX") # names are propagated

paste2(x, setNames(1:6, letters[1:6])) # longer argument "wins"

If 'x' or 'y' has length 0:
paste@(x, character(@)) # unname(x)
paste2(x, character(@)) # character(0)

Propagation of dimensions and dimnames:

m <- matrix(1:12, ncol=3, dimnames=1list(NULL, LETTERS[1:31))

pasted(m, letters[1:4]) # dimensions and dimnames are lost

paste2(m, letters[1:4]) # dimensions are preserved and dimnames are
propagated

B m oo
add_prefix() and add_suffix()
HHE = m o m

m2 <- add_prefix(m, "ID") # same as paste2("ID", m)
add_suffix(m2, ".fasta”) # same as paste2(m2, ".fasta")

path

51

path Accessing the path of an object

Description

Get or set the path of an object.

Usage

path(object, ...)
path(object, ...) <- value

basename(path, ...)
basename(path, ...) <- value

dirname(path, ...)
dirname(path, ...) <- value

The purpose of the following methods is to make the basename() and
dirname() getters work out-of-the-box on any object for which the
path() getter works.

S4 method for signature 'ANY'
basename(path, ...)

S4 method for signature 'ANY'
dirname(path, ...)

The purpose of the following replacement methods is to make the
basename() and dirname() setters work out-of-the-box on any object
for which the path() getter and setter work.
S4 replacement method for signature 'character'
basename(path, ...) <- value

S4 replacement method for signature 'ANY'
basename(path, ...) <- value

S4 replacement method for signature 'character
dirname(path, ...) <- value

S4 replacement method for signature 'ANY'

dirname(path, ...) <- value
Arguments
object An object containing paths. Even though it will typically contain a single path,

object can actually contain an arbitrary number of paths.

52 path
Additional arguments, for use in specific methods.
value For path<-, the paths to set on object.
For basename<- or dirname<-, the basenames or dirnames to set on path.
path A character vector or an object containing paths.
Value

A character vector for path(object), basename(path), and dirname(path). Typically of length
1 but not necessarily. Possibly with names on it for path(object).

See Also

base: :basename for the functions the basename and dirname generics are based on.
showMethods for displaying a summary of the methods defined for a given generic function.
selectMethod for getting the definition of a specific method.

path,RsamtoolsFile-method in the Rsamtools package for an example of a specific path
method (defined for RsamtoolsFile objects).

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

T
GENERIC FUNCTIONS AND DEFAULT METHODS
HHE =

path

showMethods("path”)

“path<--
showMethods ("path<-")

basename
showMethods("basename”)

“basename<-"
showMethods ("basename<-")

dirname
showMethods ("dirname")

“dirname”
showMethods ("dirname<-")

Default basename() and dirname() getters:
selectMethod("basename”, "ANY")
selectMethod("dirname”, "ANY")

Default basename() and dirname() setters:
selectMethod(”"basename<-", "character")

plotMA

selectMethod("basename<-", "ANY")

selectMethod("dirname<-", "character")

selectMethod("dirname<-", "ANY")

#H -
#i# OBJECTS CONTAINING PATHS

#H -

Let's define a simple class to represent objects that contain paths:
setClass("A", slots=c(stuff="ANY", path="character"”))

a <- new("A", stuff=runif(b),
path=c(one="path/to/file1"”, two="path/to/file2"))

path() getter:
setMethod("path”, "A", function(object) object@path)

path(a)

Because the path() getter works on 'a', now the basename() and
dirname() getters also work:
basename(a)

dirname(a)

path() setter:
setReplaceMethod("path”, "A",
function(object, ..., value)
{
if (length(list(...)) !'=oL) {
dots <- match.call(expand.dots=FALSE)[[3L]]
stop(BiocGenerics:: :unused_arguments_msg(dots))
}
object@path <- value
object

)

a <- new("A", stuff=runif(5))
path(a) <- c(one="path/to/filel”, two="path/to/file2")
path(a)

[

Because the path() getter and setter work on , now the basename()
and dirname() setters also work:

basename(a) <- toupper(basename(a))

path(a)

dirname(a) <- "~/MyDataFiles"

path(a)

a

plotMA MA-plot: plot differences versus averages for high-throughput data

54 plotPCA

Description

A generic function which produces an MA-plot for an object containing microarray, RNA-Seq or

other data.
Usage
plotMA(object, ...)
Arguments
object A data object, typically containing count values from an RNA-Seq experiment
or microarray intensity values.
Additional arguments, for use in specific methods.
Value

Undefined. The function exists for its side effect, producing a plot.

See Also
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* plotMA in the limma package for a function with the same name that is not dispatched through
this generic function.

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

showMethods ("plotMA™)

suppressWarnings(
if(require("DESeq2"))
example("plotMA”, package="DESeq2"”, local=TRUE)

plotPCA PCA-plot: Principal Component Analysis plot

Description

A generic function which produces a PCA-plot.

Usage

plotPCA(object, ...)

rank 55

Arguments
object A data object, typically containing gene expression information.
Additional arguments, for use in specific methods.
Value

Undefined. The function exists for its side effect, producing a plot.

See Also
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.
* plotPCA in the DESeq2 package for an example method that uses this generic.

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

showMethods ("plotPCA")

suppressWarnings(
if(require("DESeq2"))
example("plotPCA", package="DESeq2", local=TRUE)

rank Ranks the values in a vector-like object

Description

Returns the ranks of the values in a vector-like object. Ties (i.e., equal values) and missing values
can be handled in several ways.

NOTE: This man page is for the rank S4 generic function defined in the BiocGenerics package.
See ?base: : rank for the default method (defined in the base package). Bioconductor packages can
define specific methods for objects not supported by the default method.

Usage

rank(x, na.last=TRUE,
ties.method=c("average"”, "first”, "last”, "random”,

)

n

n n i3 n
max", "min"),

56 rank

Arguments

X A vector-like object.

na.last, ties.method
See ?base: : rank for a description of these arguments.

Additional arguments, for use in specific methods.

Note that base::rank (the default method) only takes the x, na.last, and
ties.method arguments.

Value

See ?base: : rank for the value returned by the default method.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

Note

TO DEVELOPERS:
See note in ?BiocGenerics: :order about "stable" order.

order, sort, and rank methods for specific vector-like objects should adhere to the same underly-
ing order that should be conceptually defined as a binary relation on the set of all possible vector
values. For completeness, this binary relation should also be incarnated by a <= method.

See Also

* base: :rank for the default rank method.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* rank,Vector-method in the S4Vectors package for an example of a specific rank method (de-
fined for Vector objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

rank # note the dispatch on the 'x' arg only
showMethods("rank™)

selectMethod("rank”, "ANY") # the default method

relist 57

relist Re-listing an unlist()ed object

Description

relist is a generic function with a few methods in order to allow easy inversion of unlist(x).

NOTE: This man page is for the relist S4 generic function defined in the BiocGenerics package.
See ?utils::relist for the default method (defined in the utils package). Bioconductor packages
can define specific methods for objects not supported by the default method.

Usage

relist(flesh, skeleton)

Arguments
flesh A vector-like object.
skeleton A list-like object. Only the "shape" (i.e. the lengths of the individual list ele-
ments) of skeleton matters. Its exact content is ignored.
Value

A list-like object with the same "shape" as skeleton and that would give flesh back if unlist()ed.

See Also

e utils::relist for the default relist method.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* relist, ANY,List-method in the IRanges package for an example of a specific relist method
(defined for when skeleton is a List object).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

relist
showMethods("relist")
selectMethod("relist”, c("ANY", "ANY")) # the default method

58 rep

rep Replicate elements of a vector-like object

Description

rep.int replicates the elements in x.

NOTE: This man page is for the rep. int S4 generic function defined in the BiocGenerics package.
See ?base: :rep. int for the default method (defined in the base package). Bioconductor packages
can define specific methods for objects (typically vector-like) not supported by the default method.

Usage

rep.int(x, times)

Arguments

X The object to replicate (typically vector-like).

times See ?base: :rep.int for a description of this argument.
Value

See ?base: :rep.int for the value returned by the default method.

Specific methods defined in Bioconductor packages will typically return an object of the same class
as the input object.

See Also

e base::rep.int for the default rep. int method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

rep.int,Rle-method in the S4Vectors package for an example of a specific rep.int method
(defined for Rle objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

rep.int
showMethods("rep.int")
selectMethod("rep.int"”, "ANY") # the default method

residuals

59

residuals Extract model residuals

Description

residuals is a generic function which extracts model residuals from objects returned by modeling
functions.

NOTE: This man page is for the residuals S4 generic function defined in the BiocGenerics pack-
age. See ?stats: :residuals for the default method (defined in the stats package). Bioconductor
packages can define specific methods for objects not supported by the default method.

Usage

residuals(object, ...)
Arguments

object, ... See ?stats::residuals.
Value

Residuals extracted from the object object.

See Also

stats::residuals for the default residuals method.
showMethods for displaying a summary of the methods defined for a given generic function.
selectMethod for getting the definition of a specific method.

residuals,PLMset-method in the affyPLM package for an example of a specific residuals
method (defined for PLMset objects).

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

residuals
showMethods ("residuals”)
selectMethod("residuals”, "ANY") # the default method

row+colnames

row+colnames Row and column names

Description

Get or set the row or column names of a matrix-like object.

NOTE: This man page is for the rownames, ~rownames<-", colnames, and "~colnames<-~ $4
generic functions defined in the BiocGenerics package. See ?base::rownames for the default
methods (defined in the base package). Bioconductor packages can define specific methods for
objects (typically matrix-like) not supported by the default methods.

Usage

rownames(x, do.NULL=TRUE, prefix="row")
rownames(x) <- value

colnames(x, do.NULL=TRUE, prefix="col")
colnames(x) <- value

Arguments

X A matrix-like object.
do.NULL, prefix See ?base: :rownames for a description of these arguments.

value Either NULL or a character vector equal of length equal to the appropriate dimen-
sion.

Value

The getters will return NULL or a character vector of length nrow(x) for rownames and length
ncol (x) for colnames(x).

See ?base: : rownames for more information about the default methods, including how the setters
are expected to behave.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default methods.

See Also

e base::rownames for the default rownames, ~rownames<-", colnames, and ~colnames<-"
methods.

* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

» rownames,DataFrame-method in the S4Vectors package for an example of a specific rownames
method (defined for DataFrame objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

S3-classes-as-S4-classes 61

Examples

rownames() getter:

rownames # note the dispatch on the 'x' arg only
showMethods ("rownames")

selectMethod("rownames"”, "ANY") # the default method

rownames() setter:

“rownames<-"
showMethods (" rownames<-")
selectMethod("rownames<-", "ANY") # the default method

colnames() getter:

colnames # note the dispatch on the 'x'
showMethods ("colnames")
selectMethod(”"colnames”, "ANY") # the default method

arg only

colnames() setter:

“colnames<-"
showMethods ("colnames<-")
selectMethod(”colnames<-", "ANY") # the default method

S3-classes-as-S4-classes
S3 classes as S4 classes

Description

Some old-style (aka S3) classes are turned into formally defined (aka S4) classes by the Bioc-
Generics package. This allows S4 methods defined in Bioconductor packages to use them in their
signatures.

Details

S3 classes currently turned into S4 classes:

 connection class and subclasses: connection, file, url, gzfile, bzfile, unz, pipe, fifo, sockconn,
terminal, textConnection, gzcon. Addtitionally the character_ OR_connection S4 class is de-
fined as the union of classes character and connection.

e others: Asls, dist

See Also

setOldClass and setClassUnion in the methods package.

62 saveRDS

saveRDS The saveRDS() $4 generic and default method

Description

Generic function to write a single R object to a file.

NOTE: This man page is for the saveRDS S4 generic function and default method defined in the
BiocGenerics package. See ?base: : saveRDS for the corresponding function defined in base R.

Usage
saveRDS(object, file="", ascii=FALSE, version=NULL,
compress=TRUE, refhook=NULL)
Arguments

object, file, ascii, version, compress, refhook
See ?base: : saveRDS for a description of these arguments.

Details

The default saveRDS method defined in this package is a thin wrapper around base: : saveRDS that

issues a warning if the object to serialize contains out-of-memory data. See ?containsOutOfMemoryData

for more information.

Bioconductor packages can override this default method with more specialized methods.

Value

An invisible NULL.

See Also

* base: :saveRDS in the base package for the default saveRDS method.

* containsOutOfMemoryData for determining whether an object contains out-of-memory data
or not.

* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* saveRDS,SummarizedExperiment-method in the SummarizedExperiment package for an
example of a specific saveRDS method (defined for SummarizedExperiment objects and deriva-
tives).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

saveRDS # note the dispatch on the 'object' arg only
showMethods("saveRDS")
selectMethod("saveRDS"”, "ANY") # the default method

score 63

score Score accessor

Description

Get or set the score value contained in an object.

Usage
score(x, ...)
score(x, ...) <- value
Arguments
X An object to get or set the score value of.
Additional arguments, for use in specific methods.
value The score value to set on x.
See Also

* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* score,GenomicRanges-method in the GenomicRanges package for an example of a specific
score method (defined for GenomicRanges objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

score
showMethods("score")

“score<-"
showMethods("score<-")

library(GenomicRanges)

showMethods ("score”)
selectMethod("score”, "GenomicRanges")

showMethods ("score<-")
selectMethod("score<-", "GenomicRanges")

64 setops

setops Set operations

Description

Performs set union, intersection, (asymmetric!) difference, and equality on two or more vector-like
objects.

NOTE: This man page is for the union, intersect, setdiff, and setequal S4 generic functions
defined in the BiocGenerics package. See ?generics: :union for the default methods (defined in
CRAN package generics). Bioconductor packages can define specific methods for objects (typi-
cally vector-like) not supported by the default methods.

Usage

union(x, vy, ...)
intersect(x, vy, ...)
setdiff(x, vy, ...)
setequal(x, vy, ...)

Arguments

X,y Vector-like objects (typically of the same class, but not necessarily).

Additional arguments, for use in specific methods.

Value

See ?generics: :union in CRAN package generics for the value returned by the default methods.

Specific methods defined in Bioconductor packages will typically act as endomorphisms, that is,
they’ll return an object of the same class as the input objects.

Note

The default S4 methods for these S4 generics are the union, intersect, setdiff, and setequal
functions defined in CRAN package generics, which are themselves S3 generic functions. These
S3 generics in turn have default methods that simply call the corresponding base R function i.e. the
union, intersect, setdiff, or setequal function defined in the base package. See for example
generics:::union.default.

Note that the base R functions only take 2 arguments. However, the S3 generics in CRAN package
generics, and the S4 generics in BiocGenerics, add . . . (a.k.a. ellipsis) to the argument list. This
allow these generics to be called with an arbitrary number of effective arguments.

For union or intersect, this means that Bioconductor packages can implement N-ary union or
intersection operations, that is, methods that compute the union or intersection of more than 2
objects.

However, for setdiff and setequal, which are conceptually binary-only operation, the presence
of the ellipsis typically allows methods to support extra arguments to control/alter the behavior of

setops 65

the operation. Like for example the ignore.strand argument supported by the setdiff method
for GenomicRanges objects (defined in the GenomicRanges package). (Note that the union and
intersect methods for those objects also support the ignore. strand argument.)

See Also
e generics: :union for the default union, intersect, setdiff, and setequal S4 methods
defined in CRAN package generics.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* union,GenomicRanges,GenomicRanges-method in the GenomicRanges package for exam-
ples of specific union, intersect, and setdiff methods (defined for GenomicRanges ob-
jects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

B =
union()
e

S4 generic:
union # note the dispath on 'x' and 'y'

showMethods("union™)

The default S4 method is an S3 generic function defined in
CRAN package generics:
selectMethod("union”, c("ANY", "ANY"))

The default S3 method just calls base::union():
generics:::union.default

B m oo
intersect()
HHE =

S4 generic:
intersect # note the dispath on 'x' and 'y'

showMethods("intersect"”)
The default S4 method is an S3 generic function defined in
CRAN package generics:

selectMethod("intersect”, c("ANY", "ANY"))

The default S3 method just calls base::intersect():
generics:::intersect.default

O
setdiff()

66 sort

S4 generic:
setdiff # note the dispath on 'x' and 'y'

showMethods ("setdiff")

The default S4 method is an S3 generic function defined in
CRAN package generics:
selectMethod("setdiff"”, c("ANY", "ANY"))

The default S3 method just calls base::setdiff():
generics:::setdiff.default

e
setequal()
s

S4 generic:
setequal # note the dispath on 'x' and

y'
showMethods ("setequal”)

The default S4 method is an S3 generic function defined in
CRAN package generics:

selectMethod("setequal”, c("ANY", "ANY"))

The default S3 method just calls base::setequal():
generics:::setequal.default

sort Sorting a vector-like object

Description

Sort a vector-like object into ascending or descending order.

NOTE: This man page is for the sort S4 generic function defined in the BiocGenerics package.
See ?base: : sort for the default method (defined in the base package). Bioconductor packages can
define specific methods for objects not supported by the default method.

Usage

sort(x, decreasing=FALSE, ...)
Arguments

X A vector-like object.

decreasing, ... See ?base::sort for a description of these arguments.

start

Value

67

See ?base: : sort for the value returned by the default method.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

Note

TO DEVELOPERS:

See note in ?BiocGenerics: :order about "stable" order.

order, sort, and rank methods for specific vector-like objects should adhere to the same underly-
ing order that should be conceptually defined as a binary relation on the set of all possible vector
values. For completeness, this binary relation should also be incarnated by a <= method.

See Also

base: : sort for the default sort method.
showMethods for displaying a summary of the methods defined for a given generic function.
selectMethod for getting the definition of a specific method.

sort, Vector-method in the S4Vectors package for an example of a specific sort method (de-
fined for Vector objects).

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

sort # note the dispatch on the 'x' arg only
showMethods ("sort")
selectMethod("sort”, "ANY") # the default method

start

The start(), end(), width(), and pos() generic getters and setters

Description

Get or set the start, end, width, or single positions stored in an object.

NOTE: This man page is for the start, ~start<--, end, ~end<-", width, “width<-", and pos
S4 generic functions defined in the BiocGenerics package. See ?stats: :start for the start and
end S3 generics defined in the stats package.

68

Usage

start

start(x, ...)
start(x, ...) <- value

end(x, ...)
end(x, ...) <- value

width(x)
width(x, ...) <- value

pos (x)

Arguments

X

For the start(), end(), and width() getters/setters: an object containing start,
end, and width values.

For the pos{} getter: an object containing single positions.

Additional arguments, for use in specific methods.

value The start, end, or width values to set on x.

Value

See specific methods defined in Bioconductor packages.

See Also

stats::start in the stats package for the start and end S3 generics.
showMethods for displaying a summary of the methods defined for a given generic function.
selectMethod for getting the definition of a specific method.

start,IRanges-method in the IRanges package for examples of specific start, end, and width
methods (defined for IRanges objects).

pos,Unstitched[Pos-method in the IRanges package for an example of a specific pos method
(defined for UnstitchedIPos objects).

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

start() getter:
start
showMethods("start")

library(IRanges)
showMethods ("start"”)
selectMethod("start”, "IRanges”) # start() getter for IRanges objects

start() setter:
“start<-"

strand 69

showMethods("start<-")
selectMethod("start<-", "IRanges") # start() setter for IRanges objects

end() getter:

end

showMethods ("end")

selectMethod(”end”, "IRanges"”) # end() getter for IRanges objects

end() setter:

“end<-"
showMethods ("end<-")
selectMethod("”end<-", "IRanges”) # end() setter for IRanges objects

width() getter:

width

showMethods ("width")

selectMethod("width”, "IRanges”) # width() getter for IRanges objects

width() setter:

“width<-
showMethods ("width<-")
selectMethod("width<-", "IRanges") # width() setter for IRanges objects

pos() getter:

pos

showMethods ("pos")

selectMethod("pos”, "UnstitchedIPos"”) # pos() getter for UnstitchedIPos
objects

strand Accessing strand information

Description

Get or set the strand information contained in an object.

Usage
strand(x, ...)
strand(x, ...) <- value
unstrand(x)
invertStrand(x)

S4 method for signature 'ANY'
invertStrand(x)

70 strand

Arguments
X An object containing strand information.
Additional arguments, for use in specific methods.
value The strand information to set on x.
Details

All the strand methods defined in the GenomicRanges package use the same set of 3 values (called
the "standard strand levels") to specify the strand of a genomic location: +, -, and *. * is used when
the exact strand of the location is unknown, or irrelevant, or when the "feature" at that location
belongs to both strands.

Note that unstrand is not a generic function, just a convenience wrapper to the generic strand()
setter (strand<-) that does:

strand(x) <- "x"
X

The default method for invertStrand does:

strand(x) <- invertStrand(strand(x))
X

Value

If x is a vector-like object, strand(x) will typically return a vector-like object parallel to x, that is,
an object of the same length as x where the i-th element describes the strand of the i-th element in
X.

unstrand(x) and invertStrand(x) return a copy of x with the strand set to "*" for unstrand or
inverted for invertStrand (i.e. "+" and "-" switched, and "*" untouched).

See Also

* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* strand,GRanges-method in the GenomicRanges package for an example of a specific strand
method (defined for GRanges objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

strand
showMethods("strand")

“strand<-
showMethods ("strand<-")

unstrand

subset 71

invertStrand
showMethods ("invertStrand")
selectMethod("invertStrand”, "ANY") # the default method

library(GenomicRanges)
showMethods ("strand")
selectMethod("strand”, "missing")

strand()

showMethods("strand<-")

subset Subsetting vector-like, matrix-like and data-frame-like objects

Description

Return subsets of vector-like, matrix-like or data-frame-like objects which meet conditions.

NOTE: This man page is for the subset S4 generic function defined in the BiocGenerics package.
See ?base: : subset for the subset S3 generic defined in the base package.

Usage
subset(x, ...)
Arguments
X A vector-like, matrix-like or data-frame-like object to be subsetted.
Additional arguments (e.g. subset, select, drop), for use in specific methods.
See ?base: : subset for more information.
Value

An object similar to x containing just the selected elements (for a vector-like object), or the selected
rows and columns (for a matrix-like or data-frame-like object).

See Also

* base: :subset in the base package for the subset S3 generic.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* subset,RectangularData-method in the S4Vectors package for an example of a specific subset
method (defined for RectangularData derivatives).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

72 t

Examples

subset
showMethods ("subset")
selectMethod("subset”, "ANY") # the default method

library(S4Vectors)

showMethods ("subset")

The subset() method for RectangularData derivatives:
selectMethod("subset”, "RectangularData”)

t Matrix Transpose

Description

Given a rectangular object x, t returns the transpose of x.

NOTE: This man page is for the t S4 generic function defined in the BiocGenerics package. See
?base: : t for the default method (defined in the base package). Bioconductor packages can define
specific methods for objects (typically array-like) not supported by the default method.

Usage
t(x)

Arguments

X A matrix-like or other rectangular object.

Value

See ?base: : t for the value returned by the default method.

Specific methods defined in Bioconductor packages will typically return an object of the same class
as the input object.

See Also

* base: : t for the default t method.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* t,Hits-method in the S4Vectors package for an example of a specific t method (defined for
Hits objects).
* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

t
showMethods("t")
selectMethod("t", "ANY") # the default method

table 73

table Cross tabulation and table creation

Description

table uses the cross-classifying factors to build a contingency table of the counts at each combina-
tion of factor levels.

NOTE: This man page is for the table S4 generic function defined in the BiocGenerics package.
See ?base: :table for the default method (defined in the base package). Bioconductor packages
can define specific methods for objects not supported by the default method.

Usage
table(...)
Arguments
One or more objects which can be interpreted as factors (including character
strings), or a list (or data frame) whose components can be so interpreted.
Value

See ?base: : table for the value returned by the default method.

Specific methods defined in Bioconductor packages should also return the type of object returned
by the default method.

See Also

* base::table for the default table method.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* table,Rle-method in the S4Vectors package for an example of a specific table method (de-
fined for Rle objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

table
showMethods("table")
selectMethod("table”, "ANY") # the default method

74 tapply

tapply Apply a function over a ragged array

Description

tapply applies a function to each cell of a ragged array, that is to each (non-empty) group of values
given by a unique combination of the levels of certain factors.

NOTE: This man page is for the tapply S4 generic function defined in the BiocGenerics package.
See ?base: : tapply for the default method (defined in the base package). Bioconductor packages
can define specific methods for objects (typically list-like or vector-like) not supported by the default

method.
Usage
tapply (X, INDEX, FUN=NULL, ..., default=NA, simplify=TRUE)
Arguments
X The default method expects an atomic object, typically a vector. See ?base: : tapply
for the details.
Specific methods can support other objects (typically list-like or vector-like).
Please refer to the documentation of a particular method for the details.
INDEX The default method expects a list of one or more factors, each of same length as

X. See ?base: : tapply for the details.

Specific methods can support other objects (typically list-like). Please refer to
the documentation of a particular method for the details.

FUN, ..., default, simplify
See ?base: : tapply for a description of these arguments.

Value

See ?base: : tapply for the value returned by the default method.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

See Also

e base: :tapply for the default tapply method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

tapply, Vector, ANY-method in the IRanges package for an example of a specific tapply method
(defined for Vector objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

testPackage 75

Examples

tapply # note the dispatch on the 'X' and 'INDEX' args only
showMethods ("tapply")
selectMethod("tapply”, c("ANY"”, "ANY")) # the default method

testPackage Run RUnit package unit tests

Description

testPackage helps developers implement unit tests using the RUnit testing conventions.

Usage

testPackage (pkgname=NULL, subdir="unitTests"”, pattern=""test_.*\\.R$",
path=getwd())

Arguments
pkgname The name of the package whose installed unit tests are to be run. A missing or
NULL value implies that the testPackage command will look for tests within
the package source directory indicated by path.
subdir A character(1) vector providing the subdirectory in which unit tests are located.
The directory is searched first in the (installed or source) package root, or in a
subdirectory inst/ below the root.
pattern A character(1) regular expression describing the file names to be evaluated; typ-
ically used to restrict tests to a subset of all test files.
path A character(1) directory path indicating, when pkgname is missing or NULL,
where unit tests will be searched. path can be any location at or below the
package root.
Details

This function is not exported from the package namespace, and must be invoked using triple colons,
BiocGenerics:: :testPackage(); it is provided primarily for the convenience of developers.

When invoked with missing or NULL pkgname argument, the function assumes that it has been
invoked from within the package source tree (or that the source tree is located above path), and
finds unit tests in subdir="unitTests" in either the base or inst/ directories at the root of the
package source tree. This mode is useful when developing unit tests, since the package does not
have to be re-installed to run an updated test.

When invoked with pkgname set to the name of an installed package, unit tests are searched for in
the installed package directory.
Value

The function returns the result of RUnit: :runTestSuite invoked on the unit tests specified in the
function call.

76 toTable

See Also

http://bioconductor.org/developers/how-to/unitTesting-guidelines/

Examples

Run unit tests found in the library location where

BiocGenerics is installed

BiocGenerics:: :testPackage("BiocGenerics")

Not run: ## Run unit tests for the package whose source tree implied
by getwd()

BiocGenerics:: :testPackage()

End(Not run)

toTable An alternative to as.data.frame()

Description

toTable() is an S4 generic function provided as an alternative to as.data. frame().

Usage
toTable(x, ...)
Arguments
X The object to turn into a data frame.
Additional arguments, for use in specific methods.
Value

A data frame.

See Also

* The as.data.frame S4 generic defined in the BiocGenerics package.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

¢ toTable,Bimap-method in the AnnotationDbi package for an example of a specific toTable
method (defined for Bimap objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

http://bioconductor.org/developers/how-to/unitTesting-guidelines/

type 77

Examples

toTable
showMethods ("toTable")

library(AnnotationDbi)
showMethods ("toTable")
selectMethod("toTable”, "Bimap")

type Accessing the type of an object

Description

Get or set the type of an object.

Note that type and type<- are defined as S4 generic functions and what fype means exactly (and
what type () returns) depends on the objects for which the type and/or type<- methods are defined.

Usage

type(x)
type(x) <- value

Methods defined in the BiocGenerics package:

S4 method for signature 'vector'
type(x)

S4 method for signature 'array'
type(x)

S4 method for signature 'factor'
type(x) # returns "character”

S4 method for signature 'data.frame'

type(x)

S4 replacement method for signature 'vector'
type(x) <- value
S4 replacement method for signature 'array'
type(x) <- value

Arguments
X Any object for which the type() getter or setter is defined. Note that objects
will either: not support the getter or setter at all, or support only the getter, or
support both the getter and setter.
value The type to set on x (assuming x supports the type () setter). value is typically

(but not necessarily) expected to be a single string (i.e. a character vector of
length 1).

78 type

Details

On an ordinary vector, matrix, or array X, type(x) returns typeof (x).

On a data frame x where all the columns are ordinary vectors or factors, type(x) is semantically
equivalent to typeof(as.matrix(x)). However, the actual implementation is careful to avoid
turning the full data frame x into a matrix, as this would tend to be very inefficient in general.

Note that for a matrix-like or array-like object, type(x) returns the type of the elements in the
object. See ?S4Arrays: : type for more information.

Value

type(x) is expected to return the type of x as a single string i.e. as a character vector of length 1.

See Also

* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.
* type,ANY-method in the S4Arrays package for the default type method.

* type,DataFrame-method in the S4Arrays package, and type,PairwiseAlignments-method in
the pwalign package, for examples of specific type methods (defined for DataFrame and
Pairwise Alignments objects, respectively).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

type
showMethods ("type")

T type<--
showMethods ("type<-")

The BiocGenerics package defines methods for ordinary vectors, arrays,
and data frames:

m <- matrix(11:22, nrow=3)

type(m) # equivalent to 'typeof(m)' or 'storage.mode(m)'
type(m) <- "raw” # equivalent to 'storage.mode(m) <- "raw
m

type(m)

n "

selectMethod("type”, "array")
selectMethod("type<-", "array")

df <- data.frame(a=44:49, b=letters[1:6], c=c(TRUE, FALSE))
stopifnot(identical (type(df), typeof(as.matrix(df))))

Examples of methods defined in other packages:

library(S4Arrays)
showMethods ("type")

unique 79

selectMethod("type”, "ANY") # the default "type"” method

library(pwalign)

showMethods ("type")

The type() method for PairwiseAlignments objects:
selectMethod("type”, "PairwiseAlignments")

unique Extract unique elements

Description

unique returns an object of the same class as x (typically a vector-like, data-frame-like, or array-like
object) but with duplicate elements/rows removed.

NOTE: This man page is for the unique S4 generic function defined in the BiocGenerics package.

See ?base: :unique for the default method (defined in the base package). Bioconductor packages
can define specific methods for objects (typically vector-like or data-frame-like) not supported by

the default method.
Usage
unique(x, incomparables=FALSE, ...)
Arguments
X A vector-like, data-frame-like, or array-like object.
incomparables, ...

See ?base: :unique for a description of these arguments.

Value

See ?base: :unique for the value returned by the default method.

Specific methods defined in Bioconductor packages will typically return an object of the same class
as the input object.

unique should always behave consistently with BiocGenerics: :duplicated.

See Also

¢ base: :unique for the default unique method.

* BiocGenerics: :duplicated for determining duplicate elements.

* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* unique,Rle-method in the S4Vectors package for an example of a specific unique method
(defined for Rle objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

80 unlist

Examples

unique
showMethods ("unique™)
selectMethod("unique”, "ANY") # the default method

unlist Flatten list-like objects

Description

Given a list-like object x, unlist produces a vector-like object obtained by concatenating (concep-
tually thru c) all the top-level elements in x (each of them being expected to be a vector-like object,

typically).

NOTE: This man page is for the unlist S4 generic function defined in the BiocGenerics package.
See ?base: :unlist for the default method (defined in the base package). Bioconductor packages
can define specific methods for objects not supported by the default method.

Usage

unlist(x, recursive=TRUE, use.names=TRUE)

Arguments

X A list-like object.
recursive, use.names
See ?base: :unlist for a description of these arguments.

Value

See ?base: :unlist for the value returned by the default method.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

See Also

e base::unlist for the default unlist method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

unlist,List-method in the S4Vectors package for an example of a specific unlist method
(defined for List objects).
* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

unlist # note the dispatch on the 'x' arg only
showMethods("unlist"”)
selectMethod("unlist”, "ANY") # the default method

unsplit 81

unsplit Unsplit a list-like object

Description

Given a list-like object value and grouping f, unsplit produces a vector-like object x by concep-
tually reversing the split operation value <- split(x, f).

NOTE: This man page is for the unsplit S4 generic function defined in the BiocGenerics package.
See ?base: :unsplit for the default method (defined in the base package). Bioconductor packages
can define specific methods for objects not supported by the default method.

Usage

unsplit(value, f, drop=FALSE)

Arguments
value A list-like object.
f A factor or other grouping object that corresponds to the f symbol in value <-
split(x, f).
drop See ?base: :unsplit for a description of this argument.
Value

See ?base: :unsplit for the value returned by the default method.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

See Also

e base::unsplit for the default unsplit method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

unsplit,List-method in the IRanges package for an example of a specific unsplit method
(defined for List objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

unsplit # note the dispatch on the 'value' and 'f' args only
showMethods ("unsplit”)
selectMethod("unsplit”, "ANY") # the default method

82 updateObject

updateObject Update an object to its current class definition

Description

updateObject is a generic function that returns an instance of object updated to its current class
definition.

Usage
updateObject(object, ..., verbose=FALSE)

Related utilities:

updateObjectFromSlots(object, objclass=class(object)[[1L]1], ...,
verbose=FALSE)

getObjectSlots(object)

Arguments
object Object to be updated for updateObject and updateObjectFromSlots.
Object for slot information to be extracted from for getObjectSlots.
Additional arguments, for use in specific updateObject methods.
verbose TRUE or FALSE, indicating whether information about the update should be re-
ported. Use message to report this information.
objclass Optional character string naming the class of the object to be created.
Details

Updating objects is primarily useful when an object has been serialized (e.g., stored to disk) for
some time (e.g., months), and the class definition has in the mean time changed. Because of the
changed class definition, the serialized instance is no longer valid.

updateObject requires that the class of the returned object be the same as the class of the argu-
ment object, and that the object is valid (see validObject). By default, updateObject has the
following behaviors:

updateObject (ANY, ..., verbose=FALSE) By default, updateObject uses heuristic methods to
determine whether the object should be the ‘new’ S4 type (introduced in R 2.4.0), but is not.
If the heuristics indicate an update is required, the updateObjectFromSlots function tries
to update the object. The default method returns the original S4 object or the successfully
updated object, or issues an error if an update is required but not possible. The optional
named argument verbose causes a message to be printed describing the action. Arguments

. are passed to updateObjectFromSlots.

updateObject(environment, ..., verbose=FALSE) Visiteach elementin environment, apply-
ing updateObject(environment[[elt]], ..., verbose=verbose)
updateObject(formula, ..., verbose=FALSE) Do nothing; the environment of the formula may

be too general (e.g., R_GlobalEnv) to attempt an update.

updateObject 83

updateObject(envRefClass, ..., verbose=FALSE) Attempt to update objects from fields using
a strategy like updateObjectFromSlots Method 1.

updateObjectFromSlots(object, objclass=class(object), ..., verbose=FALSE) is a util-

ity function that identifies the intersection of slots defined in the object instance and objclass defi-

nition. Under Method 1, the corresponding elements in object are then updated (with updateObject(elt,
., verbose=verbose)) and used as arguments to a call to new(class, ...), with ... replaced

by slots from the original object. If this fails, then Method 2 tries new(class) and assigns slots of

object to the newly created instance.

getObjectSlots(object) extracts the slot names and contents from object. This is useful when
object was created by a class definition that is no longer current, and hence the contents of object
cannot be determined by accessing known slots.

Value

updateObject returns a valid instance of object.
updateObjectFromSlots returns an instance of class objclass.

getObjectSlots returns a list of named elements, with each element corresponding to a slot in
object.

See Also

* updateObjectTo in the Biobase package for updating an object to the class definition of a
template (might be useful for updating a virtual superclass).

* validObject for testing the validity of an object.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

updateObject
showMethods ("updateObject"”)
selectMethod("updateObject”, "ANY") # the default method

library(Biobase)

update object, same class
data(sample.ExpressionSet)

obj <- updateObject(sample.ExpressionSet)

setClass("UpdtA”, representation(x="numeric"”), contains="data.frame")
setMethod("updateObject”, "UpdtA”,
function(object, ..., verbose=FALSE)
{
if (verbose)
message("updateObject object = 'A'")
object <- callNextMethod()
object@x <- -object@x
object

84 var

)

a <- new("UpdtA", x=1:10)
See steps involved
updateObject(a)

removeMethod("updateObject”, "UpdtA")
removeClass("UpdtA")

var Variance and Standard Deviation

Description

var and sd compute the variance and standard deviation of a vector x.

NOTE: This man page is for the var and sd, S4 generic functions defined in the BiocGenerics
package. See ?stats: :var and ?stats: : sd for the default methods (defined in the stats package).
Bioconductor packages can define specific methods for objects (typically array-like) not supported
by the default method.

Usage
var(x, y = NULL, na.rm = FALSE, use)
sd(x, na.rm = FALSE)
Arguments
X a vector-like object
y a vector-like object, or NULL
na.rm, use see var
Value

See ?stats::var and ?stats: : sd for the value returned by the default methods.

Specific methods defined in Bioconductor packages will typically return an object of the same class
as the input object.

See Also

e stats::var and stats: : sd for the default methods.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

weights 85

Examples

var
showMethods ("var")
selectMethod("var"”, "ANY") # the default method

weights Extract model weights

Description

weights is a generic function which extracts fitting weights from objects returned by modeling
functions.
NOTE: This man page is for the weights S4 generic function defined in the BiocGenerics pack-

age. See ?stats::weights for the default method (defined in the stats package). Bioconductor
packages can define specific methods for objects not supported by the default method.

Usage

weights(object, ...)
Arguments

object, ... See ?stats::weights.
Value

Weights extracted from the object object.
See ?stats: :weights for the value returned by the default method.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

See Also

e stats::weights for the default weights method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

weights,PLMset-method in the affyPLM package for an example of a specific weights method
(defined for PLMset objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

weights
showMethods("weights")
selectMethod("weights”, "ANY") # the default method

86 which

which Which values in an object are considered TRUE?

Description
Give the indices of the values in a vector-, array-, or list-like object that are considered TRUE,
allowing for array indices in the case of an array-like object.

NOTE: This man page is for the which S4 generic function defined in the BiocGenerics package.
See ?base: :which for the default method (defined in the base package). Bioconductor packages
can define specific methods for objects (typically vector-, array-, or list-like) not supported by the
default methods.

Usage
which(x, arr.ind=FALSE, useNames=TRUE)

Arguments

X An object, typically with a vector-, array-, or list-like semantic.
arr.ind, useNames
See ?base: :which for a description of these arguments.

Value

See ?base: :which for the value returned by the default method.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

See Also

* base: :which for the default which method.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

* which,DelayedArray-method in the DelayedArray package for an example of a specific which
method (defined for DelayedArray objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

which
showMethods ("which”)
selectMethod("which”, "ANY") # the default method

library(DelayedArray)

showMethods("which")

The which() method for DelayedArray objects:
selectMethod("which”, "DelayedArray")

which.min 87

which.min What’s the index of the first min or max value in an object?

Description

Determines the location (i.e. index) of the (first) minimum or maximum value in an object.

NOTE: This man page is for the which.min and which.max S4 generic functions defined in the
BiocGenerics package. See ?base: :which.min for the default methods (defined in the base pack-
age). Bioconductor packages can define specific methods for objects (typically vector-, array-, or
list-like) not supported by the default methods.

Usage
which.min(x, ...)
which.max(x, ...)
Arguments
X An object, typically with a vector-, array-, or list-like semantic.
Additional arguments, for use in specific methods.
Value

See ?base: :which.min for the value returned by the default methods.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default methods.

Note

The default methods (defined in the base package) only take a single argument. We’ve added
the ... argument to the generic functions defined in the BiocGenerics package so they can be
called with an arbitrary number of effective arguments. This typically allows methods to add extra
arguments for controlling/altering the behavior of the operation. Like for example the global
argument supported by the which.max method for NumericList objects (defined in the IRanges
package).

See Also

* base::which.min for the default which.min and which.max methods.
* showMethods for displaying a summary of the methods defined for a given generic function.
* selectMethod for getting the definition of a specific method.

» which.max,NumericList-method in the IRanges package for an example of a specific which.max
method (defined for NumericList objects).

* BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

88 Xxtabs

Examples

which.min
showMethods ("which.min")
selectMethod(”"which.min”, "ANY") # the default method

which.max
showMethods ("which.max")
selectMethod("which.max"”, "ANY") # the default method

library(IRanges)
showMethods ("which.max")
The which.max() method for NumericList objects:

selectMethod("which.max"”, "NumericList")
xtabs Cross tabulation
Description

xtabs creates a contingency table (optionally a sparse matrix) from cross-classifying factors, usu-
ally contained in a data-frame-like object, using a formula interface.

NOTE: This man page is for the xtabs S4 generic function defined in the BiocGenerics package.
See ?stats: :xtabs for the default method (defined in the stats package). Bioconductor packages
can define specific methods for objects not supported by the default method.

Usage
xtabs(formula=~., data=parent.frame(), subset, sparse=FALSE,
na.action, na.rm=FALSE, addNA=FALSE, exclude=if(!addNA)c(NA, NaN),
drop.unused. levels=FALSE)
Arguments

formula, subset, sparse, na.action, na.rm, addNA, exclude,
drop.unused.levels
See ?stats: :xtabs for a description of these arguments.

data A data-frame-like object.

Value

See ?stats: :xtabs for the value returned by the default method.

Specific methods defined in Bioconductor packages should also return the type of object returned
by the default method.

xtabs 89

See Also

e stats: :xtabs for the default xtabs method.

showMethods for displaying a summary of the methods defined for a given generic function.

selectMethod for getting the definition of a specific method.

xtabs,DataFrame-method in the S4Vectors package for an example of a specific xtabs method
(defined for DataFrame objects).

BiocGenerics for a summary of all the generics defined in the BiocGenerics package.

Examples

xtabs # note the dispatch on the 'data' arg only
showMethods("xtabs")
selectMethod("xtabs"”, "ANY") # the default method

library(S4Vectors)

showMethods ("xtabs")

The xtabs() method for DataFrame objects:
selectMethod("xtabs"”, "DataFrame")

Index

* classes
S3-classes-as-S4-classes, 61

* manip
dge, 20

+ methods
annotation, 7
aperm, 7
append, 8
as.data.frame, 9
as.list, 10
as.vector, 11
boxplot, 12
cbind, 13
combine, 14
containsOutOfMemoryData, 16
dbconn, 18
density, 19
dims, 21
do.call, 22
duplicated, 23
eval, 25
Extremes, 26
fileName, 28
format, 28
funprog, 29
get, 31
grep, 32
image, 33
IQR, 34
is.unsorted, 35
lapply, 36
longForm, 37
mad, 38
mapply, 39
match, 40
mean, 41
normalize, 42
nrow, 43
Ontology, 44

90

order, 45
organism_species, 46
paste, 48
paste2, 49
path, 51
plotMA, 53
plotPCA, 54
rank, 55
relist, 57
rep, 58
residuals, 59
row+colnames, 60
saveRDS, 62
score, 63
setops, 64
sort, 66
start, 67
strand, 69
subset, 71
t, 72
table, 73
tapply, 74
testPackage, 75
toTable, 76
type, 77
unique, 79
unlist, 80
unsplit, 81
updateObject, 82
var, 84
weights, 85
which, 86
which.min, 87
xtabs, 88

+ package
BiocGenerics-package, 4

<=,45, 56, 67

%in% (match), 40

%in%, 4

INDEX

%in%,R1le, ANY-method, 40

add_prefix (paste2), 49

add_suffix (paste2), 49

AffyBatch, 12, 33, 42

AnnotatedDataFrame, 15

annotation, 5,7

annotation,eSet-method, 7

annotation<- (annotation), 7

AnnotationDb, 47

anyDuplicated, 4

anyDuplicated (duplicated), 23

aperm, 4,7,7,8

aperm, SVT_SparseArray-method, 8

append, 4, 8, 8, 9

append, Vector,Vector-method, 9

as.data.frame, 4, 9,9, 10, 76

as.data.frame,DataFrame-method, /0

as.data.frame,IntegerRanges-method, /10

as.list, 4, 10,10, 11

as.list,List-method, 77

as.vector,4,11,11, 12

as.vector,AtomicList-method, 12

as.vector,Rle-method, 12

AslIs, 61

AsIs-class (S3-classes-as-S4-classes),
61

AssayData, 15

Atomiclist, /2

basename, 5, 52
basename (path), 51
basename, ANY-method (path), 51
basename<- (path), 51
basename<-,ANY-method (path), 51
basename<-,character-method (path), 51
Bimap, 31, 76
BiocGenerics, 7—13, 15, 18-25, 2744,
46-48, 50, 52, 54-60, 62, 63, 65, 67,
68, 70-74, 76, 78-81, 83-87, 89
BiocGenerics (BiocGenerics-package), 4
BiocGenerics-package, 4
boxplot, 5, 12, 12
boxplot,AffyBatch-method, /2
bzfile-class
(S3-classes-as-S4-classes), 61

c, 80
cbind, 4, 6, 13, 13

91

cbind,DataFrame-method, /3

character_OR_connection-class
(S3-classes-as-S4-classes), 61

chromLocation, 47

class:0OutOfMemoryObject
(containsOutOfMemoryData), 16

colnames, 4

colnames (row+colnames), 60

colnames<- (row+colnames), 60

combine, 5, 14

combine,AnnotatedDataFrame, AnnotatedDataFrame-method,

15

combine, ANY,missing-method (combine), 14

combine,AssayData,AssayData-method, 15

combine,data.frame,data.frame-method
(combine), 14

combine,eSet,eSet-method, /5

combine,matrix,matrix-method (combine),
14

combine ,MIAME ,MIAME-method, 15

conditions, 5

conditions (dge), 20

conditions<- (dge), 20

connection, 61

connection-class
(S3-classes-as-S4-classes), 61

containsOutOfMemoryData, 5, 16, 62

containsQutOfMemoryData, ANY-method
(containsOutOfMemoryData), 16

containsOutOfMemoryData, environment-method
(containsOutOfMemoryData), 16

containsOutOfMemoryData, list-method
(containsOutOfMemoryData), 16

containsOutOfMemoryData,OutOfMemoryObject-method
(containsOutOfMemoryData), 16

counts, 5

counts (dge), 20

counts<- (dge), 20

DataFrame, 10, 13, 43, 60, 78, 89
DataFramelist, 22
dbconn, 5, 18, 19
dbconn,AnnotationDb-method, /9
dbfile, 5

dbfile (dbconn), 18
DelayedArray, 50, 86
density, 5, 19, 19, 20

density, flowClust-method, 20
design, 5

92

design (dge), 20

design<- (dge), 20

dge, 20

dim, 6

dims, 5, 21

dims,DataFramelList-method, 22

dirname, 5

dirname (path), 51

dirname, ANY-method (path), 51

dirname<- (path), 51

dirname<-,ANY-method (path), 51

dirname<-,character-method (path), 51

dispTable, 5

dispTable (dge), 20

dispTable<- (dge), 20

dist, 61

dist-class (S3-classes-as-S4-classes),
61

do.call, 4,22,22,23

duplicated, 4, 23, 23, 24, 79

duplicated,Rle-method, 24

end, 5

end (start), 67

end<- (start), 67

eSet, 7,15
estimateDispersions, 5
estimateDispersions (dge), 20
estimateSizeFactors, 5
estimateSizeFactors (dge), 20
eval, 4, 25, 25, 26
eval,expression,Vector-method, 25
evalq, 26, 26

expression, 25

Extremes, 26

factor, 15

fifo-class (S3-classes-as-S4-classes),
61

file-class (S3-classes-as-S4-classes),
61

fileName, 5, 28

fileName,MSmap-method, 28

Filter, 4

Filter (funprog), 29

Find, 4

Find (funprog), 29

flowClust, 20

format, 4, 28, 28, 29

INDEX

funprog, 29

GenomicRanges, 35, 63, 65

get, 4, 31, 31

get,ANY,Bimap,missing-method, 3/

getObjectSlots (updateObject), 82

GOTerms, 44

GRanges, 70

grep, 4, 32,32

grepl, 4

grepl (grep), 32

groupGeneric, 6

gzcon-class (S3-classes-as-S4-classes),
61

gzfile-class
(S3-classes-as-S4-classes), 61

HDF5Array, 16
HDF5Matrix, 17
Hits, 40, 72

image, 5, 33, 33
image,AffyBatch-method, 33
IntegerRanges, 10, 46
InternalMethods, 6

intersect, 5, 64

intersect (setops), 64
invertStrand, 6

invertStrand (strand), 69
invertStrand, ANY-method (strand), 69
IQR, 34, 34

IRanges, 68

is.unsorted, 4, 35, 35

is.unsorted, GenomicRanges-method, 35

lapply, 4, 36, 36

lapply,List-method, 36

length, 6

List, 71, 30, 36, 57, 80, 81

longForm, 5, 37

longForm,MultiAssayExperiment-method,
37

mad, 38, 38

Map, 4

Map (funprog), 29
mapply, 4, 39, 39
match, 4, 40, 40
match,Hits,Hits-method, 40

INDEX

Math, 6

mean, 41, 41
mean,Rle-method, 4/
merge, 15
message, 82

mget, 4

mget (get), 31
MIAME, 15

MSmap, 28

MSnExp, 42
MultiAssayExperiment, 37

NCOL, 4

NCOL (nrow), 43

ncol, 4, 60

ncol (nrow), 43

ncols, 5

ncols (dims), 21
normalize, 5, 42
normalize,AffyBatch-method, 42
normalize,MSnExp-method, 42
NROW, 4

NROW (nrow), 43
nrow, 4, 43, 43, 60
nrow,DataFrame-method, 43
nrows, 5

nrows (dims), 21
NumericList, 87

Ontology, 5, 44
Ontology,GOTerms-method, 44
Ops, 6
order, 4, 35,45, 45, 46, 56, 67
order,IntegerRanges-method, 46
organism, 5
organism (organism_species), 46
organism,character-method, 47
organism,chromLocation-method, 47
organism<- (organism_species), 46
organism_species, 46
OutOfMemoryObject
(containsOutOfMemoryData), 16
OutOfMemoryObject-class
(containsOutOfMemoryData), 16

PairwiseAlignments, 78
paste, 4, 48, 48
paste,Rle-method, 48
pasteo, 50

93

paste2, 5,49

paste2,ANY,ANY-method (paste2), 49

paste2,ANY, array-method (paste2), 49

paste2,array,ANY-method (paste2), 49

paste2,array,array-method (paste2), 49

paste2,DelayedArray,DelayedArray-method,
50

path, 5, 51

path,RsamtoolsFile-method, 52

path<- (path), 51

pipe-class (S3-classes-as-S4-classes),
61

PLMset, 59, 85

plotDispEsts, 5

plotDispEsts (dge), 20

plotMA, 5, 53, 54

plotMA ANY-method (plotMA), 53

plotPCA, 6, 54, 55

pmax, 4, 26, 27

pmax (Extremes), 26

pmax,Rle-method, 27

pmax.int, 4

pmin, 4

pmin (Extremes), 26

pmin.int, 4

pos, 5

pos (start), 67

pos,UnstitchedIPos-method, 68

Position, 4

Position (funprog), 29

print.data.frame, 29

rank, 4, 35,45, 55, 55, 56, 67
rank,Vector-method, 56
rbind, 4

rbind (cbind), 13
rbind,RectangularData-method, 13
readRDS, /7
RectangularData, 13, 71
Reduce, 4, 29, 30

Reduce (funprog), 29
Reduce,List-method, 30
relist, 5, 57,57
relist,ANY,List-method, 57
rep, 58

rep.int, 4, 58
rep.int,Rle-method, 58
residuals, 5, 59, 59
residuals,PLMset-method, 59

94

Rle, 12, 24, 27,40, 41, 48, 58, 73, 79
row+colnames, 60

rownames, 4, 60

rownames (row+colnames), 60
rownames,DataFrame-method, 60
rownames<- (row+colnames), 60
RsamtoolsFile, 52

S3-classes-as-S4-classes, 61

S4groupGeneric, 6

sapply, 4, 39

sapply (lapply), 36

saveHDF5SummarizedExperiment, /7

saveRDS, 5, 17, 62, 62

saveRDS, ANY-method (saveRDS), 62

saveRDS, SummarizedExperiment-method,
62

score, 6, 63

score, GenomicRanges-method, 63

score<- (score), 63

sd, 84

sd (var), 84

selectMethod, 613, 15, 1825, 2744,
4648, 50, 52, 54-60, 62, 63, 65, 67,
68, 70-74, 76, 78-81, 83-87, 89

setClassUnion, 61

setdiff, 5, 64

setdiff (setops), 64

setequal, 5, 64

setequal (setops), 64

setGeneric, 6

setMethod, 6

set0ldClass, 61

setops, 64

sets (setops), 64

showMethods, 613, 15, 18-25, 2744, 4648,
50, 52, 54-60, 62, 63, 65, 67, 68,
70-74, 76, 78-81, 83-87, 89

sizeFactors, 5

sizeFactors (dge), 20

sizeFactors<- (dge), 20

sockconn-class
(S3-classes-as-S4-classes), 61

sort, 5, 35, 45, 56, 66, 66, 67

sort,Vector-method, 67

SparseMatrix, 17

species, 5

species (organism_species), 46

species,AnnotationDb-method, 47

INDEX

species<- (organism_species), 46
start, 5, 67, 67, 68

start, IRanges-method, 68
start<- (start), 67

strand, 6, 69

strand, GRanges-method, 70
strand<- (strand), 69
subset, 5, 71,71
subset,RectangularData-method, 7/
SummarizedExperiment, 17, 62
SVT_SparseArray, 8

t,5,7,72,72

t,Hits-method, 72

table, 5, 73,73

table,Rle-method, 73

tapply, 5, 74, 74

tapply, Vector,ANY-method, 74

terminal-class
(S3-classes-as-S4-classes), 61

testPackage, 75

textConnection-class
(S3-classes-as-S4-classes), 61

toTable, 6, 10, 76

toTable,Bimap-method, 76

TxDb, 16

type, 6,77, 78

type,ANY-method, 78

type,array-method (type), 77

type,data. frame-method (type), 77

type,DataFrame-method, 78

type, factor-method (type), 77

type,PairwiseAlignments-method, 78

type,vector-method (type), 77

type<- (type), 77

type<-,array-method (type), 77

type<-,vector-method (type), 77

union, 5, 64, 65
union (setops), 64

union,GenomicRanges,GenomicRanges-method,

65
unique, 5, 79, 79
unique,Rle-method, 79
unlist, 5, 80, 80
unlist,List-method, 80
unsplit, 5, 81, 81
unsplit,List-method, 8/
UnstitchedIPos, 68

INDEX

unstrand (strand), 69
unz-class (S3-classes-as-S4-classes), 61
updateObject, 6, 82
updateObject,ANY-method (updateObject),
82
updateObject,environment-method
(updateObject), 82
updateObject,envRefClass-method
(updateObject), 82
updateObject, formula-method
(updateObject), 82
updateObjectFromSlots (updateObject), 82
updateObjectTo, 83
url-class (S3-classes-as-S4-classes), 61

validObject, 82, 83
var, 84, 84
Vector, 9, 25, 56, 67, 74

weights, 5, 85, 85
weights,PLMset-method, 85
which, 5, 86, 86
which,DelayedArray-method, 86
which.max, 5

which.max (which.min), 87
which.max,NumericList-method, 87
which.min, 5, 87, 87

width, 5

width (start), 67

width<- (start), 67

xtabs, 5, 88, 88, 89
xtabs,DataFrame-method, 89

95

	BiocGenerics-package
	annotation
	aperm
	append
	as.data.frame
	as.list
	as.vector
	boxplot
	cbind
	combine
	containsOutOfMemoryData
	dbconn
	density
	dge
	dims
	do.call
	duplicated
	eval
	evalq
	Extremes
	fileName
	format
	funprog
	get
	grep
	image
	IQR
	is.unsorted
	lapply
	longForm
	mad
	mapply
	match
	mean
	normalize
	nrow
	Ontology
	order
	organism_species
	paste
	paste2
	path
	plotMA
	plotPCA
	rank
	relist
	rep
	residuals
	row+colnames
	S3-classes-as-S4-classes
	saveRDS
	score
	setops
	sort
	start
	strand
	subset
	t
	table
	tapply
	testPackage
	toTable
	type
	unique
	unlist
	unsplit
	updateObject
	var
	weights
	which
	which.min
	xtabs
	Index

